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Abstract: Communication is supposed to be continuous in a network design. It is important for a network to be tough so that
communication is not interrupted in case any damage. In thispaper, it is investigated how to decide which graph model to choose,
when a selection is needed to make between different graphs to be used for a network model when all known vulnerability measures
are same. We introduce the concept of the average weakly edgedomination number of a graph as a new vulnerability measure.We
establish relationships between the average weakly edge domination number and some other graph parameters, and the extreme values
of given measure among all graphs and average weakly edge domination number for some families of graphs. Also a polynomial time
algorithm with complexityO(n3) is given.
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1 Introduction

Vulnerability is the most important concept in any communication network. The resistance of a network after any

disruption is considered as vulnerability value. In a network, this disruption not only can take place on its centers also

sometimes on its links. In this case the vulnerability measures given on links (edges) take an important role while

constructing communication networks. A communication network can be modeled by a graph whose vertices represent

the stations and whose edges represent the lines of communication [4,10,17].

In graph theory, many graph measures have been used widely inthe past to describe the stability of a graph. The best

known and most useful of the measures of how well a graph is connected is the connectivity, defined to be minimum

number of vertices in a set whose deletion results in a disconnected or trivial graph. This measure has been extensively

studied As the connectivity is a worst case measure, it does not always reflect what happens throughout the graph. For

example a tree and the the graph obtained by appending an end-vertex to a complete graph both have connectivity 1. In

this case we need another measure to decide which graph modelis more stable than the other. This situation oriented

researchers to find new measures. In graph theory, many vulnerability measures have been used widely in the past to

describe the stability of a graph. Some of these measures areedge connectivity, Integrity, edge integrity, domination,

toughness [3,7,9,18]. Since networks can be modeled by graphs, vulnerability ofnetworks are observed via graphs. For

this purpose, there has been great interest on vulnerability in graph theory and different kinds of measures have been

defined [1,6,11,12,13,15,16].

In this paper we investigate the average weakly edge domination number as a new measure of global connectedness.

Whereas lots of other global measures are computationally NP-hard, the average weakly edge domination number can be

computed in polynomial time by using the present algorithms, making it much more attractive for applications. For
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terminology and notation on graph theory not given here, thereader is referred to [5,14]. Throughout this paper, we only

consider finite, simple, undirected graphs without isolated vertices. A graphG= (V,E) is a setV of vertices and a subset

E of the unordered pairs of vertices, called edges. The rest ofthe paper is organized as follows: In Section2, we present

the new vulnerability measure called Average Weakly Edge Domination Number and study the properties of this

measure under certain graph operations. In Section3, we compute the values of Average Weakly Edge Domination

Number for well-known graph classes. Finally, in section4, we present an algorithm with time complexityO(n3) that

computes the Average Weakly Edge Domination Number of any graph.

2 Average weakly edge domination number

In the case of networks are modeled by graphs, some vulnerability measurements of graphs are considered when making

decision between two graph design. The reason is to provide the continuity of communication on networks. Since the

continuity of communication is related to the robustness ofgraphs to be used in network models, there are many studies

in graph theory on the vulnerability and many measurements such as connectivity, integrity, and tenacity are defined. We

need a new vulnerability measurement to preference among graphs when the known vulnerability measurements are the

same.

In the case of the edge and vertex integrity values are same for the graphsGl andG2 which have the same number of

edges and vertices. We need a new measure to determine which graph is preferred for the network model.

Definition 1. Let e1 = (u1,v1) and e2 = (u2,v2) be two edges of a graph G= (V,E). The number of edges neighbor

to these two edges is called Pair Weakly Edge Domination Number (PWEDN). If el and e2 have common vertex then

PWEDN is added by 1.

Definition 2. In a graph G, the sum of all pair weakly edge domination numbercomputed respect to all edge pairs is

called Total Pair Weakly Edge Domination Number (TPWEDN); i.e.,

TPWEDN= ∑
ei ,ej∈E(G)

PWEDN(ei ,ej).

Definition 3. In a graph G with n vertices, the number obtained via divisionof TPWEDN by the number of maximum

edges paired to n vertices is called Average Weakly Edge Domination Number (AWEDN); i.e.,

AWEDN=
TPWEDN

(

m
2

) ,

where m=

(

n
2

)

.

To visualize the efficiency of this measure we present two different graphsG1 andG2 with the same number of vertices

and edges, and the same values of edge and vertex integrity inFigure1. We need to compareAWEDNvalues to make a

choice between two graphs. To calculate theAWEDNvalues, first we need to calculate thePWEDNvalues of all edge

pairs, then find theTPWEDNvalues. Since graphsGl andG2 both have 8 vertices, they are compared to the complete

graph with 8 vertices.AWEDNvalues can be found via the division ofTPWEDNvalues by 378 which is the number of

pairs can be constructed by 28 edges since the complete graphwith 8 vertices has 28 edges. TheAWEDNvalues of graphs

Gl andG2 are calculated as

AWEDN(G1) =
54

(

28
2

) ≈ 0.14286
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and

AWEDN(G2) =
64

(

28
2

) ≈ 0.16931.

G1 G2

Fig. 1: The graphsG1 andG2 with 8 vertices.

In a graphG, the AWEDN being at large shows that relation between vertices is intense, and this leads graph is

invulnerable. In the case of a corruption in any line betweentwo vertices, continuity of communication over different

lines is more possible in the graph which has greaterAWEDNvalue. Therefore, the graph with greaterAWEDNvalue is

more preferable when to make a choice between two graph models. It is enough to set thePWEDNvalue at least two to

increase the resistance of the graph against a possible corruption on edges.

Theorem 1.Let G= (V,E) be a graph and u,v∈V . If we add e= (u,v) to the graph G to get the new graph G+e, then

the TPWEDN value increases at least the rate of deg(u)deg(v)+deg(u)+deg(v).

Proof. If the edgee= (u,v) is added to the graphG, then the number of edge pairs inG andPWEDNvalues in the

actual pairs increase.PWEDNvalues in the actual pairs increase by one or remain stable. Those pairs whosePWEDN

values increase are the ones formed by the edges emerging from extreme vertex of the added edgee. Let deg(u) = m and

deg(v) = n. The number of pairs formed by the edges emerging fromu andv is mn. By joining verticesu andv, PWEDN

value ofmnmany pairs is increased by 1. Therefore,TPWEDNvalue is also increased by 1. The add-on edgee= (u,v)

leads new pairs as much as the number of edges inG. Although it is hard to expressPWEDNvalues of these new pairs

exactly, it is obvious that the edges which adjacent to end vertex increasesTPWEDNthe at leastm+n. As a result, when

an edgee= (u,v) is added on a graphG, TPWEDNvalue increases at least bydeg(u)deg(v)+deg(u)+deg(v).

Corollary 1. To make the increasing value of TPWEDN and AWEDN maximum by adding an edge on a graph G=(V,E),

non-edge connected and having the greatest vertex value vertices must be connected.

Theorem 2.Let G= (V,E) be a graph. If H is a spanning subgraph of G, then AWEDN(H)< AWEDN(G).

Proof. If H is a spanning subgraph ofG, then by the definition, vertices number ofG andH are equal. Since the edge

number ofH is lesser than edge number ofG and by Theorem1, TPWEDN(H) < TPWEDN(G) ⇒ AWEDN(H) <

AWEDN(G).

Theorem 3.Let Gl and G2 be two graphs with same number of vertices and have same diameter. If |E(Gl )| > |E(G2)|,

then AWEDN(Gl )> AWEDN(G2).

Proof.In the case ofGl andG2 have the same amount of vertices,AWEDNvalue determines the relationship intensity

amongst the edges. Hence, the proof is straightforward.

GraphsG1 andG2 in Figure2 have the same amount of vertices. GraphG1 has 4 edges andTPWEDN(G1) = 18 whilst

GraphG2 has 5 edges andTPWEDN(G2) = 15. In spite ofG1 has the lesser amount of edges, it has greaterTPWEDN

value, there by greaterAWEDNvalue. The reason is that their diameters are not equal. Diameter ofG1 is 2 and diameter
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of G2 is 3. SinceG1 has lesser diameter, relation between its vertices is more intense.TPWEDNvalue is increased by the

intensity of the relation between the edges. Edges of two graphs with same amount of vertices and same diameter have

similar relationship. In the graph which has more edges has greaterTPWEDNvalue and thereby has greaterAWEDN

value. Therefore, amongst the two graphs with same amount ofvertices and same diameter, the one with more edges has

the greaterAWEDNvalue.

G1 G2

Fig. 2: The graphsG1 andG2 with 5 vertices.

Theorem 4.Let G= (V,E) be a simple, connected graph with n vertices. The AWEDN valueof G is bounded by

1
3
≤ AWEDN(G)≤

8(n−2)
n+1

for n≥ 3.

Proof. For n = 3, a connected graph with minimum edges is the path graphP3 andAWEDN(P3) =
1
3

. AWEDNvalue

reaches to the maximum for the complete graph withnvertices. Therefore, for any graphG having more than 2 edges

1
3
≤ AWEDN(G)≤

8(n−2)
n+1

.

Theorem 5.Let G1 and G2 be two different graphs with same diameter and same amount ofvertices. If average degree of

G1 is greater than the average vertex degree of G2, then AWEDN(G1)> AWEDN(G2).

Proof. In a graphG = (V,E), all edges has two extreme vertices and while calculating the vertex degree all edges are

counted exactly twice. Hence the number of edges can be foundby

|E|=
1
2 ∑

v∈V
deg(v).

Since the average vertex degree is

d(G) =
1
|V| ∑

v∈V

d(V),

the summation∑v∈V d(V) = d(G)|V|. Therefore,

|E|=
1
2 ∑

v∈V
d(V) =

1
2

d(G)|V|.

Since the graphsG1 andG2 have the same amount of vertices andd(G1) > d(G2), the number of edges ofG1 is greater

than the number of edges ofG2. Therefore,AWEDN(G1)> AWEDN(G2).
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Theorem 6.Let G1 = (V1,E1) and G2 = (V2,E2) are different two simple connected graphs. If|V1| = |V2|, diam(G1) =

diam(G2), andδ (G1)> δ (G2), then AWEDN(G1)> AWEDN(G2).

Proof.In any graph, the sum of vertex degree is equal to 2 times of number of edges. The order in minimum vertex degrees

δ (G1)> δ (G2) implies that the|E1|> |E2|. Therefore, by the Theorem3, AWEDN(G1)> AWEDN(G2).

Definition 4. [8] Let G= (V,E) be a connected graph and e1 = (u1,v1) and e2 = (u2,v2) are two distinct edges of G. The

distance between e1 and e2 is defined as

ed(e1,e2) = min{d(u1,u2),d(u1,v2),d(v1,u2),d(v1,v2)}.

Definition 5. [8] G= (V,E) be a connected graph with n vertices. The average edge distance of G can be defined as

µ ′(G) =
∑ei ,ej∈E ed(ei ,ej)

(

n
2

) .

Lemma 1.Let G= (V,E) be a graph and e1 = (u1,v1),e2 = (u2,v2) ∈ E. If ed(e1,e2)≥ 2, then PWEDN(G) = 0; and if

ed(e1,e2)< 2, then PWEDN(G)≥ 1.

Proof.By the definition of edge distance, there is n dominating edgein the case ofed(e1,e2)≥ 2, thereforePWEDN(G) =

0. If ed(e1,e2)< 2, then there exists at least one edge that dominatinge1 ande2. Hence,PWEDN(G)≥ 1 in this case.

Theorem 7.Let G1 and G2 be two graphs with same number of vertices and have same diameter. If µ ′(G1) < µ ′(G2),

then AWEDN(G1)> AWEDN(G2).

Proof.The average edge distance ofG1 is lesser than the average edge distance ofG2 means that the sum of the distances

between edges is also lesser. Since the number of vertices are the same, the number of edges ofG1 is greater than

the number of edges ofG2. Since these two graphs have the same diameter, by the Theorem 3, we can conclude that

AWEDN(G1)> AWEDN(G2).

3 Results

In this section, we present theAWEDNvalue for certain graph classes. First, we consider the basic graph classes like Path

Graphs (Pn), Cycle Graphs (Cn), Complete Graphs (Kn), Complete Bipartite Graphs (Km,n), and Wheel Graphs (Wm,n).

The basic definitions and theorems on these special classes can be found in [2].

Theorem 8.For n≥ 3, AWEDN(Pn) =
8(2n−5)

n(n−2)(n2−1)
.

Proof.Forn= 3, P3 involves only one edge pair. Since these edges are adjacent,thenAWEDN(P3) = TPWEDN(P3) = 1.

Let us now consider the casen> 3. SincePn hasn−1 many edges, any edge pair inPn theAWEDN(Pn) is either 0 or 1.

We may obtain this result as

AWEDN(Pn) =

{

0, if ed(ei ,ej)≥ 2

1, otherwise.

by using the Lemma1.

In Pn there exist two edges that is incident to the end vertices, and there exist two other edges that are one or zero edge
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distant to those. Hence, the total of thePWEDN of those two including the later two is equal to 4. There existtwo

adjacent edges of the edges incident to end vertices, and each of them has the edge distance of 0 or 1 to three more edges.

For these two edges, the total ofPWEDN is equal to 6.n− 5 many edges other than those four edges have the edge

distance of 0 or 1 to four more edges, and those have the total of PWEDNas 4(n−5).

If any edge pair is counted, then

TPWEDN(Pn) =
4+6+4(n−5)

2
= 2n−5.

Therefore,

AWEDN(Pn) =
2n−5
(

m
2

) =
8(2n−5)

n(n−2)(n2−1)
,

wherem=

(

n
2

)

.

Theorem 9.For n≥ 3, AWEDN(Cn) =
16

(n−2)(n2−1)
.

Proof. In Cn there exist four distinct edges that are at the distance of zero or one to any other edges. Hence, for all edge

pairs thePWEDNis equal to 4, and theTPWEDNis equal to 4n. Since the each neighborhood is counted twice,

TPWEDN(Cn) = 2n.

Therefore,

AWEDN(Cn) =
2n

(

m
2

) =
16

(n−2)(n2−1)
,

wherem=

(

n
2

)

.

Theorem 10.For n≥ 3, AWEDN(K1,n−1) =
4(n−2)
n(n+1)

.

Proof. In K1,n−1, the central vertex is adjacent to the rest. This concludes that all edges are adjacent and at the distance of

0. Since any edge inK1,n−1 is adjacent to othern−2 edges, thePWEDNis n−2 for any edge pairs. Therefore,

AWEDN(K1,n−1) =

(

n−1
2

)

(n−2)
(

m
2

) =
4(n−2)
n(n+1)

,

wherem=

(

n
2

)

.

Theorem 11.AWEDN(W1,n−1) =
4(n2+16)

n(n−2)(n+1)
.

Proof.The edge pairs inW1,n−1 are considered in four cases:

•PWEDNvalue of the edges in outer cycle:

Since the outer cycle ofW1,n−1 involves n− 1 many edges, the number of edge pairs is equal to

(

n−1
2

)

. The

TPWEDNvalue of the outer cycle ofW1,n−1 can be computed like theTPWEDNof Cn. Moreover, inW1,n−1, the
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central vertex is adjacent to all vertices in the outer cycle. Therefore, thePWEDNvalue is added by 1 for all edge

pairs and the total of thePWEDNis equal to 2(n−1)+ (n+1)= 3(n−1).

•PWEDNvalue of the edges inC3:

The number of the edge pairs inC3 is equal to 2(n−1). To obtainC3 onW1,n−1, we need to choose two pairs from

the inner part and one pair from the outer cycle. Since there existsn−1 many edges on the outer cycle, we can obtain

n−1 manyC3. There exists only three distinct edge pairs onC3. Two of them are the pairs that are composed by the

edges on the outer cycle, the other one is the pair that is composed by the two edges in the inner part. Since the pairs

composed by the edges in inner part is studied in next case, weonly consider the former two in this case. Since we

have(n−1) manyC3, the number of the edge pairs is 2(n−1). For any edge pairs inC3, thePWEDNvalue is equal

to 3. Hence, the total of thePWEDNvalue is equal to 6(n−1).

•PWEDNvalue of the edges in the inner part:

There existn− 1 many edges adjacent to the inner vertex ofW1,n−1. Hence, the number of edge pairs in equal to
(

n−2
2

)

. Any two of these edges are adjacent to the restn−3 many edges. Since these two edges are also adjacent,

the PWEDNvalue is equal ton− 2. Sincen− 1 many of the edge pairs are edges ofC3 with an edge on the outer

cycle, the total of thePWEDNvalue is equal to

(

n−1
2

)

(n−2)+ (n−1).

•PWEDNvalue of the vertices that do not share a common edge:

All edges in the inner part ofW1,n−1 are adjacent. Therefore, the edges of the edge pairs is chosen either both from the

outer cycle or one edge from the inner part and the other is from the outer cycle. That is, at least one of the edge pairs

that composed by the edges which do not have a common vertex ison the outer cycle. Any edge on the outer cycle

is adjacent to two edges on the outer cycle and two edges in theinner part.Hence, any edge on the outer cycle do not

have a common vertex with 2(n−1)−5 many edges. Since we have already studied thePWEDNvalue of the edges

in outer cycle, the number of the edge pairs in this case turnsto be equal to 2(n−1)−5− (n−4)= n−3.

The number of the edge pairs of composed by the one of then−1 many edges on outer cycle and one of then−1 many

edges from the inner part that do not have a common vertex is equal to (n−1)(n−3). an edge on the outer cycle is

on two distinctC4 with two distinct edges in the inner part since they do not share common vertices, and thePWEDN

value of these edge pairs are equal to 3. ThePWEDNvalue of the edge pairs composed by the restn− 5 edges is

equal to 2 because one of the vertices of the edge in inner partis adjacent to the vertices on the outer cycle. Therefore,

PWEDNvalue of the vertices that do not share a common edge is equal to (n−1)(6+2(n−5))= 2(n−1)(n−2).

There exist

(

2(n−1)
2

)

edge pairs inW1,n−1. Hence,

AWEDN(W1,n−1) =

3(n−1)+6(n−1)+

(

n−1
2

)

(n−2)+ (n−1)+2(n−1)(n−2)
(

m
2

) =
4(n2+16)

n(n−2)(n+1)
,

wherem=

(

n
2

)

.

Theorem 12.For m,n≥ 2, AWEDN(Km,n) =
4mn(m+n−2)

(m+n)(m+n−1)(m+n+1)
.

Proof. In Km,n = (V1supV2,E), there exist

(

mn
2

)

many edge pairs and we study them in three cases:

•The edge pairs sharing a common vertex inV1: In this case, we havem

(

n
2

)

many edge pairs. ThePWEDNvalue is

equal ton−1 for these edge pairs. Any vertex inV1 is adjacent to all vertices inV2, hence there existn many edges
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adjacent to a vertex inV1. The edge pair composed by two of these are adjacent ton−2 many edges and since these

two edges are adjacent thePWEDNvalue is equal ton− 1. Therefore, the total of thePWEDNvalue is equal to

m

(

n
2

)

(n−1).

•The edge pairs sharing a common vertex inV2: In this case, we haven

(

m
2

)

many edge pairs. The total of thePWEDN

value can be calculated by following the same fashion of the former case asn

(

m
2

)

(m−1).

•The edge pairs sharing no common vertex: The edge pairs sharing no common vertex are inC4. There exist 2

(

m
2

)(

n
2

)

many edge pairs composed by such edges. Hence, the total of thePWEDNvalue is equal to 4

(

m
2

)(

n
2

)

.

TPWEDNvalue for these three cases is equal tom

(

n
2

)

(n−1)+n

(

m
2

)

(m−1)+4

(

m
2

)(

n
2

)

. Hence,

AWEDN(Km,n) =

m

(

n
2

)

(n−1)+n

(

m
2

)

(m−1)+4

(

m
2

)(

n
2

)

(

k
2

)

=

mn
2
(m+n−2)2

(m+n)(m+n−1)(m+n−2)(m+n+1)
8

=
4mn(m+n−2)

(m+n)(m+n−1)(m+n+1)
,

wherek=

(

m+n
2

)

.

Theorem 13.AWEDN(Kn) =
8(n−2)

n+1
.

Proof. In Kn, there exist

(
(n

2

)

2

)

many edge pairs and we study them in two cases:

•Edge pairs composed by adjacent edges: In a complete graphKn, any edge is adjacent to 2(n−1) many edges. The

number of the edge pairs composed by the adjacent edges is equal to

(

n
2

)

(n−2). ThePWEDNvalue is equal ton−1

for adjacent edges and the total of thePWEDNvalues for all adjacent edges is equal to

(

n
2

)

(n−2)(n−1).

•Edge pairs composed by nonadjacent edges: If we remove any two vertices of a complete graphKn, then we obtain

the complete graphKn−2. To calculate the number of the nonadjacent edges, we chooseany edges and conclude that

the edges in the subgraph obtained by vertex removing are nonadjacent to former ones. Hence, the number of the

nonadjacent edges is equal to

(

n
2

)(

n−2
2

)

2
. PWEDNvalue for the edge pairs formed by nonadjacent edges is then

equal to 2

(

n
2

)(

n−2
2

)

.
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Hence,

AWEDN(Kn) =

(

n
2

)

(n−2)(n−1)+

(

n
2

)(

n−2
2

)

4

2
(
(n

2

)

2

) =
8(n−2)
(n+1)

.

For the rest of this section, we presentAWEDNnumber for(n,k)−Banana Tree (Bn,k) and Binary Trees (B−tree).

Theorem 14.

AWEDN(Bn,k) =

n(k−1)+n(n−1)+n(k−2)

(

k−1
2

)

(n−1)

(

n
2

)

(

m
2

) ,

where m=

(

nk+1
2

)

.

Proof.For the Banana treeBn,k we have five cases for edge pairs:

•PWEDNvalue of edge pairs composed by the edges in same star graph isequal to 1. Since there existn many edges

coming out the root vertex and there existk−1 many edges ink-star graph, we haven(k−1) many edges pairs in this

case. HenceTPWEDNis equal ton(k−1) for this case.

•There existn(n− 1)(k− 1) many edge pairs composed by an edge coming out the root vertexand an edge in the

different star graph. The distance between the edges in these pairs is equal to 1. Hence,TPWEDNis equal ton(n−1)

for this case.

•There existn

(

k−1
2

)

many edge pairs in each star graphs and thePWEDNvalue for any edge pairs is equal tok−2.

Therefore, theTPWEDNvalue is equal ton(k−1)

(

k−1
2

)

.

•There exist

(

n
2

)

many edge pairs composed by edges coming out the root vertex and for any this kind of edge pairs

have thePWEDNvalue asn−1. Hence, theTPWEDNis equal to(n−1)

(

n
2

)

for this case.

•There exist(k−1)2

(

n
2

)

many edge pairs composed by edges belonging to different star graphs. Since the distance

is great and equal to 2 for these edge pairs, thePWEDN value is equal to 0. Hence, theTPWEDN is equal to

n(k−1)+n= nk for this case.

Hence,

AWEDN(Bn,k) =

n(k−1)+n(n−1)+n(k−2)

(

k−1
2

)

(n−1)

(

n
2

)

(

m
2

) ,

wherem=

(

nk+1
2

)

.

Theorem 15.For a B-tree with height n,

AWEDN(B− tree) =
10.2n−23

(

m
2

) ,
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where m=

(

2n+1−1
2

)

.

Proof. There exist 2h many vertices onB-tree at each heighth. When we pass to next height, 2h+1 many vertex added

since we add two vertices to each vertex. Therefore, for aB-tree with heightn, there exist 2n+1−2 edges. For a binary

tree, thePWEDNvalue is equal to 0,1, or 2. The edge pairs inK1,3 star graph have thePWEDNvalue as 2. In each

branching, there emerge the vertex number manyK1,3. Hence, forh ≤ 2, there exist 21 + 22+ . . .2n−1 = 2n − 2 many

K1,3. Since the number of edge pairs in this case is equal to

(

3
2

)

(2n−2), theTPWEDNvalue is equal to 2

(

3
2

)

(2n−2).

Following the similar way, we may find the number of edge pairswhosePWEDNvalue is equal to 1 as

1+4+2222+2322+2422+ . . .+2n−122 = 1+4+16+32+ . . .+2n+1

= 5+4
(

1+2+22+ . . .+2n−3)

= 5+24
(

2n−2−1
2−1

)

= 2n+2−11.

Therefore, theTPWEDNvalue is equal to 2

(

3
2

)

(2n−2)+2n+2−11= 10.2n−23. Hence,

AWEDN(B− tree) =
10.2n−23

(

m
2

) ,

wherem=

(

2n+1−1
2

)

.

4 The Algorithm

In this section, we present an algorithm in PASCAL codes to find theAWEDNof a graphG. In the definition block of the

algorithm,n is defined as the number of vertices andm is defined as the number of edges. The algorithm firstly construct

the distance matrix by using the Warshall-Floyd algorithm,then by using the distance matrix, it calculates theTPWEDN

value. At the last step, it divides theTPWEDNvalue by the number of edge pairs to obtainAWEDNvalue. The time

complexity of the algorithm isO(n3).

uses crt,graph;

type

koor=record

x,y :longint;

end;

const

n= ; m=;

var

E : array[1..m] of koor;

d ,A : array[1..n,1..n] of longint;

ED : array[1..m,1..m] of longint ;

TPWEDN : longint;

k , i , j ,q,u1,u2,v1,v2,enk,r,t : byte;
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AWEDN ,c ,t1 :real;

begin

q:=0;

for i:=1 to n do begin

for j:=1 to n do begin

readln(A[i,j]);

if( A[i,j]=1) and (i<j) then begin

q:=q+1;

E[q].x:=i;

E[q].y:=j;

end;

end;

end;

\{ Warshall - Floyd \}

for i:=1 to n do

for j:=1 to n do

if A[i,j]>0 then d[i,j]:=A[i,j]

else if i=j then d[i,j]:=0 else d[i,j]:=10000;

for k:=1 to n do begin

for i:=1 to n do begin

for j:=1 to n do begin

if d[i,j]>d[i,k]+d[k,j] then d[i,j]:=d[i,k]+d[k,j];

end;

end;

end;

for r:=1 to q do begin

ED[r,r]:=50000;

u1:=E[r].x;

v1:=E[r].y;

for t:=r+1 to q do begin

u2:=E[t].x;

v2:=E[t].y;

enk:=D[u1,u2];

if (u1=u2) or (u1=v2) or (v1=u2) or (v1=v2) then begin

ED[r,t]:=0 ; ED[t,r]:=0;

end;

if (ED[r,t]<>50000) or (Ed[r,t]<>0) then begin

if enk >= D[u1,v2] then enk:=D[u1,v2];

if enk >= D[v1,u2] then enk:=D[v1,u2] ;

if enk >= D[v1,v2] then enk:=D[v1,v2];

ED[r,t]:=enk; ED[t,r]:=enk;

end;

end;

end;

TPWEDN:=0;

for i:=1 to (q-1) do begin
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for j:=i+1 to q do begin

if ED[i,j]=0 then TPWEDN:=TPWEDN+1;

for k:=1 to q do begin

if (ED[i,k]=0) and (ED[j,k]=0) then TPWEDN:= TPWEDN +1;

end;

end;

end;

writeln(TPWEDN);

t1:=(n*(n-1))/2; c:=(t1*(t1-1))/2;

AWEDN:= TPWEDN /c;

writeln(Average Edge Domination Number=,AWEDN);

end.

5 Conclusion

In this study we present a new measure for vulnerability instead of well known measures. The main advantage of this

measure is that it can be computed in a polynomial runtime. Inany graph, the leastPWEDNvalue indicates the graph

has the highest rate of resistance to corruption on the edge pairs. In the case ofPWEDNvalue is 2, even though one

of the edges is off-line, shows that there is an alternative line; therefore it increases the continuity of the communication

amongst the edges. Hence,AWEDNvalue can be used to make a choice between two graph models as to be used to design

an invulnerable graph model.
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