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Abstract 

The Soil and Water Assessment Tool (SWAT) was used to model the hydrological water balance from the 

Seyhan river basin located in Turkey. The model sensitivity analysis and auto-calibration were conducted at 

four sites (i.e., Uctepe, Himmetli, Korkun and Zamanti) using the Sequential Uncertainty Fitting (SUFI-2), the 

Generalized Likelihood Uncertainty Estimation (GLUE) and Parameter Solution (ParaSol) algorithms in the 

SWAT-Calibration Uncertainty Programs (SWAT-CUP) package. The sensitivity analysis showed that the 

base-flow alpha factor (ALPHA_BF) and SCS runoff curve number (CN2) are the most sensitive parameters 

for this catchment. All sources of uncertainties were captured by bracketing more than 60% of the observed 

river discharge when using SUFI-2 and ParaSol except for ParaSol at Uctepe (57%). Streamflow calibration 

was done at a monthly time step for the period of 2001-2007. The results showed that ParaSol gave better 

results than those obtained by SUFI-2 and GLUE with regard to the Nash Sutcliffe Efficiency (NSE). Among 

all of the calibrated sites and the various calibration algorithms, the highest NSE (0.74) was obtained when the 

model was calibrated at Zamanti using the ParaSol algorithm. 
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Seyhan Havzasında SWAT Modeli İle Nehir Akış Simülasyonu Ve Değerlendirilmesi 

 
Özet 

Toprak ve Su Değerlendirme Yazılımı (SWAT) Türkiye'de bulunan Seyhan nehri havzasında hidrolojik 

işlemleri su bütçesini temel alarak simüle etmek için kullanılmıştır. Model duyarlılık analizi ve otomatik 

kalibrasyonlar, SWAT-Kalibrasyon paket programında (SWAT-CUP) bulunan, Sıralı Belirsizlik Uygunluğu 

(SUFI-2), Genelleştirilmiş Olabilir Belirsizlik Tahmini (GLUE) ve Parametre Çözümü (ParaSol) algoritmaları 

kullanılarak, Üçtepe, Himmetli, Korkun ve Zamantı akarsuları için yapılmıştır. Duyarlılık analizi sonucunda, 

Baz Akış Alfa Faktörü (ALPHA_BF) ve SCS akış eğri numarasının (CN2) bu havza için akıma etki eden en 

hassas parametreler olduğunu göstermiştir. Gözlenen akım verilerinde tüm belirsizlik kaynaklarının ParaSol 

sonucunda Üçtepe (% 57) hariç, SUFI-2 ve ParaSol sonuçlarında %60’dan fazla olduğu görülmüştür. Akış 

verilerinin kalibrasyonu aylık bazda 2001-2007 dönemi için yapılmıştır. Nash Sutcliffe Katsayısına (NSE) göre 

ParaSol, SUFI-2 ve GLUE’ye göre daha iyi sonuçlar vermiştir. Kullanılan kalibrasyon algoritmaları arasında 

en iyi sonuç, (NSE=0.74) Zamanti akış verilerinin Parasol algoritması ile kalibrasyonu sonucu bulunmuştur. 

 

Anahtar kelimeler: Hidrolojik modelleme, Seyhan havzası, SWAT modeli, nehir akış simülasyonu 
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Introduction  

Hydrologic models are primarily used to 

understand the hydrologic processes of a basin 

or sub-basin and to provide valuable information 

to support water resources management 

programs. The Soil and Water Assessment Tool 

(SWAT; Arnold et al. 1998) is a physically 

based, semi-distributed, model that is used to 

simulate the hydrologic processes in a wide 

range of watersheds including those in semi-arid 

regions (Van Liew et al. 2007). The model was 

developed over a period of about 30 years by the 

USDA Agriculture Research Service (ARS). 

There have been few applications of the SWAT 

model to Turkish conditions: however, Akiner 

and Akkoyunlu (2012) tested the applicability of 

the SWAT model for predicting the surface flow 

in the Melen watershed using an Artificial 

Neural Network (ANN) to generate the daily 

precipitation for the study period. Their results 

gave a Nash Sutcliffe Efficiency (NSE) of 0.78 

for the entire period of 1995-2008. Calibration in 

a hydrologic model is the process whereby 

model parameters are adjusted to allow the best-

fit between the simulation and observations. 

Many studies have presented different 

techniques for SWAT model calibration. For 

example, van Griensven and Bauwens (2003) 

presented the ESWAT simulator using a multi-

objective function. The model was applied to the 

Dender River (Belgium) to optimize 32 

parameters. Using different statistical 

approaches, SWAT-CUP (Abbaspour et al. 

2007a) is a public domain program that performs 

model sensitivity analysis, calibration, 

validation and uncertainty analysis of the SWAT 

model. The program links the Generalized 

Likelihood Uncertainty Estimation (GLUE; 

Beven and Binley 1992), Bayesian inference 

based on Markov Chain Monte Carlo (MCMC; 

Vrugt et al. 2003), Parameter Solution (ParaSol; 

van Griensven and Meixner, 2006) and 

Sequential Uncertainty Fitting (SUFI-2; 

Abbaspour et al. 2007b). The program has been 

used for model calibration in many different 

catchments worldwide (Schoul et al. 2008; 

Abbaspour et al. 2009; Rostamiani et al. 2008; 

Luo et al. 2011; Singh et al. 2013). The Seyhan 

river basin contains the largest number of fertile 

agricultural lands in Turkey and provides water 

to the fourth largest city of Turkey (Adana) 

(Acar and Dincer 2005). The basin is 

characterized by spatially heterogeneous 

climate, soil, land cover, and elevation. The 

upper area of the basin is mountainous while the 

lower area shows alluvial plain formation. The 

Mediterranean climate is the dominant climate 

type and is strongly present in the southern part 

of the basin. Seyhan Dam Lake and Catalan Dam 

Lake now compensate for the lack of major 

water bodies in the region. The Seyhan River 

system consists of three major streams i.e., 

Goksu, Zamanti and Cakit streams that merge to 

form the Seyhan River in the Northern of Adana. 

The objectives of the study reported here were to 

evaluate SWAT for its applicability in a Turkish 

Mediterranean type watershed for simulation of 

stream flow, to investigate the effect of multi-

gauge calibration on flow prediction in a semi-

arid watershed, and, finally, to examine the 

applicability of the three calibration algorithms 

in the SWAT-CUP program (i.e., SUFI-2, 

GLUE and ParaSol). 

 

Materials and methods 

The spatial data required for the model includes 

the digital elevation model (DEM), land cover 

map, and soil map. Daily climate data include 

precipitation, maximum and minimum 

temperature, relative humidity, solar radiation, 

and average wind speed. River discharge data 

are required for model calibration and validation. 

The DEM was the 30m DEM that available as 

the ASTER (Advanced Spaceborne Thermal 

Emission and Reflection Radiometer), GDEM 

(Global Digital Elevation Model) and it was 

downloaded from 

http://asterweb.jpl.nasa.gov/gdem.asp.  The 

SWAT model uses the DEM to delineate the 

watershed, calculate the geomorphic parameters 

and to create the sub watersheds and stream 

network. The distribution of the land covers 

within the basin was obtained from GlobCover 

2009 v2.3 which was derived using bimonthly 

composites of ENVISAT MERIS acquisitions at 

300m spatial resolution for the year 2009 ( 

http://due.esrin.esa.int/globcover/). The land 

http://asterweb.jpl.nasa.gov/gdem.asp
http://due.esrin.esa.int/globcover/
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cover spatial data were reclassified to SWAT 

land use/land cover types. All soils data were 

obtained from the Food and Agriculture 

Organization of the United Nations 

(FAO/UNESCO 2003) Soil Map of the World. 

The soil map was linked to the SWAT soil 

database by modifying the user defined soil file 

because it holds soil information that is not 

included in the model database. A SWAT model 

simulation requires the input of daily 

precipitation, maximum and minimum 

temperature, solar radiation, wind speed and 

relative humidity. These data can be provided by 

the user or generated by the model. In our study, 

different sources of climate data were used for 

the period from 2000 to 2007. Daily minimum 

and maximum temperature and average wind 

speed were obtained from the US National 

Climatic Data Center (NCDC), Global Summary 

of the Day (GSOD). The data are online at: 

ftp://ftp.ncdc.noaa.gov/pub/data/gsod/; it was 

accessed in 03/2013. Data were obtained for 

three stations: Adana, Sivas and Nigde. The 

location of these stations is presented in Table 1 

and Figure 1. 

 

Table 1. List of weather stations and stream gauges sites used in the study 

Station Latitude Longitude Elevation (m) 

Climate stations 

Adana 36° 58' 59" 35° 18' 00" 20 

Sivas 39° 45' 00" 37° 01' 01" 1285 

Nigde 37° 58' 01" 34° 40' 59” 1210 

Stream gauges 

Uctepe (G1818) 37° 22' 50" 35° 28' 05" 127 

Himmetli (G1801) 37° 51' 57" 36° 03' 34" 665 

Korkun (G1820) 37° 17' 49" 35° 09' 05" 170 

Zamanti (G1826) 37° 39' 46" 35° 34' 46" 347 

 

 

Figure 1. Location of the Seyhan River Basin and monitoring networks 

Adana is the only weather station that is located 

within the watershed boundary; other stations 

that are close enough to the basin include 

Kahramanmaras, Gemerek, Kayseri and 

ftp://ftp.ncdc.noaa.gov/pub/data/gsod/
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Malatya. We did not use these stations because 

of the discontinuity of the recorded data. 

Because of that, we used another source of 

precipitation data. We used the Tropical Rainfall 

Measurement Mission (TRMM, product 3B42) 

described in Huffman et al. (2007). These data 

have a pixel resolution of 0.25° x 0.25°, so that 

only17 grid points covering the study area have 

been used 

Relative Humidity was calculated by following 

Equation. 

 

RH=100
exp(

aTd

b+Td
)

exp(
aT 

b+T 
)
             (1) 

 

Where, a = 17.271; b = 237.7; T is average 

temperature (ºC); Td is dew point temperature 

(ºC) which is based on the August-Roche-

Magnus approximation, considered valid for: 

 

0 ºC < T < 60 ºC 

1% < RH < 100% 

0 ºC < Td < 50 ºC 

 

Daily average solar radiation values were 

estimated using Hargreaves and Samani’s (1982) 

equation (2) as presented by Allen (1997), which 

is based on temperatures. It incorporates a 

correction factor (Kr) based on the regional 

location of each weather station: 

 

Rs = Kr (Tmax – Tmin)0.5Ra  (2) 

 

Where Tmax and Tmin = mean daily maximum and 

minimum air temperature (°C), and Ra is 

extraterrestrial radiation, Allen et al. (2005) 

recommended using Kr = 0.16 for interior 

locations and Kr = 0.19 for coastal locations. 

Extraterrestrial solar radiation (Ra) was 

calculated according to Duffie and Beckman 

(1993).  

The daily flow data for four sites of the river 

were obtained from by the Electrical Power 

Resources Survey and Development 

Administration of Turkey. The data from the 

period 2001 to 2007 was used for model 

calibration with a one-year warm up period.  The 

Seyhan River Basin, shown in Figure 1, covers 

an area of 20164 km2 as delineated by the SWAT 

model. The mean elevation of the basin is 1420 

m, the land use is mainly a mosaic of crop land 

and vegetation (52.72 %) and the dominant soil 

type is loam (49.69%) followed by clay loam 

(36.06%). The watershed receives a mean annual 

precipitation of 708.5 mm with an annual 

average Tmax and Tmin of 19.7 and 7.7 °C, 

respectively, as determined from our input data 

over the period 2000-2012. 

To represent spatial variability, SWAT 

subdivides watersheds into multiple sub-basins 

according to topography, which are then 

subdivided to create the Hydrologic Response 

Units (HRUs) that are based on land cover and 

soil characteristics. The hydrological cycle in 

SWAT is based on the water balance equation 

(Equ. 3). Model outputs include surface flow, 

groundwater recharge, lateral flow, sediment, 

and nutrient and pesticide yields. The surface 

runoff can be simulated by the modified Soil 

Conservation Service Curve Number (SCS-CN) 

method or the Green and Ampt infiltration 

model. The evapotranspiration can be estimated 

by the Hargreaves, the Priestly-Taylor and/or the 

Penman-Monteith method. 

 

SWt=SW0+ ∑ (Rday-Q
surf

-Ea-Wseep-Q
gw

)t
i=1 (3) 

 

Where, SWt = The final soil water content (mm); 

SW0 = The initial soil and water content on 

(mm), t is the time (days); Rday = The amount of 

precipitation on day i (mm); Qsurf = the amount 

of surface runoff on day i (mm) ; Ea =  The 

amount of evapotranspiration on day i (mm); 

Wseep = The amount of water entering the vadose 

zone from the soil profile on day i (mm); Qgw = 

The amount of return flow on daily i (mm). The 

ArcSWAT interface for SWAT 2009 was used 

for the setup and parameterization of the model 

for this study. A complete description of this 

version and its capabilities is given in Douglas-

Mankin et al. (2010) and Tuppad et al. (2011). 
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Table 2. SWAT parameters and their bounds used in sensitivity analysis and model calibration 
Parameter  Description  Lower 

bound 

Upper 

bound 

ALPHA_BF  Base Flow alpha factor (days)  0 1 

Ch_K2  Effective Channel Hydraulic Conductivity (mm/h)  0 150 

Ch_N2  Manning coefficient for main channel  0 0.3 

CN2*  SCS curve number for moisture condition II  -0.5 0.5 

ESCO  Soil evaporation compensation factor  0 1 

GW_DELAY  Ground water delay (days)  0 500 

GW_REVAP  Groundwater revap coefficient  0.02 0.2 

GWQMN  Threshold depth of water in the shallow aquifer required for return flow to 

occur (mm)  

0 5000 

REVAPMN  Threshold depth of water in the shallow aquifer required for revap to occur 

(mm)  

100 500 

SOL_AWC * Available water capacity of the soil layer (mm/mm)  -0.5 0.5 

SOL_K*  Soil saturated hydraulic conductivity (mm/h)  -0.5 0.5 

SOL_Z * Depth from soil surface to the bottom of layer (mm)  -0.5 0.5 

OV_N Overland Manning roughness 0 0.8 

HRU_SLP* Average slope steepness (m/m) -0.2 0.2 

 

The parameter sensitivity analysis was done 

using the SWAT-CUP program using the three 

algorithms i.e., SUFI-2, ParaSol and GLUE. 

Fourteen hydrological parameters were tested 

for sensitivity analysis for the simulation of the 

stream flow in the study area. Here, we used the 

default lower and upper bound parameter values 

as shown in Table 2. The calibration and 

uncertainty analysis were done using the three 

algorithms used for the sensitivity analysis. The 

methods in SWAT-CUP were chosen for their 

applicability for simple to complex hydrological 

models and their different techniques to assess 

the model uncertainty. ParaSol is based on a 

modification to the global optimization 

algorithm SCE-UA (Duan et al. 1992). It uses 

the sum of the squares of the residuals (Equ. 4) 

as the objective function and assesses only 

model parameter uncertainty: 

𝑆𝑆𝑄 = ∑ (𝑦𝑡𝑖

𝑀(𝜃) − 𝑦𝑡𝑖
)

2𝑛
𝑡𝑖=1           (4) 

 

Where, n is the number of the observed data 

points, and 𝑦𝑡𝑖 and 𝑦𝑡𝑖
𝑀 represent the observation 

and model simulation with parameters θ at time 

ti, respectively. SUFI-2 and GLUE account for 

the uncertainty not only for the model 

parameters, but also to the conceptual model, 

input data and measured data (Setegn et al. 

2010). 

The output uncertainty is quantified by the 95% 

prediction uncertainty band (95PPU) calculated 

at 2.5% and 97.5% level of the cumulative 

distribution of an output variable obtained 

through Latin hypercube sampling (Abbaspour 

et al. 2007a). After the 95PPU is calculated the 

strength of a calibration is measured by p-factor 

which is the percentage of observation bracketed 

by the 95% prediction uncertainty (95PPU). 

Another measure quantifying the strength of a 

calibration or uncertainty analysis is the r-factor 

which is the average thickness of the 95PPU 

band divided by the standard deviation of the 

measured data. The goodness of calibration and 

prediction uncertainty is judged on the basis of 

the closeness of the p-factor to 100% (i.e., all 

observations bracketed by the prediction 

uncertainty) and the r-factor to 1. The average 

thickness of the 95PPU band and the r-factor are 

calculated by Equation 5. 

 

𝑟 − 𝑓𝑎𝑐𝑡𝑜𝑟 =
1
n

∑ (yti,97.5%
M −yti,2.5%

M )n
ti=1

σobs
       (5) 

 

Where 𝑦𝑡𝑖,97.5%

𝑀  and 𝑦𝑡𝑖,2.5%

𝑀  represent the upper 

and lower boundary of the 95PPU, and 𝜎𝑜𝑏𝑠 

stands for the standard deviation of the measured 

data. 

The other factor is the goodness of fit that can be 

quantified by the coefficient of determination 

(R2) and Nash-Sutcliff Efficiency (NSE) (Nash 

and Sutcliffe 1970) between the observations 

and the final best simulations. Coefficient of 

determination (R2) and Nash-Sutcliffe 

coefficient (NSE) are calculated by Equations 6 

and 7 

 

R2 =
[∑ (Oi−O̅)(Pi−P̅)n

i=1 ]
2

[∑ (Oi−O̅)2n
i=1 ][∑ (Pi−P̅)2n

i=1 ]
          (6) 

 

NSE =
∑ (Oi−O̅)2−∑ (Pi−Oi)2n

i=1
n
i=1

∑ (Oi−O̅)2n
i=1

          (7) 
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Where Pi are the predicted values, Oi are the 

observed values, n is the total number of 

observations, Ō is the mean of the observed data 

and P  is the mean of the predicted data. 

 

Results and discussion 

Sensitivity analysis helps to identify the 

parameters that have a strong influence on the 

model output. In our study, sensitivity analysis 

was performed at all sites to determine the 

parameters needed to improve the model 

simulation and to understand the behaviour of 

the hydrologic system. Three algorithms (SUFI-

2, ParaSol and GLUE) were used to perform the 

sensitivity analysis and the results are shown the 

ranking of the model parameters in the Table 3.  

 

 

Table 3. The selected SWAT parameters and their sensitivity analysis ranking result 
Parameter G1818 G1801 G1820 G1826 

S-2 PSol G S-2 PSol G S-2 PSol G S-2 PSol G 

ALPHA_BF  1 1 1 `1 2 1 2 13 3 6 4 2 

Ch_K2  3 4 3 3 1 3 6 6 6 7 5 3 

Ch_N2  13 11 4 5 4 4 9 11 13 10 7 7 

CN2 2 8 2 2 12 2 1 1 1 2 1 1 

ESCO  4 7 12 10 3 8 4 2 2 4 3 13 

GW_DELAY  11 10 7 14 11 12 11 8 10 14 13 10 

GW_REVAP  14 3 13 12 13 10 5 5 11 3 12 11 

GWQMN  10 12 10 4 7 9 8 14 9 1 2 6 

REVAPMN  8 9 6 11 5 13 10 10 8 5 9 9 

SOL_AWC  12 2 9 9 8 14 12 9 5 8 8 4 

SOL_K 5 14 11 7 10 5 3 7 7 12 14 5 

SOL_Z  7 6 8 8 9 11 13 4 4 13 6 12 

OV_N 6 13 14 6 6 7 14 12 12 11 11 14 

HRU_SLP 9 5 5 13 14 6 7 3 14 9 10 8 

 

At G1818, ALPHA_BF was ranked the most 

sensitive parameter using the three algorithms. 

At G1820, The three algorithms agreed that the 

most sensitive parameter is CN2, but they 

differently ranked the second and third most 

sensitive parameters. In G1826, GWQMN, CN2 

and GW_Revap were the most sensitive 

parameters using SUFI-2, however, CN2, 

GWQMN and ESCO seem to be very sensitive 

using ParaSol. From the above results the model 

is very sensitive to surface runoff and base flow 

parameters. At G1801, again SUFI-2 and GLUE 

showed a similar performance in regard to 

ranking the most sensitive parameters and 

different than that obtained by ParaSol. 

Alpha_BF, CN2 and Ch_K2 were ranked as first, 

second and third most sensitive parameters, 

respectively, according to SUFI-2 and GLUE. 

Model calibration aims to adjust and optimize 

model parameters to achieve the pre-defined 

objective function. Fourteen model parameters 

that mostly affect surface runoff and 

groundwater parameters were used for the 

calibration. The model was calibrated on a 

monthly basis for the period from 2001-2007 

with a one year warming up period. The model 

was calibrated and uncertainty analysis 

performed at four gauging sites (Uctepe, 

Himetli, Korkun and Zamanti) using three 

different algorithms (SUFI-2, ParaSol and 

GLUE through the SWAT-CUP program). 

Calibration results were interpreted using p-

factor, r-factor, R2 and NSE that are shown in 

Table 4. Although it is very sensitive to high 

extreme values due to the square differences, the 

NSE is still the best and most acceptable 

goodness of fit measure. According to Moriasi et 

al. (2007) and Cho et al. (2013), NSE value can 

be considered satisfactory if NSE ≥0.5, good if 

NSE ≥0.65 and very good if NSE ≥0.75 when 

comparing the observed versus the simulated 

flow on a monthly basis. 
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Table 4. Stream Flow Calibration at the four monitoring stations Using SUFI-2, GLUE and ParaSol 

Methods 
Objective function Stations 

G1818 G1801 G1820 G1826 

p-factor 

SUFI-2 0.94 0.92 0.98 0.69 

GLUE 0.73 0.36 0.20 0.32 

PARASOL 0.57 0.71 0.62 0.68 

r-factor 

SUFI-2 2.52 2.13 2.59 0.92 

GLUE 0.89 0.35 0.37 0.46 

PARASOL 0.63 0.71 0.84 0.72 

R2 

SUFI-2 0.65 0.57 0.55 0.71 

GLUE 0.68 0.54 0.51 0.66 

PARASOL 0.73 0.59 0.57 0.74 

NSE 

SUFI-2 0.64 0.56 0.52 0.67 

GLUE 0.66 0.53 0.46 0.62 

PARASOL 0.71 0.58 0.53 0.74 

 
Comparison between observed and simulated 

monthly flow for seven years, showed a good 

agreement using the SUFI-2 algorithm. The NSE 

was used as an objective function where several 

iterations were performed until the best NSE 

efficiency has been met. In SUFI-2, the 

combined effect of all uncertainties is depicted 

by the final estimates of parameter uncertainties. 

From Table 4, at G1818 station, 94% of the 

observed monthly runoff values were within the 

95PPU, but the r-factor was quite large (2.52) 

indicating large model uncertainties. The large 

95PPU band (or large r-factor) necessary to 

bracket 94 % of the observed data indicates that 

the uncertainty in the conceptual model is also 

very important, and in our case quite large. It 

seems that not all processes, especially some that 

are important downstream of the river are not 

included in the model. We believe that these 

processes are mainly delaying the runoff and 

significantly contributing to higher evaporation 

losses. At the same site the produced NSE was 

0.64 and the R2 of 0.65. 

At other stations, different p-factors and r-factors 

were obtained. The p-factor brackets were 92%, 

98% and 69% of the observation and the r-factor 

equaled 2.13, 2.59 and 0.92 for G1801, G1820, 

and G1826, respectively. The model produced a 

good R2 value and NSE efficiency for the G1826 

station; 0.71 and 0.67, respectively. However, 

the calibration at stations G1801 and G1820 

show lower R2 (0.57 and 0.55) and NSE (0.56 

and 0.52) values. This shows that the model at 

G1801 and G1820 is more uncertain than at the 

other stations (G1818 and G1826)(Figure 

2,3,4,5). SUFI-2 produced the highest p-value 

and r-factor value for all of the studied sites 

when compared to ParaSol and GLUE. 

 

 

Figure 2. Comparison of monthly observed and simulated flow using SUFI-2 algorithm at G1801 
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Figure 3.Comparison of monthly observed and simulated flow using SUFI-2 algorithm at G1818 

 

Figure 4.Comparison of monthly observed and simulated flow using SUFI-2 algorithm at G1820 

 

 

Figure 5.Comparison of monthly observed and simulated flow using SUFI-2 algorithm at G1826 

 
Using the ParaSol algorithm, the calibration 

process converges within 7000 iterations. The 

ParaSol algorithm shows good agreement 

between monthly observed and simulated flows 

in at all the calibrated sites; this is very clear 

from the statistics that are given in Table 4. 

Using the ParaSol method, the best NSE (0.71 

and 0.74) and R2 values (0.73 and 0.74) were 

obtained when the model was calibrated at the 

G1818 and G1826 sites while the model 

produced satisfactory NSE values for the other 

stations (0.58 and 0.53) when the model was 

calibrated at sites G1801 and G1820. The worst 

p-factor (57%; which is the percentage of 

observations bracketed by the 95% prediction 

uncertainty (95PPU)), was produced when the 

model was calibrated at G1818 and the r-factor 

equals 0.63. For G1801, the p-factor brackets 

71% of the observations and the r-factor equals 

0.59. Other stations gave different p-factor and 

r-factor values; i.e., 62%, and 68% and 0.84, and 

0.72 for the G1820 and G1826 stations, 

respectively. The ParaSol algorithm produced 

the highest R2 and NSE at all of the studied sites 

as compared to SUFI-2 and GLUE. These results 

are the same as was concluded by Yang et al. 

(2008) and Setegn et al. (2010). 

The GLUE algorithm gives bad agreement 

between monthly observed and simulated flows 

at all sites during the calibration and this is very 

clear from the statistics that were used in Table 

4. In addition, the GLUE method yields the 

worst simulation results during the calibration 

period for all the sites Table 4. The p-values for 

three of the calibrated sites were very low 

(G1801 (36%), G1820 (20%) and G1826 

(32%)). However, the method produced a 

reasonably good p-factor value when the model 

was calibrated at G1818 gave 73%. The r-factor 

values were also very low for G1801, G1820 and 

G1826 (0.35, 0.37, 0.46 respectively) but it was 

0.89 for the G1818 station. When compared to 

the SUFI-2 and ParaSol algorithms, GLUE 

produced the lowest R2 

(0.54, 0.51, 0.66) and NSE (0.53, 0.46, 0.62) 

values at gauges G1801, G1805 and G1826, 

respectively. However, the method produced a 

higher R2 (0.68) and NSE (0.66) at G1818 than 

produced by SUFI-2. 

As illustrated by Yang et al. (2008), in SUFI-2 

and GLUE, all source of uncertainty (for 

example, model structure, observation data error 

and model input) are captured resulting in a high 

p-factor value, however ParaSol only deals with 

the model parameters uncertainty and ignoring 

other source of uncertainties which lead to low 

p-factor and too narrow prediction uncertainty 

band. A higher NSE value using ParaSol and 

lower values using SUFI-2 and GLUE are due to 

that, ParaSol based on the Shuffled Complex 

Evaluation Method-University of Arizona (SCE-

UA) is very efficient in detecting the high 
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objective function in the response surface. 

However, the global sampling procedure in 

GLUE is inefficient to locate the maximum or 

maxima of the objective function, moreover the 

narrowed parameters range in SUFI-2 decreases 

the sample size and decreases the exploration of 

the parameter space. 

The vast majority of the parameters which were 

used for model calibration were in relation to 

groundwater (baseflow release factors and 

groundwater delay factors) and surface water 

which signifies the groundwater component of 

the water balance in the watershed; this also 

highlights the fact that the interaction between 

surface and groundwater plays an important role 

in the overall dynamics of the watershed. Our 

results suggested that a single calibration at the 

watershed outlet can be misleading and requires 

multisite calibration to capture the heterogeneity 

of the watershed (in our case different results 

were obtained when the model was calibrated at 

G1818 and G1801, for example). Many studies 

have addressed the multisite calibration of 

SWAT model (Cao et al. 2006; Qi and Grunwald 

2005; White and Chaubey 2005; Zhang et al. 

2008; Cho et al. 2013, and Niraula et al. 2012). 

Cao et al. (2006) suggested that the poor results 

that are produced from the model when 

calibrated at a subwatershed level and good 

prediction ability at a bigger scale is due to the 

compensation between the differing factors (for 

example, climate, land cover and soil data) at 

large scale. As shown from the results provided 

above, the model has some difficulties 

simulating the low flow conditions at G1801 and 

G1820. Although we used the TRMM data as a 

gridded type of precipitation source to provide 

the spatial cover over the area of study, there was 

no climate station close enough to provide the 

other climate parameters for the contributing 

area of site G1801. The closest weather station is 

Kahramanmaras (58 km from the basin) but the 

station has a gap in the data (from mid-2002 to 

mid-2007) so that it cannot be used in this study. 

In general, the model underestimated the high 

peak flows at all sites and this might be a result 

of the regulations across the river, reservoirs, 

lakes and irrigation channels. This inability to 

capture the peak flows caused a lower NSE. 

Further inspection of the precipitation data 

indicates insufficient rainfall to generate the 

observed flow. Beside precipitation and other 

climate data uncertainties, other uncertainties 

that can impact the calibration are, for example; 

land use data (with a spatial resolution of 300 m), 

which we think it doesn’t provide enough details 

about the land use and the changes that has been 

made since 2009 (the year of our land cover 

data). Another source of uncertainty is the soil 

type data. We used the FAO digital soil map of 

the world which has a spatial resolution of 10 

km; this doesn’t provide sufficient details about 

the soil characteristics and channel flow 

measurements. The Seyhan River, like other 

rivers in semi-arid regions, is more extreme and 

less predictable than those in humid regions as a 

result of the spatial and temporal variation of the 

flow resulted mainly from climate conditions 

variations. 

 

Conclusion  

The SWAT model was used to investigate the 

hydrologic component of the Seyhan river basin 

located in Turkey. The model was calibrated on 

a monthly basis and the uncertainty analyses 

were performed using the SWAT-CUP program. 

The results show that SUFI-2 captured the 

observations well during the calibration period 

with a p-value > 90% for gauges G1818, G1801 

and G1826 and 62% for G1826. The NSE ranged 

from 0.52 to 0.67.  ParaSol was characterized by 

lower p-values with a high NSE of 0.74 in the 

case of G1826. The model was sensitive to the 

base flow recession constant ALPHA_BF 

parameter at most of the calibrated locations 

which shows that more studies of the 

groundwater and its relation to surface water in 

the basin are essential. The uncertainty of the 

simulated flow is due to errors in input data such 

as rainfall, temperature and the other climate 

data as these data, except for rainfall, came from 

stations that are not within the basin boundary 

except for the Adana station (located 

downstream) which is not representative to the 

basin climatic conditions. Other sources of 

model uncertainty include diversions and 

regulations for which the impact is not accounted 

because of upstream dams and reservoirs and 

irrigation diversion. SWAT model was able to 
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accurately simulate the surface flow at the 

studied locations. 
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