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Abstract: Communication is supposed to be continuous in a networkgdesf is important for a network to be tough so that
communication is not interrupted in case any damage. Inghjier, it is investigated how to decide which graph modelhmose,
when a selection is needed to make between different graphe tised for a network model when all known vulnerability sueas
are same. We introduce the concept of the average weaklydsmigmation number of a graph as a new vulnerability measdtie.
establish relationships between the average weakly edg@édtion number and some other graph parameters, and tfegrexvalues
of given measure among all graphs and average weakly edg@akion number for some families of graphs. Also a polyndrtirae
algorithm with complexityZ?(n®) is given.
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1 Introduction

Vulnerability is the most important concept in any commatiizn network. The resistance of a network after any
disruption is considered as vulnerability value. In a nefythis disruption not only can take place on its centere als
sometimes on its links. In this case the vulnerability measiwgiven on links (edges) take an important role while
constructing communication networks. A communicatiommek can be modeled by a graph whose vertices represent
the stations and whose edges represent the lines of comationi¢, 10,17].

In graph theory, many graph measures have been used wid#ig ipast to describe the stability of a graph. The best
known and most useful of the measures of how well a graph isexted is the connectivity, defined to be minimum
number of vertices in a set whose deletion results in a disected or trivial graph. This measure has been extensively
studied As the connectivity is a worst case measure, it doealways reflect what happens throughout the graph. For
example a tree and the the graph obtained by appending aveste-to a complete graph both have connectivity 1. In
this case we need another measure to decide which graph imsatdeke stable than the other. This situation oriented
researchers to find new measures. In graph theory, manyrablititsy measures have been used widely in the past to
describe the stability of a graph. Some of these measuresdge connectivity, Integrity, edge integrity, domination
toughness3, 7,9,18]. Since networks can be modeled by graphs, vulnerabilityatfvorks are observed via graphs. For
this purpose, there has been great interest on vulneyainilgraph theory and different kinds of measures have been
defined [1,6,11,12,13/15,16].

In this paper we investigate the average weakly edge doimimaumber as a new measure of global connectedness.
Whereas lots of other global measures are computation&ard, the average weakly edge domination number can be
computed in polynomial time by using the present algorithmaking it much more attractive for applications. For
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terminology and notation on graph theory not given hererelagler is referred tcb[14]. Throughout this paper, we only
consider finite, simple, undirected graphs without isalatertices. A grapl = (V,E) is a sel of vertices and a subset

E of the unordered pairs of vertices, called edges. The rabiegbaper is organized as follows: In Sectiyrwe present
the new vulnerability measure called Average Weakly Edgenibation Number and study the properties of this
measure under certain graph operations. In Se@jome compute the values of Average Weakly Edge Domination
Number for well-known graph classes. Finally, in sectipiwe present an algorithm with time complexi(n®) that
computes the Average Weakly Edge Domination Number of aagtgr

2 Average weakly edge domination number

In the case of networks are modeled by graphs, some vulhigyabéasurements of graphs are considered when making
decision between two graph design. The reason is to proligleantinuity of communication on networks. Since the
continuity of communication is related to the robustnesgraphs to be used in network models, there are many studies
in graph theory on the vulnerability and many measuremeruis as connectivity, integrity, and tenacity are defined. We
need a new vulnerability measurement to preference amamhgmwhen the known vulnerability measurements are the
same.

In the case of the edge and vertex integrity values are sambdayraph<s, and G, which have the same number of
edges and vertices. We need a new measure to determine whjuthig preferred for the network model.

Definition 1. Let g = (u1,v1) and & = (up,Vv») be two edges of a graph & (V,E). The number of edges neighbor
to these two edges is called Pair Weakly Edge Domination Nurf®VEDN). If ¢ and & have common vertex then
PWEDN is added by 1.

Definition 2. In a graph G, the sum of all pair weakly edge domination nundmenputed respect to all edge pairs is
called Total Pair Weakly Edge Domination Number (T PWEDN), i

TPWEDN= 5 PWEDNG@, ).
a,ejeE(G)

Definition 3. In a graph G with n vertices, the number obtained via divissém PWEDN by the number of maximum
edges paired to n vertices is called Average Weakly Edge Dation Number (AW EDN); i.e.,

TPWEDN

AWEDN=

where m= n
5):

To visualize the efficiency of this measure we present twizdiht graph$s; and G, with the same number of vertices
and edges, and the same values of edge and vertex integFitgure 1. We need to compar&V EDNvalues to make a
choice between two graphs. To calculate vé EDN values, first we need to calculate tR&/EDNvalues of all edge
pairs, then find th& PW EDNvalues. Since graphS, andG, both have 8 vertices, they are compared to the complete
graph with 8 verticesAW EDNvalues can be found via the division ®PW EDNvalues by 378 which is the number of
pairs can be constructed by 28 edges since the completegitpB vertices has 28 edges. TA&/ EDNvalues of graphs

G, andG; are calculated as

AWEDNG,) = 22 ~ 014286

(%)
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and 64
AWEDNG;) = ——=— =~ 0.16931

()

G1 GZ

Fig. 1: The graph$5; andG, with 8 vertices.

In a graphG, the AWEDN being at large shows that relation between vertices is s#teand this leads graph is
invulnerable. In the case of a corruption in any line between vertices, continuity of communication over different
lines is more possible in the graph which has greAt#iE DNvalue. Therefore, the graph with greaf® EDNvalue is
more preferable when to make a choice between two graph sidtlid enough to set thewW EDNvalue at least two to
increase the resistance of the graph against a possiblgptiom on edges.

Theorem 1.Let G= (V,E) be agraph and v €V . If we add e= (u, V) to the graph G to get the new graph&e, then
the TPWEDN value increases at least the rate of[ddegVv) + degu) + degv).

Proof. If the edgee = (u,v) is added to the grap®, then the number of edge pairs @and PWEDN values in the
actual pairs increas®W EDNvalues in the actual pairs increase by one or remain stablesélpairs whosBW EDN
values increase are the ones formed by the edges emergingktoeme vertex of the added edgé.etdegu) = mand
degv) = n. The number of pairs formed by the edges emerging fu@ndv is mn By joining verticesu andv, PWEDN
value ofmnmany pairs is increased by 1. Therefof&W EDNvalue is also increased by 1. The add-on eelge(u, V)
leads new pairs as much as the number of edgé&s Wilthough it is hard to expred8W EDNvalues of these new pairs
exactly, it is obvious that the edges which adjacent to engxéncrease¥ PW EDNthe at leasi-+ n. As a result, when
an edgee = (u,v) is added on a grapB, TPW EDNvalue increases at least begu)deqv) + dedqu) + degv).

Corollary 1. To make the increasing value of TPWEDN and AW EDN maximumdiggdn edge ona graph 6 (V, E),
non-edge connected and having the greatest vertex valtiea®must be connected.

Theorem 2.Let G= (V,E) be a graph. If H is a spanning subgraph of G, then AW EBIN< AWEDNG).

Proof. If H is a spanning subgraph &, then by the definition, vertices number@fandH are equal. Since the edge
number ofH is lesser than edge number Gfand by Theoreni, TPWEDNH) < TPWEDNG) = AWEDNH) <
AWEDNG).

Theorem 3.Let G and G be two graphs with same number of vertices and have same @iatfi¢E (G, )| > |E(Gz)|,
then AWEDNG)) > ANEDNG).

Proofln the case of5, andG;, have the same amount of verticésy EDNvalue determines the relationship intensity
amongst the edges. Hence, the proof is straightforward.

GraphsG; andG; in Figure2 have the same amount of vertices. Gr&ahhas 4 edges aniPWEDNG;) = 18 whilst
GraphG; has 5 edges anlPWEDNGy) = 15. In spite ofG; has the lesser amount of edges, it has gréaf EDN
value, there by greatéW EDNvalue. The reason is that their diameters are not equal. &&mofG; is 2 and diameter
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of G, is 3. SinceG; has lesser diameter, relation between its vertices is meeaseT PW EDNvalue is increased by the
intensity of the relation between the edges. Edges of twplgravith same amount of vertices and same diameter have
similar relationship. In the graph which has more edges heatgrT PW EDNvalue and thereby has greatW EDN
value. Therefore, amongst the two graphs with same amouwmrti€es and same diameter, the one with more edges has
the greateAW EDNvalue.

G] G2

Fig. 2: The graph$5; andG; with 5 vertices.

Theorem 4.Let G= (V,E) be a simple, connected graph with n vertices. The AW EDN vHIGeis bounded by

8(n—2)
n+1

< AWEDNG) <

Wl =

forn> 3.

. - . 1
Proof. For n = 3, a connected graph with minimum edges is the path gRsnd AWEDNP;) = =. AWEDNvalue
reaches to the maximum for the complete graph witértices. Therefore, for any gra@having more than 2 edges

8(n—2)

<AWEDNG) < .
- NG) < n+1

Wl

Theorem 5.Let G; and G be two different graphs with same diameter and same amowetti€es. If average degree of
G, is greater than the average vertex degree gf then ANEDNG;) > AWEDNG;).

Proof. In a graphG = (V,E), all edges has two extreme vertices and while calculatiegvértex degree all edges are
counted exactly twice. Hence the number of edges can be foynd

|E| = % Z/deg{v).

Since the average vertex degree is

1
d(G) = ;7 2 d(V),
V] v;/
the summatioty ., d(V) = d(G)|V|. Therefore,
1 1
[E[=3 > d(V)=3d(G)|V].
ZVEZ/ 2

Since the graph&; andG, have the same amount of vertices a{;) > d(G,), the number of edges @&; is greater
than the number of edges 6. Therefore ANEDNG;) > AWEDNGy).
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Theorem 6.Let G, = (V1,E;) and G = (V,, E) are different two simple connected graphsMf| = |V,|, diam(Gy) =
diam(Gyz), andd(Gy) > 0(Gyz), then ANEDNG;) > AWEDNGy).

Proofln any graph, the sum of vertex degree is equal to 2 times obeuiwf edges. The order in minimum vertex degrees
0(G1) > 8(Gy) implies that theE;| > |E,|. Therefore, by the TheoreB) AWEDNG;) > AWEDNGy).

Definition 4. [8] Let G= (V,E) be a connected graph and & (uj,v1) and & = (uy, v») are two distinct edges of G. The
distance between&nd e is defined as

ed(er,e) = min{d(uz,uz),d(us,v2),d(v1,Up),d(v1,Vv2)}.
Definition 5. [8] G = (V,E) be a connected graph with n vertices. The average edge dis@iG can be defined as
_ eecE ed(e;€)
==
2
Lemma 1.Let G= (V,E) be a graph and £= (u1,v1),& = (U, V2) € E. If ed(ey, &) > 2, then PWEDNG) = 0; and if
ed(e;, &) < 2, then PWEDNG) > 1.

H'(G)

Proof.By the definition of edge distance, there is n dominating éd¢fee case oéd(e;, &) > 2, thereforPWEDNG) =
0. If ed(e, &) < 2, then there exists at least one edge that dominatilmgde,. Hence PWEDNG) > 1 in this case.

Theorem 7.Let G; and G be two graphs with same number of vertices and have same @iarfg)’ (G;) < U/ (Gy),
then AWEDNG;) > AWEDNG;).

Proof. The average edge distance®f is lesser than the average edge distand@,aheans that the sum of the distances
between edges is also lesser. Since the number of vertieetharsame, the number of edges@f is greater than
the number of edges @,. Since these two graphs have the same diameter, by the Thé&mse can conclude that
AWEDNG;) > AWEDNGy).

3 Results

In this section, we present t#&V EDNvalue for certain graph classes. First, we consider thelgaaph classes like Path
Graphs B,), Cycle Graphs@,), Complete Graphskj), Complete Bipartite Graph¥,,), and Wheel Graphsip).
The basic definitions and theorems on these special claasdsedound in2).

8(2n—5)

Th . >3, AWEDNR) = —————.
eorem 8.Forn > 3, NP») nn—2) (1)
Proof.Forn = 3, P; involves only one edge pair. Since these edges are adjdcen8W EDNP;) = TPWEDNP;) = 1.

Let us now consider the case> 3. SinceP, hasn — 1 many edges, any edge pairRnthe AWEDNR,) is either O or 1.
We may obtain this result as

0, if ed(e,g) >2

1, otherwise.

AWEDNR,) = {
by using the Lemma.

In P, there exist two edges that is incident to the end verticed tla@re exist two other edges that are one or zero edge
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distant to those. Hence, the total of tREVEDN of those two including the later two is equal to 4. There ekigt
adjacent edges of the edges incident to end vertices, ahcbéieem has the edge distance of 0 or 1 to three more edges.
For these two edges, the total B?W EDNis equal to 6n—5 many edges other than those four edges have the edge
distance of 0 or 1 to four more edges, and those have the foPAWEDNas 4n—5).

If any edge pair is counted, then

TPWEDNP,) w —2n-5,
Therefore,
2n-5  8(2n-5)
AWEDNR,) = =
NP m n(n—2)(n2—1)’
2
n
wherem= <2)
16

Theorem 9.For n >3, AWEDNG,) = n—2)m—1)°

Proof. In C, there exist four distinct edges that are at the distancerof @eone to any other edges. Hence, for all edge
pairs thePW EDNis equal to 4, and th& PW EDNis equal to 4. Since the each neighborhood is counted twice,

TPWEDNG,) = 2n.

Therefore, ) 16
n
AWEDNGy) = m\ (n—2)(n2—1)’
2
n
wherem = (2)
4(n—-2)

Th 10.Forn> 3, AWEDNKiph 1) = —=.

eorem rn> NK1n-1) nnT1)
Proof.In Ky n_1, the central vertex is adjacent to the rest. This concluusall edges are adjacent and at the distance of
0. Since any edge ik, n—1 is adjacent to othem— 2 edges, th®W EDNis n— 2 for any edge pairs. Therefore,

n-1

(n—2)
AWEDNKy 1) = < 2 ) _4n-2)

(r;) nin+1)’

n
wherem= <2) .

4 +1
Theorem 11.AVEDNW, o 1) — —— 1 +16)

n(n—2)(n+1)
Proof. The edge pairs i\, 1 are considered in four cases:
ePWEDNVvalue of the edges in outer cycle:
Since the outer cycle oV 1 involvesn— 1 many edges, the number of edge pairs is equ Ir%c; 1). The
TPWEDNvalue of the outer cycle ol ,_1 can be computed like the PWEDNof C,. Moreover, inWy ,_1, the
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central vertex is adjacent to all vertices in the outer cy€leerefore, thd®W EDNVvalue is added by 1 for all edge
pairs and the total of theW EDNis equal to Zn— 1)+ (n+1)=3(n—1).

«PW EDNvalue of the edges i83:
The number of the edge pairs @z is equal to 2n—1). To obtainCz onW -1, we need to choose two pairs from
the inner part and one pair from the outer cycle. Since thdstssn — 1 many edges on the outer cycle, we can obtain
n— 1 manyCs. There exists only three distinct edge pairsGanTwo of them are the pairs that are composed by the
edges on the outer cycle, the other one is the pair that is osetpby the two edges in the inner part. Since the pairs
composed by the edges in inner part is studied in next casenlyeconsider the former two in this case. Since we
have(n— 1) manyCs, the number of the edge pairs i6i2- 1). For any edge pairs i@3, the PW EDNvalue is equal
to 3. Hence, the total of thieW EDNvalue is equal to 61— 1).

oPW EDNvalue of the edges in the inner part:
There exisin — 1 many edges adjacent to the inner verte\gf,_1. Hence, the number of edge pairs in equal to

: ; 2) . Any two of these edges are adjacent to the nes8 many edges. Since these two edges are also adjacent,

the PWEDNVvalue is equal ton — 2. Sincen — 1 many of the edge pairs are edgeafwith an edge on the outer
cycle, the total of théW EDNvalue is equal t((n2 1> (n—=2)+(n—1).

oPWEDNvalue of the vertices that do not share a common edge:
All edges in the inner part & 1 are adjacent. Therefore, the edges of the edge pairs isrckdber both from the
outer cycle or one edge from the inner part and the other is fh@ outer cycle. That is, at least one of the edge pairs
that composed by the edges which do not have a common vertextige outer cycle. Any edge on the outer cycle
is adjacent to two edges on the outer cycle and two edges intlee part.Hence, any edge on the outer cycle do not
have a common vertex with 8— 1) — 5 many edges. Since we have already studiedPilvé=E DNvalue of the edges
in outer cycle, the number of the edge pairs in this case torhs equalto h— 1) —5— (n—4)=n—-3.
The number of the edge pairs of composed by the one af thEmany edges on outer cycle and one oftihel many
edges from the inner part that do not have a common vertexuial égi(n — 1)(n— 3). an edge on the outer cycle is
on two distinciC,4 with two distinct edges in the inner part since they do noteslsammon vertices, and tiVEDN
value of these edge pairs are equal to 3. PM¢EDNvalue of the edge pairs composed by the rest5 edges is
equal to 2 because one of the vertices of the edge in inneispadfacent to the vertices on the outer cycle. Therefore,
PW EDNvalue of the vertices that do not share a common edge is eg(aH1)(6+2(n—5)) = 2(n—1)(n—2).

. (2(n—=1 o
There eX|st( (n2 )) edge pairs iWy ,_1. Hence,

n-1

3(n1)+6(n1)+< )(n2)+(n1)+2(n1)(n2)

B 2 _ 4(n?+16)
AWEDNWi n-1) = m - n(n—2)(n+1)’
2)
wherem= (2)
4mn(m+n—2)

Theorem 12.For m,n> 2, AWEDNKmn) = (M) (m+n_D)minil)

. /mn . :
Proof.In Kmn = (V1 supVy, E), there eX|st( 5 ) many edge pairs and we study them in three cases:

. . : . n . :
eThe edge pairs sharing a common verte¥Xinin this case, we havm 5 many edge pairs. THBW EDNvalue is

equal ton— 1 for these edge pairs. Any vertex\f is adjacent to all vertices i, hence there exist many edges
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adjacent to a vertex i¥;. The edge pair composed by two of these are adjacanttd many edges and since these
two edges are adjacent tiVEDNvalue is equal ton — 1. Therefore, the total of thBWEDN value is equal to

m(g) (n—1).

. : . . m
eThe edge pairs sharing a common verteXdnin this case, we havmz(

2) many edge pairs. The total of tReW EDN
value can be calculated by following the same fashion of thenér case aﬂ<r;> (m—1).

eThe edge pairs sharing no common vertex: The edge pairsighavicommon vertex are @y. There exist r; 2
many edge pairs composed by such edges. Hence, the totalP\tE DNvalue is equal to {r;) (;) .

TPW EDNvalue for these three cases is equa11€;) (n—1)+n (r;) (m—1)+ 4(2) <;> . Hence,

AW EDNKppn) = m<2> b @) (m-+ 4@) (2)

Y

mn 2
7(m+n—2)
~ (mEn)(m+n—1)(m+n—2)(m+n+1)
8
4mnim+n—2)

(m+n)(m+n—21)(m+n+1)

wherek = (m;— n) .

Theorem 13.AWEDNK;) =

n
Proof.In Ky, there exist( (3)) many edge pairs and we study them in two cases:

eEdge pairs composed by adjacent edges: In a complete #rany edge is adjacent tdi2— 1) many edges. The
number of the edge pairs composed by the adjacent edgesa'lste((Lg) (n—2). ThePWEDNvalue is equal te— 1

for adjacent edges and the total of #f¢&/ EDNvalues for all adjacent edges is equa t§ (n—=2)(n—1).

eEdge pairs composed by nonadjacent edges: If we remove anyeitices of a complete grap,, then we obtain
the complete grapK,_». To calculate the number of the nonadjacent edges, we clamysedges and conclude that
the edges in the subgraph obtained by vertex removing aradjgeent to former ones. Hence, the number of the

) (;f)

nonadjacent edges is equal

)",
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Hence,

AWEDNK;) = ( -

2 2 8(n—2)
(%) (n+1) "
2
For the rest of this section, we presé¥ EDNnumber for(n,k)—Banana TreeR,; ) and Binary TreesR—tree).
Theorem 14.
k—1 n
n(k—1)+n(n—1)+n(k—2) 2 (n—1) 9
AWEDNByy) = ,
' m
2)
(nk—i— 1)
where m= >

Proof. For the Banana treB,, x we have five cases for edge pairs:

¢PWEDNvalue of edge pairs composed by the edges in same star graghasto 1. Since there existmany edges
coming out the root vertex and there eX{st 1 many edges ik-star graph, we have(k — 1) many edges pairs in this
case. Henc& PW EDNis equal ton(k — 1) for this case.

eThere exisin(n— 1)(k— 1) many edge pairs composed by an edge coming out the root \emtkan edge in the
different star graph. The distance between the edges ie fhass is equal to 1. HencEPW EDNis equal ton(n— 1)
for this case.

(k=1 o .
eThere exish 5 ) many edge pairs in each star graphs and®W&E DNvalue for any edge pairs is equalke- 2.

. k—1
Therefore, th& PW EDNvalue is equal ta(k — 1)( 5 )

n
2

have the®W EDNvalue asn — 1. Hence, thd PWEDNis equal to(n— 1) (2) for this case.

eThere exist< ) many edge pairs composed by edges coming out the root vertefoaany this kind of edge pairs

eThere exist(k — 1) 2 many edge pairs composed by edges belonging to differengsiphs. Since the distance

is great and equal to 2 for these edge pairs,RiM¢EDN value is equal to 0. Hence, tiePWEDNIs equal to
n(k—1) 4+ n= nkfor this case.

Hence,

n(k—1)+n(n—1)+n(k—2) (kgl) (n_l)(;)

2) |

AWEDNB, ) =

(nk+ 1)
wherem= 5 .

Theorem 15.For a B-tree with height n,
102" - 23

AWEDNB —tree) =

(© 2018 BISKA Bilisim Technology
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2n+171
Whererrb( 5 )

Proof. There exist ? many vertices omB-tree at each height When we pass to next height!'2 many vertex added
since we add two vertices to each vertex. Therefore, Bit@e with height, there exist 271 — 2 edges. For a binary
tree, thePWEDNvalue is equal to 0,1, or 2. The edge pairKi; star graph have thEewW EDNvalue as 2. In each
branching, there emerge the vertex number mi&ny. Hence, forh < 2, there exist 2+ 224 ...2"1 =2"_ 2 many

Ky 3. Since the number of edge pairs in this case is equégt)(zn —2), theTPWEDNVvalue is equal to ég) (2"-2).

Following the similar way, we may find the number of edge pain®sePW EDNvalue is equal to 1 as

144422212824 2402 4 o192 144116+ 32+...+2M1
=5+4(14+2+2%+...+2"79)

n2_1
=54+24
(5%

—2M2_11

Therefore, th& PWEDNvalue is equal to ég) (2"—2) +2M2_11=102" - 23. Hence,

10.2"—-23

AWEDNB —tree) =

2n+171
Wherem:( 5 )

4 The Algorithm

In this section, we present an algorithm in PASCAL codes 1 tire AW E DNof a graphG. In the definition block of the
algorithm,n is defined as the number of vertices anit defined as the number of edges. The algorithm firstly coastr
the distance matrix by using the Warshall-Floyd algorittimen by using the distance matrix, it calculatesTH&8V EDN
value. At the last step, it divides thiePW EDNvalue by the number of edge pairs to obtAlW EDNvalue. The time
complexity of the algorithm ig7/(n®).

uses crt, graph;
type

koor =record
X,y :longint;
end;

const

E: array[l..n] of koor;

d ,A: array[1..n,1..n] of |ongint;

ED : array[l..m1l..n of longint ;
TPWEDN : | ongi nt;

k , i, ] ,q,ul,u2,vl,v2,enk,r,t : byte;
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AVEDN ,c ,t1 :real;

begin

q: =0;

for i:=1 to n do begin

for j:=1 to n do begin

readl n(A[i,j]);

if( Ali,j]=1) and (i<j) then begin

q: =q+1;

E[q]. x: =i;

Elal.y:=i;

end;

end;

end;

\{ Warshall - Floyd \}

for i:=1to n do

for j:=1 to n do

if A[i,j]1>0 then d[i,j]:=A[i,]]

else if i=j then d[i,j]:=0 else d[i,]j]:=10000;
for ki=1 to n do begin

for i:=1 to n do begin

for j:=1 to n do begin

if dli,j]l>d[i,k]+d[k,j] then d[i,j]:=d[i,k]+d[k,j];
end;

end;

end;

for r:=1 to g do begin

ED r,r]:=50000;

ul: =E[r].x;

vl:=E[r].vy;

for t:=r+1l to q do begin

u2: =E[t].x;

v2: =E[t].vy;

enk: =D[ ul, u2];

if (ul=u2) or (ul=v2) or (v1l=u2) or (v1l=v2) then begin
EDr,t]:=0 ; ED/t,r]:=0;

end;

if (EDr,t]<>50000) or (Ed[r,t]<>0) then begin
if enk >= D[ul,v2] then enk:=Dul,v2];
if enk >= Dvl,u2] then enk:=D[v1, u2] ;
if enk >= D[ vl,v2] then enk: =D v1,v2];
ED[r,t]:=enk; EDt,r]:=enk;

end;

end;

end;

TPWEDN: =0;

for i:=1to (g-1) do begin
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for j:=i+1 to q do begin

if ED[i,j]=0 then TPWEDN: =TPWEDN+1;

for k:=1 to g do begin

if (EDi,k]=0) and (ED[j, k]=0) then TPWEDN: = TPWEDN +1;
end;

end;

end;

writel n( TPVEDN) ;

tl:=(nx(n-1))/2; c:=(t1x(t1-1))/2;

AVEDN: = TPWEDN / c;

writel n(Average Edge Domi nati on Nunmber =, ANEDN) ;
end.

5 Conclusion

In this study we present a new measure for vulnerabilityeiadtof well known measures. The main advantage of this
measure is that it can be computed in a polynomial runtimaningraph, the leaf®W EDNvalue indicates the graph
has the highest rate of resistance to corruption on the edgg. pn the case dPWEDNvalue is 2, even though one
of the edges is off-line, shows that there is an alternaiines therefore it increases the continuity of the commutinca
amongst the edges. Hené®y EDNvalue can be used to make a choice between two graph modelbasised to design
an invulnerable graph model.
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