
ISSN 2148-838Xhttp://dx.doi.org/10.13069/jacodesmath.508968

J. Algebra Comb. Discrete Appl.
6(1) • 13–20

Received: 21 November 2017
Accepted: 11 December 2018

Journal of Algebra Combinatorics Discrete Structures and Applications

New Linear Codes over GF (3), GF (11), and GF (13)∗

Research Article

Nuh Aydin, Derek Foret

Abstract: Explicit construction of linear codes with best possible parameters is one of the major and challenging
problems in coding theory. Cyclic codes and their various generalizations, such as quasi-twisted (QT)
codes, are known to contain many codes with best known parameters. Despite the fact that these
classes of codes have been extensively searched, we have been able to refine existing search algorithms
to discover many new linear codes over the alphabets F3, F11, and F13 with better parameters. A
total of 38 new linear codes over the three alphabets are presented.
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1. Introduction

Let Fq denote the finite field with q elements (which is also denoted by GF (q)). A linear code C
of length n over Fq is a vector subspace of Fn

q . Over a given finite field Fq, a linear code has three
fundamental parameters: the length n, the dimension k, and the minimum (Hamming) distance d. A
code with these parameters is denoted as an [n, k, d]q-code. One of the main problems of coding theory is
a discrete optimization problem: determine the optimal values of these parameters and construct codes
whose parameters attain the optimal values. Over a given finite field Fq we can fix two of the parameters,
and look for the optimal value of the remaining one. For example, dq[n, k] stands for the largest minimum
distance of a linear code of length n and dimension k over Fq. This optimization problem is very difficult.
In general, it is only solved for the cases where either k or n − k is small. There is a database of best
known linear codes [14] over small finite fields which is a major source of reference for coding theory
researchers.

While there exist theoretical upper bounds on the value of d for a given n and k, in general there
do not exist explicit constructions for linear codes attaining these parameters. A code is called “good"
if it has best known parameters; it is called “new" or “record-breaking" if its parameters are better than
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the currently best known codes; and called “optimal" if its parameters attain the equality in a theoretical
bound. The good codes are also referred to as the best known linear codes (BKLCs). The database
[14] of BKLC’s includes the parameters of best known codes together with their constructions over finite
fields up to size 9. Computer algebra system Magma also contains a similar database [8]. More recently,
tables of best known codes over GF (11) and GF (13) have been published in [10] and [9].

The majority of the BKLCs do not attain the theoretical upper bounds on minimum distance.
Therefore, it is still possible to improve the parameters of BKLCs. It should be noted however that it
may not always be possible to attain the theoretical upper bound on the minimum distance for a given
length and dimension.

Computers are often used in searching for codes with best parameters but there is an inherent
difficulty: computing the minimum distance of a linear code is computationally intractable (NP-hard)[17].
Since it is not possible to conduct exhaustive searches for linear codes if the dimension is large, researchers
often focus on promising subclasses of linear codes with rich mathematical structures. The class of cyclic
codes and its various generalizations, such as constacyclic codes, quasi-cyclic (QC) codes, and quasi-
twisted (QT) codes, lend themselves well to the problem of finding codes with good parameters. Many
record-breaking codes have been obtained in the class of QC codes in the last few decades ([1–3, 5–7, 11–
13, 15, 16]). These are the codes we consider in this paper. The search algorithm introduced in [6] has
been highly effective and used in several subsequent works (e.g., [1–3, 5, 7, 12, 13]).

We begin by reviewing the structure of constacyclic and QT codes and then describe how we imple-
mented an improved version of the search algorithm that was used in previous works to search for new
linear codes. We conclude with a list of new record breaking codes over the fields F3, F11, and F13 with
generators and other necessary information to construct them.

2. Constacyclic search method

A linear code C over Fq that is closed under a constacyclic shift is called a constacyclic code, that
is, if (c0, c1, . . . , cn−1) ∈ C, then (a · cn−1, c0, c1, . . . , cn−2) ∈ C as well. Here, a ∈ F∗

q is a non-zero field
element, and it is called the shift constant. The important special case of cyclic codes are obtained when
we take a = 1.

It is well known that constacyclic codes are ideals in Fq[x]/〈xn− a〉 if we represent their elements as
polynomials, and that each constacyclic code C contains at least one polynomial that generates it as an
ideal. While generating polynomials are not unique, the monic generator polynomial of least degree is.
This is what we call the generator polynomial g(x) of C. It is also well known that g(x) is the generator
polynomial for a constacyclic code of length n with shift constant a if and only if g(x) divides xn− a, i.e.
xn − a = g(x)h(x) for some h(x) ∈ Fq[x]/〈xn − a〉. Hence, there is a one-to-one correspondence between
the divisors of xn − a and the constacyclic codes of length n with shift constant a. The polynomial h(x)
is called the check polynomial of C. A constacyclic code is therefore uniquely determined by either its
generator polynomial or its check polynomial. From the generator polynomial g(x) = g0+g1x+· · ·+gmxm
of a constacyclic code C we obtain its generator matrix as a circulant (twistulant) matrix g0 g1 · · · gm 0 · · · 0

0 g0 g1 · · · gm 0 · · · 0
. . .
0 . . . 0 g0 g1 · · · gm


where each row is the cyclic (constacyclic) shift of the row above.

Using the computational algebra system Magma, we are able to factor xn − a and compute the
minimum distance d of all constacyclic codes generated by the divisors of xn − a. We follow the method
in [5] with a few variations to be more comprehensive in the constacyclic search, and the QT search that
follows.
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We first consider cyclic codes with length-dimension pairs for which lower bounds are available (found
in either [14], [10], or [9]). We are then able to reduce the number of constacyclic codes to be examined
by using the following theorems.

Theorem 2.1. [6] Let a ∈ Fq where a = ωi for some primitive element ω in Fq. Then, a has an n-th
root in Fq if and only if gcd(n, q − 1)|i.

Theorem 2.2. [6] If Fq contains an n-th root of a, then a constacyclic code with length n and shift
constant a is equivalent to a cyclic code of length n.

The above two theorems immediately lead to the following corollary:

Corollary 2.3. Let ω be a primitive element of Fq and let a = ωi for some positive integer i. If
gcd(n, q− 1)|i then a constacyclic code with length n and shift constant a is equivalent to a cyclic code of
length n.

Therefore, once we examine all cyclic codes of length n over Fq, we do not need to examine con-
stacyclic codes of length n for shift constant a = ωi if gcd(n, q − 1)|i, as the resulting constacyclic code
is equivalent to a cyclic code that we have already computed and equivalent codes have the same pa-
rameters. Of the remaining constacyclic codes with shift constant a 6= 1, some of them turn out to be
equivalent to each other. The next theorem specifies which shift constants still need to be examined once
all cyclic codes are computed.

Theorem 2.4. [6] Let a, b have the same order in the multiplicative group F∗
q and let Ca be the constacyclic

code [n, k, d]q with shift a. Then there exists a constacyclic code Cb that is equivalent to Ca.

Given the theorem above, we classify the elements of F∗
q according to their multiplicative orders and

examine only one constant from each class. The following table combines the results of Corollary 2.3 and
Theorem 2.4 to show which constacyclic codes of length n and shift constant a still need to be checked
after computing all cyclic codes. Any constacyclic code with parameters not found in the table would be
equivalent to a cyclic or a constacyclic code.

Table 1. Constacyclic codes searched

q a 6= 0, 1 n
3 2 all n = 2m
11 2 all n = 2m or n = 5m

3 all n = 5m
10 all n = 2m

13 2 all n = 2m or n = 3m
3 all n = 3m
4 all n = 3m or n = 4m
5 all n = 2m
12 all n = 4m

Two parts of our search method that have the largest impact on the running time are the number
factors of xn − a considered and the time to compute the minimum distance of each code generated by
a divisor of xn − a. When xn − a has many factors, we only consider a predetermined amount of factors
of xn − a for each degree. We also allocate a maximum computation time for each minimum distance
calculation and if the minimum distance is not computed within the time limit, then the computation is
aborted. After these initial searches, our results are compiled into a master list which contains the best
found minimum distance for each length and dimension pair, and the list is compared with the databases
to identify any record-breaking codes. When there are multiple codes with the same highest minimum
distance for a given length and dimension [n, k], we just keep the generator polynomial of one of them.
This master list also forms the basis of the next step in searching for new QT codes.
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3. Quasi-twisted search method

Quasi-twisted (QT) codes are a generalization of constacyclic codes.

Definition 3.1. Let πa denote the constacyclic shift operator. A linear code C is said to be `-quasi-
twisted (`-QT) if it is invariant under π`

a, where ` is some positive integer which divides the length of
the code. That is, if (c0, c1, . . . , cn−1) ∈ C, then (acn−`, . . . , acn−1, c0, c1, . . . , cn−`−1) ∈ C as well.

The class of QT codes contains several other classes as special cases. When a = 1, we obtain the
class of quasi-cyclic (QC) codes, when ` = 1 the class of constacyclic codes, and when a = ` = 1,
the class of cyclic codes. Algebraically, a QT code of length n = ml is an R-submodule of R` where
R = Fq[x]/〈xm − a〉. A generator matrix of a QT code can be obtained in the form

G1,1 G1,2 . . . G1,`

G2,1 G2,2 . . . G2,`

...
...

. . .
...

Gr,1 Gr,2 . . . Gr,`


where each Gi,j is a twistulant matrix. Such a code is called an r-generator QT code. Most of the work
on QT codes is focused on the 1-generator case. We also consider 1-generator QT codes in the paper.

A method of constructing QT codes from constacyclic codes is based on the following theorem [6].

Theorem 3.2. [3, 6] Let C be a 1-generator QT code of length n = m` over Fq with a generator of the
form

(g(x)f1(x), g(x)f2(x), . . . , g(x)f`(x))

where xm − a = g(x)h(x) and (h(x), fi(x)) = 1 for all i = 1, . . . , `. Then dim(C) = m− deg(g(x)), and
d(C) ≥ ` · d where d is the minimum distance of the constacyclic code generated by g(x).

Search methods based on this theorem have been implemented in a number of articles and many
record-breaking codes have been obtained [1–3, 5, 7, 12, 13]. We continue this line of work by refining
the search method even further. We build up QT codes from the best constacyclic codes obtained in the
first stage. To do so, we take the generator polynomial g(x) of one of the [m, k, d]q constacyclic codes
and construct a QT code of index ` with generating polynomial of the form

(g(x), f1(x)g(x), f2(x)g(x), . . . , f`(x)g(x))

so that n = m`, the length of the QT code, does not exceed the maximum lengths of codes found in the
databases. Polynomials fi(x) that are relatively prime to the check polynomial h(x) = (xm − a)/g(x)are
randomly chosen from the elements of Fq[x]/〈xm − a〉 with deg(fi(x)) < deg(h(x)).

The generator polynomial of the best constacyclic code for every length/dimension pair that our
constacyclic search found is used for as many values of ` as possible. Unlike in our constacyclic search,
where one program examines numerous factors of xn − a, our QT search programs examine only one
factor of xm − a at a time; that is, the given generator polynomial g(x). As the dimension of an `-QT
code in this method is m − k where k is the degree of g(x), each program only considers codes of one
length-dimension pair at a time. Programs are run as long as possible and aborted after a certain period
of time if they had not been completed. We used Magma software in the implementation of the search
algorithms [8].
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4. New codes

4.1. New constacyclic codes

The following are the parameters of new record breaking constacyclic codes. For each code we give
its shift constant a, the parity check polynomial h, and w, the improvement on the minimum distance.
The parity check polynomial is given in place of the generator polynomial g(x) due to considerations of
space. The coefficients of the parity check polynomial are listed in ascending order. Thus, the parity
check polynomial for the first code in the table is h(x) = 10 + x+ 7x2 + 9x3 + 2x4 + 4x5 + 10x6 + x7.

Table 2. Record-breaking GF (11) and GF (13) constacyclic codes

[n, k, d]q a h w
[111, 7, 93]11 1 [10,1,7,9,2,4,10,1] 4

[133, 7, 109]11 1 [10,9,4,6,5,7,2,1] 1

[157, 6, 136]13 1 [1,0,7,12,7,0,1] 3

[170, 5, 150]13 1 [1,2,5,5,2,1] 1

[183, 6, 159]13 3 [9,6,5,10,11,2,1] 2

[244, 6, 213]13 1 [5,7,12,5,12,2,1] 3

4.2. New quasi-twisted codes

The following are the parameters of new record breaking QT codes together with their generators.
The shift constants a of the original constacyclic codes along with index ` are also given. Each `-QT code
is generated by a matrix of the form [G1, G2, . . . , G`] where G1 is the generator matrix of a constacyclic
code with generator polynomial g(x), and each one of the remaining Gi is a twistulant matrix defined by
g(x)fi(x) mod (xn − a), where fi(x) ∈ Fq[x]/〈xn − a〉 is relatively prime with the check polynomial. To
identify each new code, we have also given g(x) (or h(x) depending on space as above) as well as each
fi(x). All of these codes have been included in the database [8].

We have special comments for 3 of the codes in the list. We found the code with parameters
[150, 22, 67]3 in the summer of 2015. Later we found a [150, 22, 68]3 code using a more comprehensive
search strategy in the summer of 2018 [4]. For the code with parameters [105, 28, 37] over F3, an alternative
construction that involves many steps is given in [14] 1. Since our construction is more direct, hence
preferable, we include this code in the list. The same is the case for the [108, 19, 48]3-code in the list. It is
possible that additional new codes might be obtained from these by applying the standard constructions
such as extending, shortening, and puncturing.

1 The database contains a code with these parameters with the date of 2016-02-17. The construction given for
this code is indirect and involves many steps. Obtaining this code directly as a QC code is preferable. Moreover,
we found this code in the summer of 2015 but it was not reported until the spring of 2016.
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Table 3. Record-Breaking QT codes over GF (3) and GF (11).

[n, k, d]q α ` polynomials
[22, 7, 14]11 1 2 g [1,7,6,7,1]

f1 [2,7,4,1,3,10]

[44, 5, 35]11 1 4 g [1,5,4,2,4,5,1]
f1 [9,1,1,4,8]
f2 [9,3,10,3,9]
f3 [7,6,0,8,3]

[105, 7, 84]11 1 3 h [7,0,2,7,9,2,10,1]
f1 [10,0,2,1,9,10,4]
f2 [4,9,2,9,1,7,1]

[140, 7, 114]11 1 4 h [7,0,2,7,9,2,10,1]
f1 [5,10,3,9,7,4,10]
f2 [6,10,6,3,2,6,1]
f3 [8,3,8,9,1,1,10]

[180, 7, 149]11 1 3 h [6,9,9,9,4,6,2,1]
f1 [4,9,8,5,0,5]
f2 [8,5,1,4,9,6,6]

[222, 7, 187]11 1 2 h [10,1,7,9,2,4,10,1]
f1 [0,5,9,7,7,0,9]

[54, 17, 21]3 1 3 g [11]
f1 [02100011120022022]
f2 [1120000001110211]

[72, 19, 28]3 1 3 g [211211]
f1 [2220112222001220221]
f2 [022010100001221121]

[72, 23, 25]3 1 3 g [11]
f1 [01122221012112210211222]
f2 [11100101010100221020221]

[96, 22, 38]3 1 4 g [121]
f1 [2000000000202101001122]
f2 [222012220001011221112]
f3 [121020102210122001022]

[96, 23, 37]3 1 4 g [11]
f1 [21120000122222112010021]
f2 [21011202100201022220122]
f3 [0012021200000220121121]

[108, 23, 43]3 1 4 g [12021]
f1 [20011120102211120210221]
f2 [10100220002102121101201]
f3 [21201210011020112222011]

[60, 21, 21]3 1 2 g [1201221021]
f1 [220221221121001220021]
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[60, 23, 19]3 1 2 g [11122111]
f1 [0020111110201210001122]

[99, 25, 37]3 1 3 g [112020201]
f1 [2211100112220202001001102]
f2 [0222112121210222002101221]

[99, 26, 36]3 1 3 g [21220011]
f1 [21222102220010010101000122]
f2 [101020102111000111001201]

[70, 18, 28]3 1 2 g [211210212200020101]
f1 [2211102102202212]

[70, 22, 25]3 1 2 g [22012112222121]
f1 [0212020110210011112001]

∗[150, 22, 67]3 1 5 g [200201001]
f1 [201010011201220212022]
f2 [2011010222200200112]
f3 [2100200100212110012201]
f4 [0201221221220110212101]

∗[105, 28, 37]3 1 3 g [20000001]
f1 [022221201110020200110110102]
f2 [1102100001000202101200221212]

∗[108, 19, 48]3 1 3 g [220121102102212011]
f1 [0020100200212000022]
f2 [110122020011221022]

[111, 19, 50]3 1 3 g [1020220100010220201]
f1 [2221211012111220022]
f2 [1001122120001122121]

[156, 23, 70]3 1 4 g [12112222110200211]
f1 [11002122111110022021221]
f2 [0110010122211021001021]
f3 [01122011220011011020211]

[80, 21, 31]3 1 2 g [22001100011012102021]
f1 [12021022220212212121]

[200, 21, 98]3 1 5 g [22001100011012102021]
f1 [0200012220000112202]
f2 [022200002211101112011]
f3 [22002101002112110211]
f4 [201000120020000002]

[132, 22, 58]3 1 3 g [12200202120210211201011]
f1 [0000112102010210210212]
f2 [0112112020201110011222]

[176, 22, 84]3 1 4 g [12200202120210211201011]
f1 [2100210110120022211222]
f2 [0001102221222001011022]
f3 [0220001200100220201221]

[104, 25, 41]3 1 2 g [1110022112022011221200212111]
f1 [0010001100101201212222201]
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[104, 28, 37]3 1 2 g [2020210012121010221210211]
f1 [1001022102211210110102110112]

[112, 22, 48]3 1 2 g [20202120101202010212102101201200011]
f1 [0212012112010121220002]

[201, 22, 98]3 1 3 g [2201102112100222011112211222201110021221022011]
f1 [002012112212211210222]
f2 [0110100221011221001122]

[140, 26, 58]3 1 2 g [122102210220022121110112021222210021022102211]
f1 [021001020200200211002001]
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