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Abstract: Betweenness centrality measures the potential or power of a node to control the communication over
the network under the assumption that information flows primarily over the shortest paths between
pair of nodes. The removal of a node with highest betweenness from the network will most disrupt
communications between other nodes because it lies on the largest number of paths. A large network
can be thought of as inter-connection between smaller networks by means of different graph operations.
Thus the structure of a composite graph can be studied by analysing its component graphs. In this
paper we present the betweenness centrality of some classes of composite graphs constructed by the
graph operation called amalgamation or merging.
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1. Introduction

A large network can be thought of as inter-connection between smaller networks by means of different
graph operations. Graph operations are important for constructing new classes of composite graphs and
many of the structural properties of larger graphs can be derived from their component graphs. There
are many operations on two graphs (G; and G2 which result in a larger graph G.

In this paper we define some betweenness centrality concepts, and derive the betweenness centrality
for some classes of composite graphs constructed by the graph operation subgraph-amalgamation.
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2. Some betweenness centrality concepts

The concept of betweenness centrality of a vertex was first introduced by Bavelas in 1948 [1].

Definition 2.1. [3/. Let G be a graph and x € V(G), then the betweenness centrality of x in G, denoted
by B (x) or simply B(x) is defined as

g X
Bg(x) = Z %
steV(Q\{z} =t

where o4 (x) denotes the number of shortest s-t paths in G passing through x and o, the total number

of shortest s-t paths in G. The ratio ”U‘—(f) is called pair dependency or partial betweenness of (s,t) on

x, denoted by dg(s,t,x).

Betweenness centrality of some well known graphs has been studied in [7] and we use the following
definitions [8].

2.1. Betweenness centrality of a vertex in a subgraph

Definition 2.2. Let G be a graph and H a subgraph of G. Let x € V(H), then the betweenness centrality
of x in H denoted by By(x) is defined as

_ ot ()
By(z) = Z H

s,teV(H)\{z} st

where o (2) and o denotes the number of shortest s-t paths passing through x and the total number of

shortest s-t paths respectively, lying in H.

2.2. Betweenness centrality of a vertex induced by a subgraph

Definition 2.3. Let G be a graph and H a subgraph of G. Let x € V(G), then the betweenness centrality
of « induced by H denoted by B(x, H) is defined as

Bz, H)= > 7st(z)

Ost
s,t(#x)eV(H)

where os(x) and o5 denotes the number of shortest s-t paths passing through © and the total number of
shortest s-t paths respectively in G.

The betweenness centrality of a vertex induced by a subset S C V(G) is defined likewise.

2.3. Betweenness centrality of a vertex induced by a subset

Definition 2.4. Let G be a graph and S a subset of V(G). Let x € V(QG), then the betweenness centrality
of x induced by S denoted by B(x,S) is defined as

B(z,S) = Z 751(2)

g
s,t(#x)€ES st

where o4 () and og denotes the number of shortest s-t paths passing through x and the total number of
shortest s-t paths respectively in G.
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2.4. Betweenness centrality of a vertex induced by another vertex

Definition 2.5. Let G be a graph and s,z,t € V(G), then the betweenness centrality of x induced by s
in G, denoted by Bg(x,s) or simply B(x,s) is defined by

Bg(z,s) = Z JSt(gC).

tevne Ost

It can be easily seen that in any graph G, the betweenness centrality induced by a vertex on its
extreme vertex or an end vertex is zero. Consider the following examples.

B(z;,z;) =0 for z;,z; € K,,. Let P, be a path on n vertices {x1,...,z,}, then
1—1, ifi <y,
n—i, ifj<i.

B(xivxj) = {

If C,, is a cycle on n vertices {xg,...,Zn—1}, then
if n is even,

nol=2i i 1 < d(wy, w0) < /2,

B(xi,xo) = { 2

0, if d(x;, z0) =n/2,
if n is odd,
—1-2¢ -1
Blzi,z0) = =20 i1 < d(ws, o) <
2 2
For a star S,, with central vertex x,
B(z;,x0) =0, B(zg,z;) =n — 2 and (1)
B(zi, x;) = 0 for 4,5 # 0. (2)

For a wheel W,,,n > 5 with central vertex x,
B(z;,xz0) =0, B(zg,z;) =n—5.
For 7,5 # 0,

1/2, if d(z;, x;)
B i lj) = ’ T
(!ﬂ xj) {0, if d(l‘i,l‘j)

3

1
2.

It can be easily seen that for ; € V(G), Bg(z;) = %Zj# Ba(zi, ).

2.5. Betweenness centrality donated by a vertex

Definition 2.6. Let G be a graph and xo € V(G), then the betweenness centrality donated by xo in G,
denoted by DBg(x0) or simply DB(xq), is defined as the sum of betweenness values induced by xg on all
other vertices in G, i.e.,

DBg(zo)= Y Bala,z).
z€V(G)\zo

The betweenness centrality received by a vertex, RBg(xo) is Ba(zo) by definition.
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2.6. Betweenness centrality of a vertex induced by two disjoint subsets

Definition 2.7. Let G be a graph and © € V(G). Let S, T be two disjoint subsets of V(G), then the
betweenness centrality of x induced by S and T denoted by B(x,S,T) is defined as

B(z,S,T) = B(z,S) + B(z,T).

2.7. Betweenness centrality of a vertex induced by two disjoint subsets, one
against the other

Definition 2.8. Let G be a graph and x € V(G). Let S, T be two disjoint subsets of V(G) where
s(#£ x) € S and t(# x) € T, then the betweenness centrality of x induced by S against T, denoted by
B(x,S|T) is defined as

B sy = Y 7

g
ses, ter 5t

where og(x) and os denotes the number of shortest s-t paths passing through x and the total number of
shortest s-t paths respectively in G.

In metric graph theory, a convex subgraph of an undirected graph G is a subgraph that includes
every shortest path in G between two of its vertices. A subgraph H of a graph G is an isometric subgraph,
if dg(u,v) = dg(u,v) for all u,v € V(H). Clearly, a convex subgraph is an isometric subgraph, but the
converse need not be true.

3. Subgraph-amalgamation

One method of constructing composite graphs is merging or pasting two or more graphs together
along a common subgraph. For any finite collection of graphs G;, each with a fixed isomorphic subgraph
H as common, the subgraph-amalgamation is the graph obtained by taking the union of all the G; and
identifying their fixed subgraphs H’s. The simplest one is vertex-amalgamation or vertex-merging.

Theorem 3.1. Let G be the graph obtained by merging the graphs {G;}!_, along n copies of isomorphic
induced common convex subgraph H where H C G; Vi. Let S; = V(G; — H) Yi. Then, for x € H and
u€ Gy —H,

Ba(z) = Y Bg,(x) = (n—1)Bu(z) + > B(z,Si|S,),
i=1 1<J
Ba(u) = Bg,(u)+ Y Bu,Si|Sk).
i#k

Proof. Consider the graphs {G;}? ;. Let G be the graph obtained by merging G; along n copies of
isomorphic induced common convex subgraph H where H C G; Vi. See Figure 1. Now the subgraphs
G; — H and H form a partition of G. Any path joining a vertex of G; — H and a vertex of G; — H
for i # j passes through at least one vertex of H. Let € H, then its betweenness centrality Bg(z)
in G is due to the contribution of possible pairs of vertices from each G; and from different pairs of
G; — H. Since H is convex, By(x) is repeated n times in Y. | Bg,(z) and hence we get Bg(z) =
>oiz1 Ba.(x) — (n = 1)By(x) + 32, B(x,Si[S;). Let u € Gy, — H. To find Bg(u), consider a pair
of vertices s,t € G which contributes to Bg(u), then s € Si, and ¢ may be either in Gy or in its
complement G}.. Those t € Gk gives Bg, (u) and those t € G}, gives B(u,S;|Sy) for i # k. Hence
Ba(u) = Ba, (u) + 322y, Bu, Sil Sk).- O
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G2

Figure 1. Subgraph-amalgamation

Algorithm 3.2. Algorithm for Betweenness Computation of a Vertex x € V(H) in Subgraph Amalga-
mation
Require: Graphs G1,Gs,...,G,, conver common subgraph H, vertex x € H
Ensure: Betweenness of vertex x, Bg(x)
1: 8;=V(G; —H) fori=1,...,n.
2: Compute betweenness of x in G;, Bg,(x) fori =1,...,n. Add all these betweenness values to get
BComponentSum(m)
3: Compute betweenness of x in H, By (x).
4: Compute betweenness of x in S;, Bg,(x) fori=1,...,n.
5: Find B(x, Si]S;) = Yses, tes, 9:t(8) for all i < j,i =1,...,n. Add all these betweenness values to

get BSubsetSum(‘r) -
6: Determine B (x) = BcomponentSum () — (n — 1) * By () + Bgubsetsum ()

Theorem 3.3. Let G be the graph obtained by merging the graphs {G;}!_, along n copies of isomorphic
induced common convex subgraph H where H C G;¥i. Then Algorithm 3.2 correctly computes the
betweenness value of vertex x € H in O(n'm') time where n' is the order of the largest component graph
G; and m' the number of edges in Gj.

Proof. Proof of Algorithm 3.2 follows from Theorem 3.1.

The efficient algorithm by Brandes [2] compute betweenness centrality of all vertices in an unweighted
graph in O(nm) time and O(m + n) space where m is the number of edges in the graph and n is the
number of vertices. Here we compute the betweenness centrality of a vertex using partial betweenness of
different components of the amalgamation. Therefore, the complexity gets reduced to O(n'm’) where n’
is the order of the largest component graph G; and m’ the number of edges in G;. O

Algorithm 3.4. Algorithm for Betweenness Computation of Vertex u in Gy — H in a Subgraph Amal-
gamation
Require: Graphs G1,Ga,...,Gy, convex common subgraph H, vertex uw € V(Gy) — V(H)
Ensure: Betweenness of vertex x, B (x)
1: 8, =V(G;—H) fori=1,....,n
2: Compute betweenness of u in Gy, Bg, (u).
3: Compute betweenness of u in S;, Bg,(u) fori=1,...,n.
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4 Find B(u, Si|Sk) = > .cs, tes, oxt() for all i # k. Add all these betweenness values to get

Ost
BSubsetS’um (U)
5: Determine Bg(u) = Bg, (u) + BsubsetSum ()

Theorem 3.5. Let G be the graph obtained by merging the graphs {G;}!_, along n copies of isomorphic
induced common convex subgraph H where H C G;¥i. Then Algorithm 3.4 correctly computes the be-
tweenness value of vertex u in Gy, — H in O(npmy) time where ny, is the order of Gy, and my, the number
of edges in G.

Proof. Proof of Algorithm 3./ follows from Theorem 3.1. O

3.1. Path-amalgamation of graphs

Two cycles connected by merging along a common subgraph

Proposition 3.6. Let G be the graph obtained by merging two cycles Cp, and C, along a common
path P, = {x1,...,2,} as common subgraph where p < min{[g],[5]} and U = {u1,...,Upn_p} and
V ={v1,...,0n_p}, be the vertex sets of C,, — P, and C,, — P, respectively, then the betweenness centrality
of Cp, in G is given by

Bg(z,) =Bg,,(zr) + Be, (2r) — (r = 1)(p — r) + B(z,, U|V), for z, € Pp,

B¢ (ur) =Be,, (uy) + B(u,, U|V), foru, € U,

where B(z,,U|V) and B(u,,U|V) are given by

Case 1: When C,, and C,, are even

Jmn/2—(m+n)(p-1/2) +2(p* —p+1/3), forl<r<p,
BlaUIV) = {Smn/él —(m+n)(p—1/4)+ (9* —6p+2)/6, forr=1,p.
(n—p)(m—p—2r)/2, forl<r<%—p,
B(u,,U|V) = < n(2p—3)/4— (3p* — 3p — 2)/6, forr=%—-p+1,

k(k—p+1)+(n—p)(p—2)/2+1/6, forr="5—-p+1+k 1<k<p-2.

Case 2: When C,, and C,, are odd

_ ) 2[m+1)/2 = pl[(n+1)/2 —p], for1<r<p,
Bla, UIV) = {3mn/4—(m+n)(p—1/4)+(6p2—4p—|—1)/4, forr=1,p.
(n—p)(m —p—2r)/2, for1<r < m3H —p,
B(u,, UlV) = S (p—2)(n—p—1)/2, forr="4 —py1,

kk—p+2)+(p—-2)(n—p—1)/2, forr:mT'H—p—i-l-l-k, 1<k<p-2.

Case 3: When C,, is even and C,, is odd

Bl U[V) = (m—2p+1)(n—2p+1)/2, forl <r<p,
" ©|3mn/4— (m+n)(p—1/4) + (6p* —4p+1)/4, forr=1,p.
(n—p)(m—p—?r)/Q, fOTlSTS%_pa
B(u,, UlV) = S1/2[(n—=p)(p—2)+ (n+1)/2—-p], forr=53-p+1,
k(k—p+1)4+ (n—p)(p—2)/2, Jorr=F —p+1+k 1<k<p-2.
(m—p)(n—p—2r)/2, forlgrg’%lfp,
B(v,, U|V) = {1/2[m(p—2) —p* +p+2], forr=12H —p41,

k(k—p+2)+®/2)m—p+1)—m+1, forr=2H —p4+1+k 1<k<p-2.
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Proof. Let C,, and C,, be two cycles merged along a common path P, induced by the common vertices
X =A{z1,...,2p} where p < min{[F],[5]}. Let U = {u1,...,um—p} and V = {v1,...,v,_p} be the
remaining vertices in C,, and C,, respectively. Consider the three cycles C,,, C,, and C’, where C’ is the
cycle induced by U, V,{z1} and {x,}. By symmetry, the vertices in each of the sets X, U,V from either
ends have the same betweenness centrality in G.

Figure 2. Two even cycles merged along a common subgraph

Case 1: Both C,, and C,, are even.

Let uq,up be the eccentric vertices of x, and z; respectively in C,, and vs,v, be their eccentric
vertices in ¢ where a = 5 —p+1,8="5,v= 5 —p+1and 0 = §. See Figure 2. Let z, € X.
By Theorem 3.1, Bg(x,) = Be,, (z) —|—Bc (x,) — Bp(zy) + B(z,,U|V). Let us find B(z,,U|V) as
the others are known. Consider v € U and v € V, then for each (u,v) pair there are at most three
shortest © — v paths and in the case of (uq,vs) and (ug,v,) there are three shortest u — v paths P,
P, and Ps passing through the end vertices 1, x, and the whole path P.

(a) Consider the vertex z, for 1 < r < p, then those pairs (u;,v;) for 1 <i <
(ui,vj) for 6 <i<m—p,1<j <~ contribute betweenness centrality (% —
P+ 5 —p) + % to x,.. Thus by Theorem 3.1 we get,

Bo(w,) = 4[m =2+ (n = 2] = (=) - +2[(3 ~p) (3 —p) + 3(% ~p+ 3 —p) + 3]

(b) Consider the vertex x1, then the pairs (u;,v;) for 1 < i < o, 1 < j < n — p contributes
(% —p)(n — p); Now for i = «, the pairs for 1 < j < f3 contributes § — 1, j = 3 contributes 2/3,
B < j < n—p contributes %(% —p) giving the sum =5 (9n 6p—4) to scl The vertices lying between
uo and ug contribute (n — p)(p — 2). Consider uﬁ, it makes pairs with v;, 1 < j < and gives
5—p+ % Again the vertices on the right of ug with the same set give (% — p) [(f —-p)+ ]
Summing all these contributions, we get B(x1, U|V).

(c¢) Consider the vertex u, for 1 < r < «a, now the vertices lying between u, and u, make pairs
with all vertices of V' giving the contrlbutlon (% —p—r)(n—p). Again u, and the vertices lying
between u, and ug contribute the sum as earlier. But ug makes pairs with v; for 1 < j <~ and
gives 1(2 —p) + 3 and the right of ug has no contribution. Summing all the above values gives
B(u,,U|V) for 1 <r < a.

(d) Consider the vertex u,, now the vertices u; for o < i < 8 give the sum 3(n—p)(p—2)+ 1(2 —
p)+3-

(e) Consider u, for a < r < ["5P]. Let r = a + k where 1 <k < [§] — 1. Now u, and ug gives

Uq+k the same contribution as %(ﬂ —p) + % The vertices lying between w, and uy4p gives the

2
sum (k—1)(% —p+3)+ @ and between uq 4 and ug gives £(n —k —p)(p—k — 2). The total

of these contrlbutlon gives the expression for B(u,,U|V) for r > «.

Case 2: Both (), and C,, are odd.
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Consider u, and ug, a palr of extreme vertices of the end vertices x, and z; of P where a@ =
mtl — p+ 1 and B = 2L and vs and v, be their eccentric vertices in C’ where § = ?1,
’y—"—“ p+1. If u; € U and v; € V, then for 2, € P where 1 < r < p, {(u;,v;) : 1 <i < a,
§ <j<n—p}or{(ujvy): B <i<m—p,1<j<~}contributes the sum (4 —p) (2 —p). Since
there exists no more pair, B(z,, U|V) = 2(’”;1 p) (”TH ) Consider the vertex 1. Now the pairs
{(uj,vj) : 1 <i<a,1<j<n-—p} contributes the sum (“4+ — p)(n — p). The vertices {u; : a <
i < B} contributes the sum (n—p)(p—1) and the pairs {(u;,v;): 8 <i<m—p, 1 <j<2H _p}

contributes the sum (252 p)("T+1 p). Hence B(z1,U|V) = (2L —p) (2 —p) +(n— p)(m+p ~p).

Consider the vertex u,,1 < r < «, the vertices lying between w, and u, contributes the sum
( —r —1)(n — p), vertices from u, to ug as given above and no vertex from the right. Hence
Bu, UV) = (22 —p—r)(n—p)+ 3(n —p)(p— 1) for 1 < r < a. For u,, the vertices
from uq41 to ug contributes 1 (p — 2)(n — p — 1). Hence B(uq,U|V) = 3(p —2)(n —p — 1).
Consider a vertex on the left of u,, say uq+, then no vertex on the right of u, is considered. The
vertices from wu, t0 ua4k—1 contributes %k(n + k —2p + 1) and the vertices from uq4xt1 to ug
contribute 3(p — k —2)(n — p— k — 1) and no more vertex from the right. Hence, B(ua1s, U|V) =

Lktn+k—2p+ )+ ip—k—2)(n—p—k—1).

Figure 3. Even and odd cycles merged along a common subgraph

Case 3: (), is even and C,, is odd.

Let uq and ug where o = 3 —p+ 1, 8 = 3 be the eccentric vertices in C’m for the end vertices

Zp, 1 of P and vs and vy be their eccentrlc vertices in C’ where § = 251, v = "—H —p+ 1. See
Figure 3.

Consider z, € P such that 1 <r < p. If u; € U and v; € V, then for each pair {(ui,v;) : 1 <i < a,
d<j<mn—porf<i<m-p 1<j < v} there exists a geodesic passing through z, and
contributes the sum (% — p) (%5t — p) and 1 (2L — p) for i = a. Since there exists no such other
pair, B(z,,U|V) = 2(m —2p+1)(n —2p+ 1)

Consider the vertex z1. Now {(u;,v;) : 1 <i <, 1 < j < n—p} contributes the sum (%—p)( D).

{(ta,v;) : 1 < j < 6} and {(uq,v;) : § < j < n— p} contributes the sum 25+ + (2 — p).

{(ug,v;) : 1 < j <~ —1} contributes the sum 2 — p. The vertices lying between Uq and ug

contributes the sum (n — p)(p — 2) and each vertex on the right of ug gives the sum 2t — p. The
total of these sums gives B(x1,U|V) which is £ [3mn — (4p — 1)(m + n) + 6p* — 4p + 1].

Consider the vertex u,, for 1 < r < a. Now the vertices lying between w, and u, contributes
the sum (o —r — 1)(n — p). Again u, and the vertices lying between u, and ug have the same

contribution as mentioned above, ug gives 5(@ — p) For the vertex u,, vertices from uq41 to

ug—1 and then ug contributes to it as earlier. Consider a vertex on the right of uq, say ua4k-
n+1

Again u, and ug contributes the same as 5(— — p) The vertices lying between u, and uq4k

contribute (k — 1)(21 — p) + 2k(k — 1). The vertices lying between u,4r and ug contribute
i(n—p—k)(p—k—2). The sum of these gives B(uq+,U|V). Consider the vertex v, in C,, for
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1 <7 < 7. The vertices lying between v, and v, offers (% —p—r)(m—p) and the vertices from v, to

vs offers (p—1)(m—p)/2 giving B(v,, U|V) = (m—p)(n—p—2r)/2. For vy, the vertices from v,41 to
vs gives B(v,,U|V) = 1/2[m(p—2) —p*+p+2]. For vy, 1 <k < p—2, the vertices from v, 4x41 to
vs offers 3 (p—k—2)(m—p—k—1) and vertices from v, to v j_1 offers & (m-+k—2+1) so that vertices
symmetric from v, and vs offers the same giving B(vq4x, U|V) = k(k—p+2)+(p/2)(m—p+1)—m+1.

O

Corollary 3.7. Let G be the graph obtained by merging m copies of cycle C, along a common path
P, = {z1,...,2,} as common subgraph where p < [§] and U = {u1,...,un_p} be the vertex sets of
Cy, — P,. Then the betweenness centrality of Cy, in G is given by

Bg(x,) = mBe, (x.)— (m—1)(r—-1)(p—7r)+ (n;)B(xr,Uﬂ/), for z, € Py,
Bg(ur) = Be, (uy) + (m —1)B(u,,U|V), foru, €U.
where B(xz,,U|V) and B(u,,U|V) are given by

Case 1: If C,, is even, then

B(z,,U|V) = n?/2 = 2n(p —1/2) +2(p* —p+1/3), forl<r<np,
B | 3n2/4—2n(p—1/4) + (9p*> — 6p +2)/6, forr =1, p.
(n—p)(n—p—Zr)/Z, fOTlS’/‘S %—p7
B(UT7U|V) = 71(219_3)/4—(23192—3}9—2)/67 forr:%_p+ 1,

kE(k—p+1)+(n—-p)p—2)/2+1/6, forr=5—-p+1+k 1<k<p-2.

Case 2: If C), is odd, then

_ 2[(n+1)/2*p]2, forl<r<p,
(Tl*p)(nfp—Qr)/Q, fOT1<T’<n+1—p’
B(u,, UlV)=¢(p—2)(n—p—1)/2, forr =" —p+1,

k(k—p+2)+(p—-2)n—p—1)/2, forr="F —p+1+k 1<k<p-2.

Proposition 3.8. Let G be the graph obtained by merging both ends of m copies of paths P, together
where V(P,) ={1,2,...,n}. Then the betweenness centrality of G is given by

B(r) = sm(m —1)(n —2)%, forr=1n,
"= %(n—l)( 3)—1— —|—(m 2){(71—1—7“)24—(7"—2)2}, forl<r<n.

Proof. Since the ends of m copies of path P, are separately merged, any two copies of P, form an
even cycle Ca,,—o in G. Since there are () such cycles, B(r) = (') Bc,, ,(r) = 2m(m — 1)(n — 2)? for

r = 1,n. Consider an internal vertex of any path P, say P7(f). Now P,(f) and Pr(Lj ) for i # j form a cycle
of 2n — 2 vertices in GG, where the pair of end vertices gives the centrality % instead of % Consider the

path P where k # j # 4. Let U; and Uy, denotes the vertex sets of PT(LZ;)Q and PT(LI?Q respectively where
the merged end vertices 1 and n are deleted. Therefore, for any internal vertex r of P,

Bea(r) = Be,, (r )_,+7_~_ > B(r,Ui|U)
oy

- %(nfl)(n73)+%+(m;2)

[(nf 1 fr)2+(rf2)2}
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since,

B(r, U, |Uy) = M%
[(n—1-r)+(r—

[14+34...(r—2) terms]

2)°].

N | =

3.2. Edge-amalgamation of graphs

The edge amalgamation of {G;}?_; is the graph obtained by taking the union of all the G; and
identifying their fixed edges. An amalgamation of two edges e; = ujv; of a graph G and ey = ugvy of a
graph G5 is a graph created by identifying u; with us and vy with vy and then deleting one of the two
edges corresponding to e; or es. The other edge will be called the amalgamated edge.

The edge amalgamation of cycles are called generalized books [5].
Proposition 3.9. Let two cycles C,,, and C,, are connected by merging a pair of edges. Let u;, v; be any

vertices on Cy, and C,, respectively at a distance i from the merged edge. Then betweenness centrality of
the resulting graph is given by

Case 1: If both C,, and C,, are even, then

(mgz)z 4 (n—SQ)Z + (mf-SZL(nffi) + (m72)(n 2) 4 E’ fori=0,
Blu;) =m0 (n=2)(m=2-2) for1<i<m -1,
(m— 2)_’_2_5’ fori=1 —1.

B(v;) are obtained on interchanging m and n.

Case 2: If both Cy, and C,, are odd (See Figure 4), then

(m— 1)(m 3) + (n— 1)(n 3) + (m— 331(71 3) + (m— 2)(n 2)’ fOTi _ O7
B(ul) _ (m— 1é(m 3) + (n— 2)(7; 2— 2z) fO’I“ 1<i< m;l’
(m— 1%(m 3)7 fOT‘i _ m2—1
B(v;) are obtained on interchanging m and n.
Case 3: If C,, is even and Cy, is odd, then
(m—2)2 + (n—l)s(n—S) + (m—331(n—3) + (m—2)2(n—2), fO?” i=0,
B(UZ) — (m— 2)2 + (n— 2)(m 2—21) fO’F 1<i< % -1
(m— 2)_|_,_, fori=13 —1.
1 3 ) .o
By = {% +(m—=2)(n—2-2i)/2, for1<i <1 ol
—s fori= "=
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u m—1 Cm Cn UnT4

Figure 4. Two odd cycles C,, and C, identifying a pair of edges

Proof. Consider a merged vertex. Since the merged vertex lies on both cycles C,, and C,, each cycle
induces a value for its betweenness centrality. C,, against C,, also induces a value. The betweenness
centrality of merged vertex is their sum. For any other vertex u, it lies on one of the cycle and betweenness
centrality is the sum of the betweenness centrality induced by that cycle and the other one on it. O

Corollary 3.10. Let the odd cycles Cy,,...,Cy,, share a common edge. Then, for ug, an end vertex of
the common edge and u;, a vertex in C,, at a distance i from the common edge, we have

Bluo) = £ 3 (s~ V(ni = 8) + 1 3 (i —3)(ns — )+ 3 D_(mi —~ 2)(n; — 2),

i 1<J 1<J

e : ; . ng—
B(u;) = {er(TZ‘—l—Z)Z#k(ni—?)? for1§@<1le7

Ng— N — s

D fori= 11,

Corollary 3.11. If m copies of n-cycles, each are merged at an edge, then for ug, an end vertex of the
common edge and u;, a verter at a distance i from the common edge in any n-cycle (See Figure 5), then
we have

Case 1: Ifn is even

5 2
m(nT_m"'(z)[(n 2) _|_(” 3)* + 15|, wheni=0,
2
Bw) =4 B o310, wheni<i<3 o1
2
@4_(“1_1)(%_%), when i = 5 — 1.

Case 2: Ifn is odd

mn- o) () [022 4 029 hen =,
Blug) =SB0 g - (n-2)(§ ~1-1),  when 1< < 25,
W’ when i = 51,
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uo

Figure 5. Four 7-cycles sharing a common edge

3.3. Vertex-amalgamation of graphs

Definition 3.12. [6]/ A graph G in which a vertex is distinguished from other vertices is called a rooted
graph and the vertex is called a root (or terminal) of G.

Identifying the terminal vertices of two graphs is known as vertex-amalgamation and the new graph
obtained by vertex-amalgamation of G; and G5 is denoted by G; - G2 [4].

Proposition 3.13. Let Gy, ..., Gy be vertex disjoint graphs of order mq,...,ny respectively and G, the
graph obtained by identifying the vertices v; € Gy, Vi; if vo denotes the merged vertex and v(# v;) € G,
then

k

Ba(v) = Z Bg, (vi) + Z(nl —1)(n; — 1) and

i=1 i<j

Bg(v) = B, (v) + Ba, (v,v0) Y _(n; — 1).
i

Proof. Consider the graph G obtained by identifying the vertices v; € G;. If vy denotes the merged
vertex, i.e, v; = vy for all 4, vg is a cut vertex (See Figure 6) and the removal of vy disconnects the graph G
into k components. The betweenness centrality of vy in G is calculated over all pairs of vertices and each
pair belongs to the same component or different ones. The pairs of vertices lying in the same component
give the sum Zle Bg, (v;) and the pairs of vertices lying in different components give >, . (n;—1)(n;—1).
Now their sum gives the result. For v € G;, v # v;, a pair of vertices in G provides a contribution to
the centrality of v, if one of which belongs to G;. If Bg,(v,v9) denotes the betweenness centrality of v
induced by vg in G;, then clearly Bg(v) = Bg, (vi) + Ba, (v, v0) >_j4,(nj —1). O

Algorithm 3.14. Algorithm for Betweenness Computation of Merged Vertex vy in a Vertex Amalgama-
tion

Require: Vertexr disjoint graphs G1,Gs, ..., Gy of order ny,no,...,ng, and vy the merged vertex
Ensure: Betweenness of vertex v, Ba(vo)
1: Compute betweenness of v; in G;, Bg,(v;) fori=1,... k. Add all these betweenness values to get
BComponentSum

2: Find BC’ontribution = Zi:l kfl(ni — 1) * (nj — 1) fO?“’L' < j

.....

3: Determine BG (UO) = BComponentSum + BContm’bution
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Figure 6. Vertex amalgamation of G;’s

Theorem 3.15. Let G be the graph obtained by merging graphs {G;}%_,, on a common root vertez vy.
Then Algorithm 3.14 correctly computes the betweenness value of merged vertex vy in O(n'm’) times
where n' is the order of the largest component graph G; and m’ the number of edges in G;.

Proof. Proof of Algorithm 3.1/ follows from Proposition 3.13. O

Algorithm 3.16. Algorithm for Betweenness Computation of Non-terminal Vertex v in G; in a Vertex
Amalgamation
Require: Vertex disjoint graphs G1,Ga, ..., Gy of order ny,na, ..., ng, vg the merged vertex, vertex v a
non-terminal vertex in G;.
Ensure: Betweenness of vertex v, Bg(v)
1: Compute betweenness of v in G;, Bg,(v).
2: Compute betweenness of v induced by vy in G; Bg,(v,v0).
8: Find Boontrivution = Zj:l _____ k;j;,gi(nj - 1)
4: Determine Bg (U) = BG,; (U) + BG,; (U, ’UO) * Boontribution

Theorem 3.17. Let G be the graph obtained by merging graphs {Gi}i?:l on a common Toot vertex vg.
Then Algorithm 3.16 correctly computes the betweenness value of non-terminal vertex v in O(n;m;) times
where n; is the order of the component graph G; and m; the number of edges in G;.

Proof. Proof of Algorithm 3.16 follows from Proposition 3.13. O

Proposition 3.18. Let G, ...,Gy be verter disjoint graphs of order nq,...,ny. Consider the graph G
obtained on joining the vertices v; € G; to a single vertex vy by means of edges and v(# v;) € G;, then

Bg(vo) = Z nimn,

Bg(v;) = Bg,(vi) + (n; — 1)(an +1) and
j#i

Ba(v) = Ba,(v) + Ba,(v,v0) Y (n; — 1).
i
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The above result is significant in view of the fact that networks are often connected by joining to a
common node.

If G is a rooted graph, the graph G(") obtained on identifying the root of n-copies of G is called a
one-point union of n copies of G [9]. We consider the following examples.
1. Windmill graph

The windmill graph Kflm) is the one - point union of m copies of the complete graph K, ; Ky(bm) has

n — 1)m + 1 vertices and m(}) edges. For example, K is given in Figure 7.
2) €48 5 g g

Theorem 3.19. The betweenness centrality of windmill graph K,(Lm) is given by

(n—1)2 <m>, for central vertex,
B(v) = 2

0, for any other vertex.

Proof. The central vertex of Ky(Lm) is a cut vertex and the removal of which disconnects into m compo-
nents of K,,_1. Therefore, by Proposition 3.13, the betweenness centrality of the central vertex is given

by C(n—1,n—1,...m times) = (n —1)?(") where C(n1,ns,...,n%) = an] Since other vertices are
i<j
vertices of the induced subgraph K,,_;, their betweenness centrality is zero. O

Figure 7. Windmill graph K"

The graph K?()t) is called a friendship graph or Dutch t-windmill graph. For example, K?(,S) is given in
Figure 8. Every pair of vertices in Két) has exactly one common neighbour. K§2) is the butterfly graph
and Kg(n) is the star S1 5.

Corollary 3.20. The betweenness centrality of friendship graph Kén) s given by

n
4 , for central vertez,
s < [1(3): ¢

0, for any other vertex.

2. Vertex-amalgamation of cycles

Now let us consider the case when different cycles merged at a vertex. See Figure 9.
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Figure 8. Friendship graph Kés)

S S

Figure 9. One point union of different cycles

Proposition 3.21. Let the graph G be the union of my copies of odd cycle Cp, and ma copies of even

cycle Cy, with a common vertex vo. In any cycle C, let v; denotes the vertex such that d(v;,vo) = 4,
then,

8 8 2

+(n1 — 1)(n2 — 1)mima, and

B(ug) = Tl N ) | malna 227, 1)2(7@ +(na - 1)2(m2>

(m—W)(ma=3) 4 ("1‘21‘2") {(ml —1)(ny — 1) + ma(ng — 1)], forv; € Cpy, 1< i <zl
B(Uz) = (n2g2)2 + (n2—21—2i) {ml(nl — 1) + (MQ - 1)(’/12 — 1)], fOT Vi € Cn27 1 S 1< %,

(ne—2)? P
e, forv; € Cp,, i = 22,

)

Proof. Since m; copies of odd cycles C,,, and my copies of even cycles C,,, have a common vertex vy, vg
is a cut vertex of GG and each cycle contributes its own betweenness centrality to vg. Again vg lies on the
path joining vertices of different cycles. Each pair of cycles contributes a betweenness centrality (n; —1)?
and there are (") pairs of such cycles giving (n; —1)?("y’) to the centrality. Considering the three possible
combinations odd-odd, even-even and odd-even pairs of cycles, we get the centrality of vy as their sum.
Let v; denotes the vertices at a distance i from vg. If v; € C,,, an odd cycle, for i < "1771 then from each
vertex lying between v; and Uni1, there is a path passing through v; to each vertex of the remaining
cycles and consequently there is an increase of (“=5=2) [(m; — 1)(ny — 1) + ma(ns — 1)] for B(v;). If
v; € Cp,, an even cycle, then from each vertex lying between v; and vz, there is a path passing through
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Figure 10. ¢ and c{"

Um _
m 1

Uy v

ces cee

Uo

um
s Chn Cy

Vo

PP cee
u%Jrl Um—1 V1

Figure 11. An even cycle C,, and an odd cycle C, merged at a vertex

VUn+1
2

v; to each vertex of the remaining cycles and from the extreme vertex vz there are two paths and one of

which passes through v;. Hence there is an increase of centrality (W_Tl_%) [mi(ng—1)4 (m2—1)(n2—1)]
for B(v;). Since there is no path passing through the extreme vertex v 2, its centrality remains the same

as that of C,,,, that is, %. O

Corollary 3.22. Let C’,(Lm) be the one point union of m copies of C,,. See Figure 10. If vy is the common
vertex and v; € Cy(,m) such that d(v;,vg) = i, then the betweenness centrality of C’,Sm) is given by

Case 1: When C,, is even

_9)2
w + (ﬂ;) (n—1)% when i =0,
_ 9)2 _ _ —1—9
B(v;) = (n 82) + (m = 1)(n ;)(n ! 21), when 1 <1 < g,
(n—2)? ._n
g when i = 5"
Case 2: When C,, is odd
mn=1(n=3) 18)(" =3, @) (n—1)2, when i = 0,
Blu) = (n—3 D(n—1)(n—1-2i 1
(n — )8(7%* ), (m— )(n*Q)(n* —2%)  hen1<i< =L

Corollary 3.23. Let G be the graph obtained by merging the vertices ug € Cp, and vy € C,, and let
u; € Cp, and vj € Cy, such that d(u;,up) =i and d(v;,vo) = j. Then the betweenness centrality of G is
given by
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Case 1: If both C,, and C,, are even, then

(m—2)?

2% D' 4 (g —1)(n—1), wheni=0,
Blu;) = { =22 4 (nolmo1o2)
(m=2)"

when 1 <i < 7,

m

, when i = 7.

B(v;) are obtained by interchanging m and n.

Case 2: If both C,, and C,, are odd, then

B(u) B (m,—l)S(m—3) + (n—l)g(n—3) + (’I’TL _ 1)(7’l _ 1)’ when, i — 0,
i (7n—1)8(m—3) + (n—l)(rg—l—m) when 1< i < mz_l_

B(v;) are obtained by interchanging m and n.

Case 3: If C,, is even and C,, is odd (see Figure 11), then

(=2’ L (=D0=3) 4 (1 —1)(n— 1), when i =0,

B(u;) = (mng + (n=Dmo1-20) when 1 < i< 2,
%’ when i = .
-1 — -1 —1-25 -1
B(’Uj) _ (n )S(TL 3) + (m )(77'2 ])’ when 1< j < nT

Note: If the two cycles are identical, then

Case 1: m = n an even number.

B(u;) = B(v;), where

%—f—(m—l)g, when i = 0,
2 .
B(u;) = (’mg2) + (m_l)(?_l_zl), when 1 <i < 7,
2
L’gz) , when i = 2.

Case 2: m = n = an odd number.

B(u;) = B(v;), where

{<m—1)4(m—3)+(m—1)2, when i = 0,

Bui = _ _ _ _1_9;
( ) (m 1g(m 3)+(m 1)(72n 1 22), when 1 <i < m;l_

4. Conclusion

Betweenness centrality is a useful metric for analysing graph-structures and networks. When com-
pared to other centrality measures, computation of betweenness centrality is rather difficult as it involves
finding the shortest paths between pairs of vertices in a graph. Therefore studying the structure based
on graph operations becomes important. Here new graph classes originated by subgraph amalgamation
have been studied. This study can be extended to other structures and is therefore helpful for analysing
larger classes of graphs.
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