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REVIVING SOME GEOMETRIC ASPECTS OF SHRINKAGE
ESTIMATION IN LINEAR MODELS

FIKRI AKDENIZ AND FIKRI ÖZTÜRK

Abstract. It is well known that the least squares estimator is the best linear
unbiased estimator of the parameter vector in a classical linear model. But,
it is ‘too long’ as a vector and unreliable, confidence intervals are broad for
some components especially in the case of multicollinearity. Shrinkage (con-
traction) type estimators are effi cient remedial tools in order to solve problems
caused by multicollinearity. In this study, we consider a class of componentwise
shrunken estimators with typical members: Mayer and Willke’s contraction
estimator, Marquardt’s principal component estimator, Hoerl and Kennard’s
ridge estimator, Liu’s linear unified estimator and a discrete shrunken estima-
tor. All estimators considered are “shorter” than the least squares estimator
with respect to the Euclidean norm, biased, but insensitive to multicollinearity
and admissible within the set of linear estimators with respect to unweighted
squared error risk. Some behaviors of these estimators are illustrated geomet-
rically by tracing their trajectories as functions of shrinkage factors in a two-
dimensional parameter space.

1. Introduction

Consider the classical linear model

y = Xβ + ε (1.1)

where the nx1 vector y is an observable random response vector, β is a p×1 vector
of unknown coeffi cients, X is a non-stochastic n × p matrix of the explanatory
variables (observed or designed) with full column rank, and ε is a non-observable
n× 1 random vector satisfying the assumptions E(ε) = 0,Cov(ε) = σ2In. Remind
that individual parameters have their own special meanings in the constructed
model.
Let σ2 be a nuisance parameter and let our primary interest be the estimation

of the parameter vector β in the parameter space Rp (β ∈ Rp). As is well known,
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from the Gauss-Markov Theorem

β̂ = (X ′X)−1X ′y

is the best linear unbiased (BLU) estimator of β. The BLU estimator of Xβ

X̂β = Xβ̂ = X(X ′X)−1X ′y

is the orthogonal projection of the observed vector y on the estimation space [X]
(column space of X), where the projection matrix is P[X] = X(X ′X)−1X ′. On the
other side,

arg min
β∈Rp

(y −Xβ)
′
(y −Xβ) = β̂

is the so called Least Squares (LS) estimator of β, denoted by β̂LS . Additionally,
when ε is normally distributed the LS estimator is the Maximum Likelihood esti-
mator, which is the Uniformly Minimum Variance Unbiased estimator of β. This
estimator performs poorly in the presence of multicollinearity. When X ′X is ill
conditioned, that is, when the condition number k = λmax/λmin is large with a
small λmin than the risk of β̂LS

MSE(β̂LS , β) = E((β̂LS − β)
′
(β̂LS − β))

= E(
∥∥∥β̂LS − β∥∥∥2)

= tr(Cov(β̂LS))

=

p∑
i=1

σ2

λi

≥ σ2

λmin

becomes relatively large. Here, λmax = λ1 ≥ λ2 ≥ ... ≥ λp = λmin > 0 are the
eigenvalues of X ′X having the spectral decomposition

X ′X = UΛU ′, Λ = diag(λ1, λ2, ..., λp), U
′U = UU ′ = Ip, (X ′X)−1 = UΛ−1U ′.

Being optimal, i.e. minimum variance in the class of linear unbiased estimators,
the β̂OLS may fall far away from β, sometimes with wrong sign for an individual
component. Also, the expected Euclidean norm of β̂OLS is greater than the norm
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of β.

E
(∥∥∥β̂LS∥∥∥) = E

(√
β̂
′
LS β̂LS

)
≥

√
E(β̂

′
LS β̂LS) (Jensen′s Inequality)

=
√
σ2tr ((X ′X)−1) + β′β

≥
√
β′β

= ‖β‖

The LS estimator β̂OLS is ‘too long’for β. On the other hand, the LS estimator
can uniformly be outperformed with respect to some other criterion. For example,
the James-Stein’s estimator (James and Stein, 1961)

β̂JS =

[
1− (p− 2)(y −Xβ̂LS)

′
(y −Xβ̂LS)

(n− p+ 2)β̂
′
LSX

′Xβ̂LS

]
β̂LS

=

1−

∥∥∥y −Xβ̂LS∥∥∥2 /(n− p+ 2)∥∥∥Xβ̂LS∥∥∥2 /(p− 2)

 β̂LS
is a uniformly better estimator than the LS estimator with respect to weighted
mean squared error criterion

WMSE(β̂, β) = E
(

(β̂ − β)
′
X ′X(β̂ − β)

)
= E

(∥∥∥Xβ̂ −Xβ∥∥∥2)
for normally distributed errors and p ≥ 3 (Gross, 2003). Note that, the James-
Stein’s estimator is a non-linear biased estimator of β.
In this study the estimation criterion is the Mean Squared Error (MSE) criterion,

where

MSE(β̂, β) = E((β̂ − β)
′
(β̂ − β)) = E(

∥∥∥β̂ − β∥∥∥2)
= tr(Cov(β̂)) +Bias(β̂)′Bias(β̂).

is the risk with respect to scalar unweighted squared error loss.
By suitable reparametrization, the original model (1.1) can be reduced to an

orthonormal form. The reparametrized model

y = V γ + ε , V = XUΛ−1/2 , γ = Λ1/2U ′β (1.2)

is in orthogonal form, V ′V = I. The LS estimator

γ̂OLS = (V ′V )−1V ′y = V ′y
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can uniformly be outperformed by the James-Stein’s estimator

γ̂JS =

[
1− (p− 2)(y − V γ̂LS)

′
(y − V γ̂LS)

(n− p+ 2)γ̂′LS γ̂LS

]
γ̂LS

with respect to mean squared error criterion MSE(γ̂, γ) = E
(
(γ̂ − γ)

′
(γ̂ − γ)

)
.

Under certain conditions the LS estimator is inadmissible with respect to MSE
criterion. There are better estimators.
In the following section we consider some shrinkage estimators obtained by com-

ponentwise shrinking of the LS estimator. All estimators considered are biased
with a small total variance then the LS estimator and are admissible in the set of
linear estimators. In section 3 the geometry of these estimators is illustrated in the
parameter space. Last section contains the concluding remarks.

2. Some Shrunken Estimators

The parameter set of the vector of unknown coeffi cients in the linear model (1.1)
is the p-dimensional Euclidian space Rp (β ∈ Rp). Let us consider the family of
componentwise shrunken estimators

CS(β̂) =
{
β̂CS(D) : β̂CS(D) = Dβ̂LS , D = diag(d1, d2, ..., dp) , d1, d2, ..., dp ∈ [0, 1]

}
.

For example, in the 2-dimensional case, the estimates lie in the rectangle defined
by the origin and the LS estimate, as opposite corners. All of the estimators are
biased, except the β̂CS(I) = β̂LS . For any estimator β̂CS(D) in CS(β̂)∥∥∥β̂CS(D)

∥∥∥ ≤ ∥∥∥β̂LS∥∥∥ .
The MSE of β̂CS(D) is

MSE(β̂CS(D), β) = E
(

(β̂CS(D)− β)
′
(β̂CS(D)− β)

)
= tr

(
Cov(β̂CS(D))

)
+Bias

(
β̂CS(D)

)′
Bias

(
β̂CS(D)

)
= tr

(
DCov(β̂LS)D′

)
+ (Dβ − β)

′
(Dβ − β)

= tr(σ2DUΛ−1U ′D′) + β′(D − I)2β

= σ2
p∑
j=1

(d2j

p∑
i=1

u2ji
λi

) +

p∑
j=1

(dj − 1)2β2j

with a minimum at

doptj =
1

1 +
σ2

p∑
i=1

u2
ji
λi

β2j

, j = 1, 2, ..., p
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values of shrinkage (contraction) factors d1, d2, ..., dp ∈ [0, 1]. The optimal MSE
estimator is

β̂CS(Dopt) = Doptβ̂OLS

where Dopt = diag(dopt1 , dopt2 , ..., doptp ).

Now, let us write the model (1.1) in the canonical form

y = Zα+ ε , Z = XU , α = U ′β (2.1)

where, Z ′Z = Λ. This is another reparameterized model. The LS estimator for α
is

α̂LS = Λ−1Z ′y

and E (‖α̂LS‖) ≥ ‖α‖. Consider the family of componentwise shrunken estimators

CS(α̂) = {α̂CS(B) : α̂CS(B) = Bα̂LS , B = diag(b1, b2, ..., bp) , b1, b2, ..., bp ∈ [0, 1]} .

All estimators are biased, except the LS estimator α̂CS(I) = α̂OLS and for any
estimator in this family ‖α̂CS(B)‖ ≤ ‖α̂OLS‖. The MSE of α̂CS(B) is

MSE(α̂CS(B), α) = E
(
(α̂CS(B)− α)

′
(α̂CS(B)− α)

)
= tr (Cov(α̂CS(B))) + (E(α̂CS(B))− α)

′
(E(α̂CS(B))− α)

= tr
(
σ2BΛ−1B′

)
+ α′(B − I)2α

= σ2
p∑
i=1

b2i /λi +

p∑
i=1

(bi − 1)2α2i

with minimum at

bopt
i

=
1

1 + σ2/λi
α2i

=
λi

λi + σ2

α2i

, i = 1, 2, ..., p.

The optimal MSE estimator in CS(α̂) is α̂CS(Bopt), where

Bopt = diag(bopt1 , bopt2 , ..., boptp ).

Let us notice that the estimation spaces for the models (1.1), (2.2-below) and
(2.1) are the same. As a result, the “blue response” ŷ (BLU estimator of the
response mean E(y) = Xβ)

ŷ = P[X]y = P[Z]y = P[V ]y
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is invariant under these reparametrizations. Note also the following correspondency
between linear models (1.1) and (2.1).

β = Uα , α = U ′β , ‖β‖ = ‖α‖

β̂LS = Uα̂LS , α̂LS = U ′β̂LS ,
∥∥∥β̂LS∥∥∥ = ‖α̂LS‖

MSE(β̂LS , β) = MSE(α̂LS , α) =

p∑
i=1

σ2

λi

β̂CS(D) = DUB−1α̂CS(B) , α̂CS(B) = BU ′D−1β̂CS(D)

β̂CS(D) = DUD−1α̂CS(D) , α̂CS(D) = DU ′D−1β̂CS(D)∥∥∥β̂CS(D)
∥∥∥ = ‖α̂CS(D)‖ ≤

∥∥∥β̂LS∥∥∥ = ‖α̂LS‖

MSE(β̂CS(D), β) = MSE(α̂CS(D), α)

MSE(β̂CS(D), β) = σ2
p∑
i=1

d2i /λi +

p∑
i=1

(di − 1)2β2i

MSE(α̂CS(B), α) = σ2
p∑
i=1

b2i /λi +

p∑
i=1

(bi − 1)2α2i

Estimators in CS(β̂) and CS(α̂) have smaller total variance then the LS estimator.
It is necessary to provide some assurance that the benefit of reduced total variance
is not likely to be offset by a large squared bias. The MSE’s depend not only on
shrinkage factors and the eigenvalues of X ′X, but also on the unknown parameters
of the model, so the optimal estimators cannot be used in practice. The shrinkage
factors can be treated as parametric functions, also called shrinkage parameters or
biasing (tuning) paremeters. To make the estimators operational some estimates of
the shrinkage parameters can be used. It seems reasonable to use plug-in estimates
using β̂LS , α̂LS and σ̂

2, where

σ̂2 =
(y −Xβ̂LS)

′
(y −Xβ̂LS)

n− p =

∥∥∥y −Xβ̂LS∥∥∥2
n− p =

‖y − Zα̂LS‖2

n− p .

2.1. Meyer and Wilke’s (MW) Estimator. Meyer and Wilke (1973) proposed
the following contraction estimator.

β̂c = cβ̂OLS , c ∈ [0, 1] (2.2)

β̂c = β̂CS(cI) is the simplest shrinkage estimator in CS(β̂).

MSE
(
β̂CS(cI)

)
= c2σ2tr((X ′X)−1) + (c− 1)2β′β
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A necessary and suffi cient condition for β̂CS(cI)to have a smaller MSE than β̂LS is
that the following inequality

1− 2σ2tr((X ′X)−1)

β′β + σ2tr((X ′X)−1)
< c < 1

is satisfied. The optimal value for MSE
(
β̂CS(cI)

)
is obtained at

copt =
β′β

β′β + σ2tr((X ′X)−1)
.

The simplest shrinkage estimator in CS(α̂) is α̂CS(cI) = U ′β̂CS(cI). Note that

β̂CS(cI) = cβ̂LS = cUα̂LS , α̂CS(cI) = cα̂LS = cU ′β̂LS , c ∈ [0, 1]

MSE(β̂CS(cI), β) = σ2c2
p∑
i=1

1/λi + (c− 1)2
p∑
i=1

β2i

MSE(α̂CS(cI), α) = σ2c2
p∑
i=1

1/λi + (c− 1)2
p∑
i=1

α2i

MSE(β̂CS(cI), β) = MSE(α̂CS(cI), α).

2.2. Principal Component (PC) Estimator. As is known, the principal com-
ponent (PC) analysis is a widely used dimension reduction technique, with some
information being lost. The PC estimation procedure is a dimension reduction for
the “cloud of LS estimates”in the parameter space Rp by projecting them orthog-
onally on the space spanned by the eigenvectors corresponding to the first largest
r (r < p) eigenvalues of X ′X. The PC estimator remove the information which is
responsible for the increase of impreciseness in LS estimation.
Let

U1 = [u1, u2, ..., ur], U2 = [ur+1, ur+2, ..., up], U = [U1 U2],

Λ1 = diag(λ1, λ2, ..., λr), Λ2 = diag(λr+1, λr+2, ..., λp),

Λ =

[
Λ1 0
0 Λ2

]
.

The orthogonal projection matrix on the column space [U1] = span(u1, u2, ..., ur)
of U1 is P[U1] = U1(U

′
1U1)

−1U ′1 = U1U
′
1. So, the PC estimator is

β̂PC(r) = P[U1]β̂LS

= U1U
′
1(X

′X)−1X ′y

= U1U
′
1

(
U1Λ

−1
1 U ′1 + U2Λ

−1
2 U ′2

)
X ′y

= U1Λ
−1
1 U ′1X

′y.

It can be shown that the PC estimator is the restricted LS estimator under the
restriction U ′2β = 0. A necessary and suffi cient condition for β̂PC(r) to have a
smaller MSE than β̂LS is that the inequality β

′U2Λ2U
′
2β ≤ σ2 is satisfied. When
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applying the PC estimator, one is faced with the problem of choosing an appropriate
r value. In the normal case a pretest estimation procedure can be used.
The PC estimator has a very simple interpretation in the reparametrized model

with canonical form.

α̂PC(r) = U ′β̂PS(r)

= [U1 U2]
′U1Λ

−1
1 U ′1X

′y

=

[
Λ−11 U ′1X

′y
0

]
=

[
Ir
0

]
α̂LS

PC estimator α̂PC(r) cancel some components of α̂LS having large variances. This
is a kind of variable selection, but not the original variables. α̂PC(r) is a compo-
nentwise shrunken estimator

α̂PC(r) = α̂CS(B) , B = diag(1, 1, ..., 1︸ ︷︷ ︸
r

, 0, 0, ...0︸ ︷︷ ︸
p−r

)

where the shrinkage factors are equal to either zero or one.

MSE(α̂PC(r), α) = σ2
r∑
i=1

λ−1i +

p∑
i=r+1

(u′iα)2

A suffi cient condition for α̂PC(r) to have a smaller MSE than α̂LS is that the

inequality β′β/
p∑

i=r+1

λ−1i < σ2 is satisfied.

The PC estimator takes values in [U1]. A bit flexible estimator, permitting for
dispersion in Rp = [U1]⊕ [U2] is the Marquardt’s estimator

β̂MPC(r,m) = U

[
Ir
c

]
α̂LS

= U

[
Λ−11 U ′1X

′y
cΛ−12 U ′2X

′y

]
= U1Λ

−1
1 U ′1X

′y +mU2Λ
−1
2 U ′2X

′y

= P[U1]β̂LS +mP[U2]β̂LS

(Marquardt, 1970, Marquardt and Snee, 1975).

2.3. Ridge Regression Estimator. The Ridge regression estimator in its sim-
plest form, called ordinary ridge estimator (OR), is

β̂OR(k) = (X ′X + kI)−1X ′ (2.3)

where k is some nonnegative scalar constant. The generalized ridge estimator (GR)
is
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β̂GR(K) = (X ′X +K)−1X ′y (2.4)
where K = diag(k1, k2, ..., kp) , ki ≥ 0 , i = 1, 2, ..., p. The general ridge estimator
is defined as

β̂GR(G) = (X ′X +G)−1X ′y (2.5)
where G is a symmetric nonnegative definite matrix.
The generalized ridge estimator in the reparameterized model (2.1)

α̂GR(K) = (Λ +K)−1Λα̂LS = α̂CS(B)

is a componentwise shrunken estimator, where

B = diag(
λ1

λ1 + k1
,

λ2
λ2 + k2

, ...,
λp

λp + kp
)

and the OR estimator is also a componentwise shrunken estimator

α̂OR(k) = (Λ + kI)−1Λα̂LS = α̂CS
(
(Λ + kI)−1Λ

)
.

The correspondency of ridge estimators between the models (1.1) and (2.1) is as
follows.

α̂GR(K) = (Λ +K)−1Z ′y

= U ′(X ′X + UKU ′)−1X ′y

= U ′β̂GR(UKU ′)

β̂GR(K) = Uα̂GR(U ′KU)

α̂OR(k) = U ′β̂OR(k)

β̂OR(k) = Uα̂OR(k)

The optimal componentwise shrunken estimator of α in the model (2.1) is the
generalized ridge estimator α̂GR(K), for K = diag(k1, k2, ..., kp) , ki = σ2

α2i
, i =

1, 2, ..., p.
All ridge estimators are admissible in the class of linear estimators with respect

to MSE criterion. Hoerl and Kennard (1970a, 1970b) proved that there exist always
positive values of k such that

MSE(β̂OR(k), β) < MSE(β̂LS , β).

Theobald (1974) has shown that a suffi cient condition for β̂OR(k) to be a smaller
MSE estimator than β̂LS is that k satisfy 0 < k < 2σ2/β′β and a necessary condi-
tion is that k satisfy

0 < k < σ2/max
i

{
α2i
}
.

For the general ridge estimator β̂GR(G) the mentioned suffi cient condition is
β′
(
G−1 + (X ′X)−1

)−1
β ≤ σ2 (Gross, 2003). For the special case G = kI the

inequality becomes β′( 2k I + (X ′X)−1)−1β ≤ σ2 which is equivalent to 0 < k <

2σ2/β′β.
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Ridge estimators are not operational. There are numerous heuristic and theoret-
ically rigorous techniques available for choosing a suitable value for the biasing pa-
rameter. Hoerl, Kennard and Baldwin (1975) showed that, for k̂HKB = pσ̂2/β̂

′
β̂ a

significant improvement in the MSE of β̂OR(k̂HKB) is obtained. Hoerl and Kennard
(1976) also give an algorithm for iterative estimation of k, where at every stage β̂ in

k̂HKB = pσ̂2/β̂
′
β̂ is replaced by β̂OR(k̂HKB). For the generalized ridge estimator

minimum MSE is obtained at kopti = σ2

α2i
, i = 1, 2, ..., p. Hence k̂=i

σ̂2

α̂2i
, i = 1, 2, ..., p

is the natural choice.
There are many different interpretations of ridge estimators, like data augmented

estimator, restricted estimator, Bayesian estimator etc. The Bayesian interpreta-
tion says that, under the normal prior N(0, σ

2

k I) for the parameter vector, the
Bayes estimator with respect to squared error loss is the OR estimator (2.3), and
under the normal prior β ∼ N(0, σ2K−1) the Bayes estimator is the GR estimator
(2.4). Under the prior information β ∼ (0, σ2G−1) the Bayes estimator in the set

of linear homogeneous estimators
{
β̂ : β̂ = Ay , A ∈ Rp×n

}
is defined as

β̂LB(G) =
(

arg min
A
MSEB

(
A, σ2, G

))
y

Rao (1976). The resulting estimator is called Linear Bayes (LB) estimator, and can
be obtained as follows.

MSEB(A, σ2, G) = Eβ (MSE(Ay, β))

= Eβ
(
σ2tr(AA′) + tr

(
(AX − I)ββ′(AX − I)

′))
= σ2tr(AA′) + tr

(
(AX − I)Eβ(ββ′)(AX − I)

′)
= σ2tr(AA′) + σ2tr

(
(AX − I)G−1(AX − I)

′)
arg min

A
MSEB

(
A, σ2, G

)
= (X ′X +G)

−1
X ′

and
β̂LB(G) = (X ′X +G)−1X ′y

(Gross, 2003). So, under the prior information β ∼ (0, σ2G−1) the LB estimator is
equal to GR estimator. Under the prior information β ∼ (0, σ

2

k I) we have

β̂LB(k) = β̂OR(k).

Although being formally the same, these estimators are conceptionally different.
A statistician employing the Bayes estimator uses the sample information with an
extra prior information. A statistician employing the ridge estimator only uses the
sample information and has to estimate the shrinkage parameters in order to make
the estimator operational. The resulting estimator is a nonlinear function of the
sample.
The OR estimator β̂OR(k) is the shortest estimator in an equivalence class of es-

timators with the same residual sum of squares. In the case of normally distributed
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errors, β̂OR(k)is the shortest β vector for given likelihood. The OR estimator β̂R(k)
has a minimum residual sum of squares in an equivalence class of estimators of the
same length. In the case of normally distributed errors, β̂R(k) is the most-likely β
vector of the same length (Hoerl and Kennard, 1970a).
The family of OR estimators

β̂R(k) = (X ′X + kI)−1X ′y , k ∈ [0,∞)

traces a curved path through the parameter space from β̂R(0) = β̂LS to 0(origin),

as k increases from zero to infinity, in such a way that
∥∥∥β̂R(k)

∥∥∥ <
∥∥∥β̂LS∥∥∥ for

k ∈ (0,∞). Hoerl and Kennard (1970a) proved that the expected distance between
β̂R(k) and β must initially decrease as k increases (illustrated in Section 3).
The name of ridge regression comes from ridge analysis developed by Hoerl (1959)

for examining higher-dimensional quadratic response surfaces used in experimental
design. Hoerl (1962) noted that the residual sum of squares in regression could be
written as a quadratic function of the coeffi cients. So, ridge analysis, used in the
maximization of the response function, could be used to calculate the coeffi cients
as one moved along the minimum ridge of the residual sum of squares from the
overall minimum (least squares) to some more stable solution closer to the origin
(Hoerl, 1985).
Ridge regression is a popular technique to deal with multicollinearity. The prop-

erties, optimality conditions and problems associated with Ridge estimators have
been investigated in hundreds of papers. An old list, including small abstracts are
the Hoerl and Kennard’s (1979, 1981) works, for the early years publications about
ridge regression. In the last years there appeared a lot of papers on combining the
Ridge and LS estimators, under the name (r-k) class estimator.

2.4. Linear Unified Estimator. Kejian Liu (Liu, 1993) proposed the following
estimator.

β̂Liu(d) = (X ′X + I)−1(X ′y + d β̂LS) , 0 < d < 1 (2.6)

This estimator is a linear combination of the ridge estimator with ridge parameter
k=1 and the least squares estimator. It is also a linear transformation of β̂LS .

β̂Liu(d) = (X ′X + I)−1(X ′y + d β̂LS)

= (X ′X + I)−1(X ′X)(X ′X)−1(X ′y + d β̂LS)

= (X ′X + I)−1(X ′X + dI)β̂LS

This estimator is named as Linear Unified (abbreviated as Liu) estimator by Akd-
eniz and Kaçıranlar (1995) and was accepted by the related community. Liu (2003)
mention that, when there exists severe collinearity, the shrinkage parameter selected
by existing methods for ridge regression may not fully address the ill conditioning
problem. In order to solve this problem, he proposes a new two-parameter es-
timator and shows, using both theoretical results and simulation study, that the
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proposed estimator has two advantages over ridge regression. First, the estimator
has less MSE, second, the estimator can better address the ill-conditioning problem.
The Liu-type estimation procedure is a popular technique in the last two decade.
The new fashion is combining PC, Ridge and Liu estimators. You can make (r-d)
or ((r-k)-d) combinations (see for example Alheety and Kibria (2013)). The two
parameter Liu (2003) estimator is the (k-d) combination.
Liu (1993) showed that the estimator β̂Liu(d), given above (2.6), is superior to

the β̂LS in the MSE sense. The optimal value for d is

dopt = 1−
σ2

p∑
i=1

1
λi(1+λi)

p∑
i=1

α2i
(1+λi)

.

The estimator β̂Liu(d)is not operational. The plug-in estimator of dopt is

d̂opt = 1−
σ̂2

p∑
i=1

1
λi(1+λi)

p∑
i=1

α̂2i
(1+λi)

.

In Section-3 we used,

d̂ =


0 if d̂opt < 0

d̂opt if 0 ≤ d̂opt ≤ 1

1 if d̂opt > 1.

2.5. A Discrete Shrunken (DS) Estimator. Let us try to solve the normal
equation

X ′Xβ = X ′y

numerically by the iteration formula

β(n) = (I − hX ′X)β(n−1) + hX ′y , n = 1, 2, 3, ... , β(0) = 0

obtained from an algorithm based on fixed point theorem, applied to the equation

β = β − hX ′Xβ + hX ′y.

It can be shown that β(n) converges to the solution for 0 < h < 2/λmax and for any
initial value β(0) ∈ Rp. The sequence of estimators

β̂
(n)

(h, n) = (I − hX ′X)β̂
(n−1)

+ hX ′y , n = 1, 2, 3, ... , β̂
(0)

= 0

converge to β̂LS uniformly. For a chosen value of h the set
{
β̂
(n)

(h, n) : n = 1, 2, 3, ...
}

is a discrete family of n. A suitable element in the set can be taken as an estimator
of β. Based on this idea the estimator,

β̂DS(h, n) = (I − (I − hX ′X)n) β̂LS , 0 < h < 1/λmax.
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is defined (Öztürk, 1984). The corresponding estimator of α

α̂DS(h, n) = Uβ̂
(n)

= (I − (I − hΛ)n) α̂LS , 0 < h < 1/λmax

is the componentwise shrunken estimator α̂DS(h, n) = α̂CS(B) , B = I−(I−hΛ)n.
The MSE of α̂DS(h, n) is

MSE(α̂DS(h, n)) = σ2
n∑
i=1

(1− (1− hλi)n)2

λi
+

n∑
i=1

(1− hλi)2nα2i .

A suffi cient condition for α̂DS(h, n) to have a smaller MSE than α̂LS is that the
inequality (1−hλmin)n < σ2

σ2+λmaxα2max
is satisfied. The discrete shrunken estimator

β̂DS(h, n) is similar to the estimator defined by Trenkler (1978). Trenkler’s moti-
vation is based on a serial expansion for the Moore-Penrose generalized inverse of
X.
Let us mention that we can look at the normal equation X ′Xβ = X ′y as an

inversion problem. Then we encounter the problem of ill-conditioning for bad coef-
ficient matrix X ′X. The problem of ill-conditioning is a widely investigated topic
in applied mathematics since 1960. Some of the solution methods are regularization
method, selection method and replacement method. It is very interesting that gen-
eralized ridge estimation mimics the regularization method, principal component
estimation mimic the selection method and ordinary ridge estimation mimic the
replacement method (Öztürk and Akdeniz, 2000).

3. Geometrical Visualization of Estimation Traces in the Parameter
Space

When the design matrix X has nearly collinear columns, then the LS estimator
is unstable in the sense that different samples can produce dramatically different
estimates. This is the problem of multicollinearity.
Consider the following simulation framework (Case II) from (Swindel, 1974).

X =
[
x1, x2

]
=

 0.8 0.6
0.6 0.8
0 0

 , β =

[
β1
β2

]
=

[
1
1

]
, ε ∼ N (0, I) .

rX1,X2
= 0.8846 indicates a severe collinearity.

X ′X =

[
1.00 0.96
0.96 1.00

]
X ′X = UΛU ′

U =

[
−0.7071 0.7071
0.7071 0.7071

]
, Λ =

[
0.04 0

0 1.96

]



1136 FIKRI AKDENIZ AND FIKRI ÖZTÜRK

The simulated 10 samples for ε are:

-1.276 -1.218 -0.453 -0.350 0.723 0.676 -1.099 -0.314 0.394 -0.633
-0.318 -0.799 -1.664 1.391 0.382 0.733 0.653 0.219 -0.681 1.129
-1.377 -1.257 0.495 -0.139 -0.854 0.428 -1.322 -0.315 -0.732 -1.348

10 samples for

y =

 0.8 0.6
0.6 0.8
0 0

[ 1
1

]
+ ε

are:

0.124 0.182 0.947 1.050 2.123 2.076 0.301 1.086 1.006 0.767
1.082 0.601 -0.264 2.791 1.782 2.133 2.053 1.619 0.719 2.529
-1.377 -1.257 0.495 -0.139 -0.854 0.428 -1.322 -0.315 -0.732 -1.348

and LS estimates for the simulated samples are as below.

β̂LS :
-1.964 -0.768 3.271 -2.981 2.247 1.361 -3.539 -0.366 1.334 -3.228
2.826 1.327 -2.784 5.724 0.547 1.646 5.221 2.299 -0.101 5.582

Estimates for the individual components of β are unstable, even having different
signs for different samples. Swindel (1974) illustrates this situation geometrically
in the estimation space spanned by the columns of X = [x1 x2] (Figure-1). Imagine
the coeffi cients in the linear combination c1x1+c2x2 represented by the 10 points for
simulated 10 data sets. They are the LS estimates of β. Do the same imagination
for Case I. Do you feel that they have less variation than in Case II? They are more
“stable”. They do not suffer from the problem of multicollinearity. Indeed, the
estimates are just below (Swindel, 1974):

Case I

β̂LS :
-0.276 -0.218 0.547 0.650 1.723 1.676 -0.099 0.686 0.606 0.367
0.682 0.201 -0.664 2.391 1.382 1.733 1.653 1.219 0.319 2.129

The true parameter is β =

[
1
1

]
. The estimates seem to be far away. This is

because of the relatively big variance of the simulated error term in the model.
Thanks to Swindel, to be not afraid of big variance, otherwise the deficiency of LS
could not be exhibited so well. Let us also mention that, when the explanatory vari-
ables individually obey small variation, the parameter estimates become unstable,
have big variances, like in the situation of near collinearity. Near collinearity, geo-
metrically means a small area of the parallelogram defined by x1 and x2(volume for
p>2). Swindel defeated the small variation in the explanatory variables by taking
them normalized. In reality this is not possible, except in design of experiments.
For example, A-optimality in design of experiments means optimal total variance,
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design with smallest tr(X ′X).

Now, imagine the unknown “truth”, the point with coordinates (1,1) in the
booth (CaseI and CaseII) coordinate systems with basis vectors x1 and x2 (the

point X
[

1
1

]
= x1 + x2). All ten points, randomly fallen on the estimation

space want to be close to the “truth”. Do you also feel that the shrinking of
the vectors represented by the points (vectors beginning from the origin of the
coordinate systems and ending at the LS points) will move the points a bit towards
the “truth”, but not for all of them. This is the direct (Stein-type) shrinking,
as the Meyer and Wilke’s estimator does in the parameter space. The planes in
Figure-1 and Figure-2 represent the estimation space, not the parameter space as
in the other figures below. Notice that the scatters are the same for both CaseI and
CaseII. The “randomness” is the same. Simulated errors are the same. Swindel

Figure 1. A figure from Swindel’s (1974) paper.

(1981) also illustrates the geometry of Ridge traces (Figure-2). The advantages of
the OR estimator are easily seen. There are some “good” points on the curves,
that is, there are some points closer to the point 1x1+1x2 identified by an asterisk,
rather than the LS estimates.
Using the Swindel’s simulated data, we illustrate the behavior of LS, MW, OR,

Liu, PC and DS estimators (defined in Section 2) geometrically in the parameter
space, instead of the estimation space as in Swindel’s works. In all of the figures
below, the true value of β is shown as a red colored star, LS estimates are red
pentagrams; optimal estimates are circles, operational estimates are squares and
MW estimates are colored magenta, PC estimates are colored cyan, OR estimates
are colored blue, Liu estimates are colored green, DS estimates are colored black.
In the fifth repetition of the simulation study

ε =
[

0.7230 0.3820 −0.8540
]′
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Figure 2. A figure from Swindel’s (1981) paper

for CaseII. The corresponding “observed”(simulated) response is

y =

 2.123
1.782
−0.854


and the estimates are below (with explanations necessary for the figures).

β =

[
1
1

]
red colored,
asterisk

β̂LS =

[
2.2471
0.5421

]
red colored,
pentagram

β̂MW (copt) =

[
0.1634
0.0394

]
magenta,
circle

β̂MW (ĉopt) =

[
0.5014
0.1210

]
magenta,
square

β̂PC (r) =

[
1.3946
1.3946

]
cyan,
circle

β̂MPC (r,m) =

[
1.6504
1.1389

]
cyan,
square

,

β̂OR (kopt) =

[
0.9563
0.8907

]
blue,
circle

β̂OR

(
k̂opt

)
=

[
1.3331
1.1152

]
blue,
square

β̂Liu (dopt) =

[
1.0019
0.8784

]
green,
circle

β̂Liu

(
d̂
)

=

[
0.9563
0.8907

]
green,
square

β̂DS (h, n) =

[
1.3984
1.3052

]
black colored square

where,

copt = 0.0727, ĉopt = 0.2232, r = 1,m = 0.3, kopt = 1,

k̂opt = 0.0874, dopt = 0.0353, d̂ = 0, h = 0.2, n = 7.

All of the estimators give better estimates then LS estimator, except MW, according
to Euclidean distance. The situation can also be seen easily on the graph.
We evaluate the estimates according to their distance to the true parameter

(unknown, “big red star”). In Figure-3 the traces of OR, Liu and DS family of
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Figure 3. OR-trace(blue), Liu-trace(green), DS-trace(black) and
LS, MW, PC, OR, Liu, DS estimates

estimates are illustrated, with optimal and operational estimates lying on them.
Observe that the Ridge-trace (blue) is a continuous curved path through the pa-
rameter space fromβ̂LS to the origin, as k increases from zero to infinity, initially
converging to β. Liu estimator traces a straight line (green) from β̂LS to β̂OR(1).
The DS-trace (black) is a discrete curved path from the origin to theβ̂LS .

The OR, Liu and DS traces for all the simulated 10 samples are as in Figure-4.
Observe that there are better estimates lying on the traces than the LS estimates.
The ingenuity is to choose a “good point”on the trace when “the star isn’t shining”.
The statistical problem here is the estimation of the shrinking (biasing) parameter.
It is a serious problem, because the LS estimates (small stars) are far away in the
sense of Euclidean distance.
In Figure-5 the performance of MW, PC, R, Liu estimators are compared to the

performance of the LS estimator. As is seen, the optimal shrinkage estimators give
estimates, which are almost covering the true β. But, it’s not possible in reality.
For the operational estimators, there is a spread around the unknown parameter
vector β.

In Figure-6 the performance of the Ridge estimator is illustrated versus MW,
PC, PCM, Liu and DS estimators.
In Figure-7 the performances of Ridge and Liu estimators are illustrated for

both of optimal and operational estimates. Optimal estimators are better then
operational ones. But, it’s diffi cult to decide which works better, Ridge or Liu.
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Figure 4. Traces in the parameter space for OR, Liu and DS estimators.

Figure 5. LS estimator versus MW, PC, R, Liu estimators.

Finally let us look at the estimated MSE values, calculated as simple averages.
The estimated value of MSE(β̂LS , β) is

M̂SE(β̂LS , β) =

10∑
s=1

(
(β̂
s

LS − β)
′
(β̂
s

LS − β)
)

10
= 15.7473

and the others are in Table-1, calculated in the same way.



REVIVING SOME GEOMETRIC ASPECTS OF SHRINKAGE ESTIMATION 1141

Figure 6. Ridge estimator versus MW, PC, Liu, DS estimators

Figure 7. Performance of Ridge versus Liu.

Table-1 Observed MSE values

Estimator
Meyer and
Wilke’s

Principal
Component

Ridge Liu
Discrete
Shrinking

optimal
shrinkage

1.8347
0.4334
(p=2,r=1)

0.5462 0.5931

operational
shrinkage

2.0726
1.8117 (Marquardt’s
estimator, c=0.3)

5.6314 6.4884
0.4689
(n=7,h=0.2)
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4. Conclusions

Once more we tried to elaborate upon the geometrical aspect of linear models,
specially of shrunken estimators. The algebra we used, indeed, is a geometrical
speech. Besides the statistical theory, Linear Model teaching needs matrix algebra
in a high level. But intuition comes up easily when geometry is used. Once again
listen to the Swindel’s words.
“I have found that students of statistics do not readily appreciate the foregoing

ideas given only the algebraic justification of them prevalent in the current litera-
ture. But, they respond enthusiastically to a geometrical explanation. . . ” (Swindel,
1974).
“. . . The figures also show that other shrunken estimators may perform better

or worse, depending on the parameters and design matrix; and they illustrate the
problem of choosing a shrinkage parameter or stopping rule. Thus, the figures help
motivate results previously established algebraically.”(Swindel, 1981).
Let us end by saying that the primary aim of this study was to call to remember

some old works, not to make work. Every new generation must learn and rediscover
the knowledge of old generations.
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