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1 Introduction

In mathematics and abstract algebra, group theory studies the algebraic structures
known as groups. The concept of a group is central to abstract algebra: other well-
known algebraic structures, such as rings, fields, and vector spaces, can all be seen
as groups endowed with additional operations and axioms. Groups recur throughout
mathematics, and the methods of group theory have influenced many parts of alge-
bra. Linear algebraic groups and Lie groups are two branches of group theory that
have experienced advances and have become subject areas in their own right. Various
physical systems, such as crystals and the hydrogen atom, may be modelled by sym-
metry groups. Thus group theory and the closely related representation theory have
many important applications in physics, chemistry, and materials science. Group
theory is also central to public key cryptography. Soft set theory is a generalization
of fuzzy set theory, that was proposed by Molodtsov in 1999 to deal with uncertainty
in a parametric manner [10]. A soft set is a parameterised family of sets - intuitively,
this is ”soft” because the boundary of the set depends on the parameters. Formally,
a soft set, over a universal set X and set of parameters E is a pair (f, A) where A is a
subset of E and f is a function from A to the power set of X. For each e in A, the set
f(e) is called the value set of e in (f,A). One of the most important steps for the new
theory of soft sets was to define mappings on soft sets, which was achieved in 2009
by the mathematicians Athar Kharal and Bashir Ahmad, with the results published
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in 2011 [7]. Soft sets have also been applied to the problem of medical diagnosis for
use in medical expert systems. In abstract algebra, a normal subgroup is a subgroup
which is invariant under conjugation by members of the group of which it is a part.
In other words, a subgroup H of a group G is normal in G if and only if gH = Hg for
all g in G. The definition of normal subgroup implies that the sets of left and right
cosets coincide. In fact, a seemingly weaker condition that the sets of left and right
cosets coincide also implies that the subgroup H of a group G is normal in G [6].
Normal subgroups (and only normal subgroups) can be used to construct quotient
groups from a given group. Then Maji et al. [8] introduced several operations on
soft sets. The works of the algebraic structure of soft sets was first started by Aktas
and Cagman [1]. They presented the notion of the soft group and derived its some
basic properties. For basic notions and the applications of soft sets, we incite to
read [1, 2, 3, 4, 8, 9, 10, 11]. A. Solairaju and R. Nagarajan [14] introduced the new
structures of Q-fuzzy groups. The author investigated soft Lie ideals and anti soft
Lie ideals and extension of Q-soft ideals in semigroups [13, 12]. In [5] the author
introduced the concept of Q-soft subgroups and discussed the characterisations Q-
soft subgroups under homomorphism and anti-homomorphism. The purpose of this
paper is to deal with the algebraic structure of Q-soft normal subgroups. The con-
cept of Q-soft normal subgroups is introduced, their characterization and algebraic
properties are investigated. The rest of this paper is organized as follows. In Section
2, we summarize some basic concepts which will be used throughout the paper. In
Section 3, we introduce the concept of Q-soft normal subgroups and investigate some
of their basic properties. Also we investigate Q-soft normal subgroups under homo-
morphism and anti-homomorphisms. Next we prove the analogue of the Lagrange,s
theorem.

2 Preliminary

In this section, we present basic definitions of soft sets and their operations. Through-
out this work, Q is a non-empty set, U refers to an initial universe set, E is a set of
parameters and P (U) is the power set of U.

Definition 2.1. ([8, 10]) For any subset A of E, a Q-soft subset fA×Q over U is a
set, defined by a function fA×Q, representing a mapping fA×Q : E×Q → P (U), such
that fA×Q(x, q) = ∅ if x /∈ A. A soft set over U can also be represented by the set
of ordered pairs fA×Q = {((x, q), fA×Q(x, q)) | (x, q) ∈ E × Q, fA×Q(x, q) ∈ P (U)}.
Note that the set of all Q-soft subsets over U will be denoted by QS(U). From here
on, soft set will be used without over U.

Definition 2.2. ([8, 10]) Let fA×Q, fB×Q ∈ QS(U). Then,
(1) fA×Q is called an empty Q-soft subset, denoted by ΦA×Q, if fA×Q(x, q) = ∅

for all (x, q) ∈ E ×Q,
(2) fA×Q is called a A×Q-universal soft set, denoted by fA×̃Q, if fA×Q(x, q) = U

for all (x, q) ∈ A×Q,
(3) fA×Q is called a universal Q-soft subset, denoted by fE×̃Q , if fA×Q(x, q) = U

for all (x, q) ∈ E ×Q,
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(4) the set Im(fA×Q) = {fA×Q(x, q) : (x, q) ∈ A×Q} is called image of fA×Q and
if A×Q = E ×Q, then Im(fE×Q) is called image of E ×Q under fA×Q.

(5) fA×Q is a Q-soft subset of fB×Q, denoted by fA×Q⊆̃fB×Q, if fA×Q(x, q) ⊆
fB×Q(x, q) for all (x, q) ∈ E ×Q,

(6) fA×Q and fB×Q are soft equal, denoted by fA×Q = fB×Q, if and only if
fA×Q(x, q) = fB×Q(x, q) for all (x, q) ∈ E ×Q,

(7) the set (fA×Q∪̃fB×Q)(x, q) = fA×Q(x, q) ∪ fB×Q(x, q) for all (x, q) ∈ E ×Q is
called union of fA×Q and fB×Q,

(8) the set (fA×Q∩̃fB×Q)(x, q) = fA×Q(x, q) ∩ fB×Q(x, q) for all (x, q) ∈ E ×Q is
called intersection of fA×Q and fB×Q.

Example 2.3. Let U = {u1, u2, u3, u4, u5} be an initial universe set and E =
{x1, x2, x3, x4, x5} be a set of parameters. Let Q = {q}, A = {x1, x2}, B = {x2, x3}, C =
{x4}, D = {x5}, F = {x1, x2, x3}. Define

fA×Q(x, q) =

{ {u1, u2, u3} if x = x1

{u1, u5} if x = x2

fB×Q(x, q) =

{ {u1, u2} if x = x2

{u2, u4} if x = x3

fF×Q(x, q) =




{u1, u2, u3, u4} if x = x1

{u1, u2, u5} if x = x2

{u2, u4} if x = x3

fC×Q(x4, q) = U and fD×Q(x5, q) = {∅}. Then we will have

(fA×Q∪̃fB×Q)(x, q) =




{u1, u2, u3} if x = x1

{u1, u2, u5} if x = x2

{u2, u4} if x = x3

(fA×Q∩̃fB×Q)(x, q) =

{ {u1} if x = x2

{} if x 6= x2

Also fC×Q = fC×̃Q and fD×Q = ΦD×Q. Note that the difinition of classical subset

is not valid for the soft subset. For example fA×Q⊆̃fF×Q does not imply that every
element of fA×Q is an element of fF×Q. Thus fA×Q⊆̃fF×Q but fA×Q * fF×Q as
classical subset.

Definition 2.4. ([5]) Let ϕ : A → B be a function and fA×Q, fB×Q ∈ QS(U). Then
soft image ϕ(fA×Q) of fA×Q under ϕ is defined by

ϕ(fA×Q)(y, q) =

{ ∪{fA×Q(x, q) | (x, q) ∈ A×Q,ϕ(x) = y} if ϕ−1(y) 6= ∅
∅ if ϕ−1(y) = ∅

and soft pre-image (or soft inverse image) of fB×Q under ϕ is ϕ−1(fB×Q)(x, q) =
fB×Q(ϕ(x), q) for all (x, q) ∈ A×Q.

Definition 2.5. ([5]) Let (G, .) be a group and fG×Q ∈ QS(U). Then, fG×Q is called
a Q-soft subgroup over U if fG×Q(xy, q) ⊇ fG×Q(x, q) ∩ fG×Q(y, q) and fG(x−1, q) =
fG×Q(x, q) for all x, y ∈ G, q ∈ Q.
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Throughout this paper, G denotes an arbitrary group with identity element eG and
the set of all Q-soft subgroup with parameter set G over U will be denoted by
SG×Q(U).

Definition 2.6. ([5]) Let (G, .), (H, .) be any two groups and fG×Q ∈ SG×Q(U), gH×Q ∈
SH×Q(U). The product of fG×Q and gH×Q, denoted by fG×Q×̃gH×Q : (G × H) ×
Q → P (U) , is defined as fG×Q×̃gH×Q((x, y), q) = fG×Q(x, q) ∩ gH×Q(y, q) for all
x ∈ G, y ∈ H, q ∈ Q. Throughout this paper, H denotes an arbitrary group with
identity element eH .

Theorem 2.7. (Lagrange) ([6]) Let G be a finite group. Let H be a subgroup of G.
Then the order of H divides the order of G.

Definition 2.8. ([6]) Let (G, .), (H, .) be any two groups. The function f : G →
H is called a homomorphism (anti-homomorphism) if f(xy) = f(x)f(y)(f(xy) =
f(y)f(x)), for all x, y ∈ G.

Definition 2.9. ([6]) We call a group G, Hamiltonian if G is non-abelian and every
subgroup of G is normal.

Definition 2.10. ([6]) A Dedekind group is one which is abelian or Hamiltonian.

3 Main Results

Definition 3.1. Let fG×Q ∈ SG×Q(U) then fG×Q is said to be a Q-soft normal
subgroup of G if fG×Q(xy, q) = fG×Q(yx, q), for all x, y ∈ G and q ∈ Q. Throughout
this paper, G denotes an arbitrary group with identity element eG and the set of all
Q-soft normal subgroup with parameter set G over U will be denoted by NSG×Q(U).

Example 3.2. Let U = {u1, u2, u3, u4, u5} be an initial universe set and (Z, +) be
an additive group. Define fZ×Q : Z×Q → P (U) as

fZ×Q(x, q) =

{ {u1, u2, u3} if x ∈ Z≥0

{u2, u4, u5} if x ∈ Z<0

then fZ×Q ∈ NSZ×Q(U).

Proposition 3.3. Let fG×Q, gG×Q ∈ NSG×Q(U). Then fG×Q∩̃gG×Q ∈ NSG×Q(U).

Proof. By [5, Proposition 2.16] we have that fG×Q∩̃gG×Q ∈ SG×Q(U). Let x, y ∈
G, q ∈ Q. Then

(fG×Q∩̃gG×Q)(xy, q) = fG×Q(xy, q) ∩ gG×Q(xy, q) = fG×Q(yx, q) ∩ gG×Q(yx, q)
= (fG×Q∩̃gG×Q)(yx, q)

and so fG×Q∩̃gG×Q ∈ NSG×Q(U).

Corollary 3.4. The intersection of a family of Q-soft normal subgroups of a group
G is a Q-soft subgroup of a group G.
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Proposition 3.5. Let fG×Q ∈ NSG×Q(U). Then fG×Q(yxy−1, q) = fG×Q(y−1xy, q)
for every x, y ∈ G and q ∈ Q.

Proof. Let x, y ∈ G and q ∈ Q. As fG×Q ∈ NSG×Q(U) so

fG×Q(yxy−1, q) = fG×Q(y−1yx, q) = fG×Q(ex, q) = fG×Q(x, q) = fG×Q(xyy−1, q)
= fG×Q(y−1xy, q).

Proposition 3.6. If every Q-soft subgroup of a group G is normal, then G is a
Dedekind group.

Proof. Suppose that every Q-soft subgroup of a group G is normal. We have, consider
a subgroup H of G. So H can be regarded as a Q-level subgroup of some Q-soft
subgroup fG×Q of G. By assumption, fG×Q is a Q-soft normal subgroup of G. Now, it
is easy to deduce that H is a normal subgroup of G. Thus G is a Dedekind group

Proposition 3.7. If fG×Q ∈ NSG×Q(U), gH×Q ∈ NSH×Q(U). Then fG×Q×̃gH×Q ∈
NS(G×H)×Q(U).

Proof. From [5, Proposition 2.22] we have that fG×Q×̃gH×Q ∈ S(G×H)×Q(U). Let
(x1, y1), (x2, y2) ∈ G×H, q ∈ Q. Then

fG×Q×̃gH×Q((x1, y1)(x2, y2), q) = fG×Q×̃gH×Q((x1x2, y1y2), q)
= fG×Q(x1x2, q) ∩ gH×Q(y1y2, q)
= fG×Q(x2x1, q) ∩ gH×Q(y2y1, q)
= fG×Q×̃gH×Q((x2x1, y2y1), q)
= fG×Q×̃gH×Q((x2, y2)(x1, y1), q).

Thus fG×Q×̃gH×Q ∈ NS(G×H)×Q(U).

Proposition 3.8. Let fG×Q, gH×Q ∈ QS(U), fG×Q×̃gH×Q ∈ NS(G×H)×Q(U). Then
at least one of the following two statements must hold.
(1) gH×Q(eH , q) ⊇ fG×Q(x, q), for all x ∈ G, q ∈ Q,
(2) fG×Q(eG, q) ⊇ gH×Q(y, q), for all y ∈ H, q ∈ Q.

Proof. Use [5, Proposition 2.23].

Proposition 3.9. Let fG×Q, gH×Q ∈ QS(U), fG×Q×̃gH×Q ∈ NS(G×H)×Q(U). Then
we have the following statements.
(1) If for all x ∈ G, q ∈ Q, fG×Q(x, q) ⊆ gH×Q(eH , q), then fG×Q ∈ NSG×Q(U).
(2) If for all x ∈ H, q ∈ Q, gH×Q(x, q) ⊆ fG×Q(eG, q), then gH×Q ∈ NSH×Q(U).
(3) Either fG×Q ∈ NSG×Q(U) or gH×Q ∈ SH×Q(U).

Proof. (1) Let x, y ∈ G, q ∈ Q. From [5, Proposition 2.24] we have that fG×Q ∈
SG×Q(U). As fG×Q(x, q) ⊆ gH×Q(eH , q) so

fG×Q(xy, q) = fG×Q(xy, q) ∩ gH×Q(eHeH , q)
= fG×Q×̃gH×Q((xy, eHeH), q)
= fG×Q×̃gH×Q((x, eH)(y, eH), q)
= fG×Q×̃gH×Q((y, eH)(x, eH), q)
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= fG×Q×̃gH×Q((yx, eHeH), q)
= fG×Q(yx, q) ∩ gH×Q(eHeH , q)
= fG×Q(yx, q).

Thus fG×Q ∈ NSG×Q(U).

(2) Let x, y ∈ H, q ∈ Q. By [5, Proposition 2.24] we get that gH×Q ∈ SH×Q(U).
Since gH×Q(x, q) ⊆ fG×Q(eG, q) so

gH×Q(xy, q) = fG×Q(eGeG, q) ∩ gH×Q(xy, q)
= fG×Q×̃gH×Q((eGeG, xy), q)
= fG×Q×̃gH×Q((eG, x)(eG, y), q)
= fG×Q×̃gH×Q((eG, y)(eG, x), q)
= fG×Q×̃gH×Q((eGeG, yx), q)
= fG×Q(eGeG, q) ∩ gH×Q(yx, q)
= gH×Q(yx, q).

Therefore gH×Q ∈ NSH×Q(U).

(3) Straight forward.

Recall that (x) = {y−1xy : y ∈ G} is called the conjugate class of x in G.

Proposition 3.10. fG×Q ∈ NSG×Q(U) if and only if fG×Q is constant on the con-
jugate classes of G.

Proof. Let x, y ∈ G and q ∈ Q. If fG×Q ∈ NSG×Q(U), then

fG×Q(y−1xy, q) = fG×Q(xyy−1, q) = fG×Q(x, q)

Therefore fG×Q is constant on the conjugate classes of G. Conversely, let fG×Q is
constant on the conjugate classes of G. Then

fG×Q(xy, q) = fG×Q(x−1(xy)x, q) = fG×Q((x−1x)yx, q) = fG×Q(yx, q)

and so fG×Q ∈ NSG×Q(U).

In the following propositions, we prove many results in homomorphism and anti-
homomorphism in normal Q-soft subgroups.

Proposition 3.11. Let ϕ be an epimorphism from group G into group H. If fG×Q ∈
NSG×Q(U), then ϕ(fG×Q) ∈ NSH×Q(U)

Proof. By [5, Proposition 4.3] we have that ϕ(fG×Q) ∈ SH×Q(U). Let h1, h2 ∈ H
and q ∈ Q then

ϕ(fG×Q)(h1h2, q) = ∪{fG×Q(g1g2, q) | g1, g2 ∈ G, ϕ(g1g2) = h1h2}
= ∪{fG×Q(g1g2, q) | g1, g2 ∈ G,ϕ(g1)ϕ(g2) = h1h2}
= ∪{fG×Q(g1g2, q) | g1, g2 ∈ G,ϕ(g1) = h1, ϕ(g2) = h2}
= ∪{fG×Q(g2g1, q) | g2, g1 ∈ G,ϕ(g2) = h2, ϕ(g1) = h1}
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= ∪{fG×Q(g2g1, q) | g2, g1 ∈ G,ϕ(g2)ϕ(g1) = h2h1}
= ∪{fG×Q(g2g1, q) | g2, g1 ∈ G,ϕ(g2g1) = h2h1}
= ϕ(fG×Q)(h2h1, q).

Thus ϕ(fG×Q) ∈ NSH×Q(U).

Proposition 3.12. Let ϕ be a homorphism from group G into group H. If gH×Q ∈
NSH×Q(U), then ϕ−1(gH×Q) ∈ NSG×Q(U).

Proof. By [5, Proposition 4.5] we have that ϕ−1(gH×Q) ∈ SG×Q(U). Let g1, g2 ∈ G
and q ∈ Q. Then

ϕ−1(gH×Q)(g1g2, q) = gH×Q(ϕ(g1g2), q)
= gH×Q(ϕ(g1)ϕ(g2), q)
= gH×Q(ϕ(g2)ϕ(g1), q)
= gH×Q(ϕ(g2g1), q)
= ϕ−1(gH×Q)(g2g1, q).

Therefore ϕ−1(gH×Q) ∈ NSG×Q(U).

Proposition 3.13. Let ϕ be an anti-epimorphism from group G into group H. If
fG×Q ∈ NSG×Q(U), then ϕ(fG×Q) ∈ NSH×Q(U).

Proof. By [5, Proposition 4.3] we have that ϕ(fG×Q) ∈ SH×Q(U). Let h1, h2 ∈ H
and q ∈ Q then

ϕ(fG×Q)(h1h2, q) = ∪{fG×Q(g1g2, q) | g1, g2 ∈ G, ϕ(g1g2) = h1h2}
= ∪{fG×Q(g1g2, q) | g1, g2 ∈ G,ϕ(g2)ϕ(g1) = h1h2}
= ∪{fG×Q(g1g2, q) | g1, g2 ∈ G,ϕ(g1) = h1, ϕ(g2) = h2}
= ∪{fG×Q(g2g1, q) | g2, g1 ∈ G,ϕ(g2) = h2, ϕ(g1) = h1}
= ∪{fG×Q(g2g1, q) | g2, g1 ∈ G,ϕ(g2)ϕ(g1) = h2h1}
= ∪{fG×Q(g2g1, q) | g2, g1 ∈ G,ϕ(g1g2) = h2h1}
= ϕ(fG×Q)(h2h1, q).

Thus ϕ(fG×Q) ∈ NSH×Q(U).

Proposition 3.14. Let ϕ be an anti-homorphism from group G into group H. If
gH×Q ∈ NSH×Q(U), then ϕ−1(gH×Q) ∈ NSG×Q(U).

Proof. By [5, Proposition 4.8] we have that ϕ−1(gH×Q) ∈ SG×Q(U). Let g1, g2 ∈ G
and q ∈ Q. Then

ϕ−1(gH×Q)(g1g2, q) = gH×Q(ϕ(g1g2), q)
= gH×Q(ϕ(g2)ϕ(g1), q)
= gH×Q(ϕ(g1)ϕ(g2), q)
= gH×Q(ϕ(g2g1), q)
= ϕ−1(gH×Q)(g2g1, q).

Therefore ϕ−1(gH×Q) ∈ NSG×Q(U).
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Remark 3.15. In what follows the symbol ◦ stands for the composition operation
of functions.

Proposition 3.16. Let ϕ be an isomorphism from group G into group H. If fH×Q ∈
SH×Q(U), then we have the following:
(1) fH×Q ◦ ϕ ∈ SG×Q(U).
(2) If fH×Q ∈ NSH×Q(U), then fH×Q ◦ ϕ ∈ NSG×Q(U).

Proof. (1) Let x, y ∈ G and q ∈ Q.

(fH×Q ◦ ϕ)(xy−1, q) = fH×Q(ϕ(xy−1), q)
= fH×Q(ϕ(x)ϕ(y−1)), q)
= fH×Q(ϕ(x)ϕ(y)−1, q)
⊇ fH×Q(ϕ(x), q) ∩ fH×Q(ϕ(y), q) (as fH×Q ∈ SH×Q(U))
= (fH×Q ◦ ϕ)(x, q) ∩ (fH×Q ◦ ϕ)(y, q)

and then fH×Q ◦ ϕ ∈ SG×Q(U).

(2) Let fH×Q ∈ NSH×Q(U) then

(fH×Q ◦ ϕ)(xy, q) = fH×Q(ϕ(x)ϕ(y), q)
= fH×Q(ϕ(y)ϕ(x), q)
= fH×Q(ϕ(yx), q)
= (fH×Q ◦ ϕ)(yx, q).

Therefore fH×Q ◦ ϕ ∈ NSG×Q(U).

Proposition 3.17. Let ϕ be an anti-isomorphism from group G into group H. If
fH×Q ∈ SH×Q(U), then we have the following:
(1) fH×Q ◦ ϕ ∈ SG×Q(U).
(2) If fH×Q ∈ NSH×Q(U), then fH×Q ◦ ϕ ∈ NSG×Q(U).

Proof. (1) Let x, y ∈ G and q ∈ Q.

(fH×Q ◦ ϕ)(xy−1, q) = fH×Q(ϕ(xy−1), q)
= fH×Q(ϕ(y−1)ϕ(x)), q)
= fH×Q(ϕ(y)−1ϕ(x), q)
⊇ fH×Q(ϕ(x), q) ∩ fH×Q(ϕ(y), q) (as fH×Q ∈ SH×Q(U))
= (fH×Q ◦ ϕ)(x, q) ∩ (fH×Q ◦ ϕ)(y, q)

and then (fH×Q ◦ ϕ ∈ SG×Q(U).

(2) Let fH×Q ∈ NSH×Q(U) then

fH×Q ◦ ϕ)(xy, q) = fH×Q(ϕ(y)ϕ(x), q) = fH×Q(ϕ(x)ϕ(y), q)
= fH×Q(ϕ(yx), q) = (fH×Q ◦ ϕ)(yx, q).

Therefore fH×Q ◦ ϕ ∈ NSG×Q(U).
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This motivated us to examine the results for Q-soft cosets. We have found out
that the results perfectly fit with Q-soft cosets.

Definition 3.18. Let fG×Q ∈ SG×Q(U) and H = {x ∈ G : fG×Q(x, q) = fG×Q(e, q)},
then O(fG×Q), the order of fG×Q is defined as O(fG×Q) = O(H).

Proposition 3.19. Let fG×Q be a Q-soft subgroup of a finite group G, then O(fG×Q) |
O(G).

Proof. Let fG×Q be a Q-soft subgroup of a finite group G with e as its identity
element. Clearly H = {x ∈ G : fG×Q(x, q) = fG×Q(e, q)} is a subgroup of G for H is
a Q-level subset of G. By Lagranges theorem O(H) | O(G). Hence by the definition
of the order of the Q-soft subgroup of G, we have O(fG×Q) | O(G).

Proposition 3.20. Let fG×Q and gG×Q be two Q-soft subgroups of normal group
G. Then O(fG×Q) = O(gG×Q).

Proof. Let fG×Q and gG×Q be conjugate Q-soft subgroups of G. Now

O(fG×Q) = order of {x ∈ G : fG×Q(x, q) = fG×Q(e, q)}
= order of {x ∈ G : gG×Q(y−1xy, q) = gG×Q((y−1ey, q)}
= order of {x ∈ G : gG×Q(x, q) = gG×Q((e, q)} = O(gG×Q).

Hence O(fG×Q) = O(gG×Q).
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