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Abstract

In this study, Galerkin finite element method is applied to generalized
Benjamin-Bona-Mahony-Burgers (gBBM-B) equation. Quadratic B-spline functions are
used as interpolation function. Stability analysis is investigated based on von Neumann
theory. The performance of the proposed method is checked by two test problems with zero
boundary conditions. As a result, it is observed that applied method is successful and

efficient to show motions of some waves.
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Genellestirilmis Benjamin-Bona-Mahony Denklemine Galerkin Metodunun Bir

Uygulamasi

Ozet

Bu c¢aligmada, genellestirilmis Benjamin-Bona-Mahony (gBBM-B) denklemine
Galerkin sonlu elemanlar yéntemi uygulanmustir. Interpolasyon fonksiyonu olarak kuadratik
B-spline fonksiyonlar kullanilmigtir. Von Neumann teorisine bagl olarak kararlilik analizi

incelenmistir. Sifir smir sartlart ile iki test problemi yardimiyla Onerilen ydntemin
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performansi kontrol edilmistir. Sonug olarak, uygulanan yontemin bazi dalga hareketlerini

gostermek icin basarili ve etkili oldugu gozlenmistir.

Anahtar Kelimeler: Benjamin-Bona-Mahony-Burgers denklemi, Sonlu eleman,

Galerkin metodu.

Introduction

The dynamics of shallow water waves is a seriously growing research area in the area
of fluid dynamics. There are various models to describe the shallow water waves along
lakeshores and beaches. These are Korteweg-de Vries (KdV) equation [1-3], Kawahara
equation [4], equal width (EW) wave equation [5, 6], regularized long wave (RLW) equation
[7, 8], Burgers equation [9, 10] and others [11, 12]. This paper will focus on the generalized
Benjamin-Bona-Mahony-Burgers (gBBM-B) equation with following form

u, — U, —au, + pu, +ou’u, =0. (1)

where U (X,t) represents fluid velocity in the horizontal direction X, U, is evolution term,

u, is dispersion term, u, is dissipative term and u®u, is nonlinear term [13]. Also, «,

p, u, o are arbitrary constants, p is positive integer and « satisfying
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Many analytical and numerical methods including finite difference method [14], meshless
method [15], tanh method [16], homotopy analysis method [17], exp-function method [18],
tan-cot function method [19], collocation method [20] were applied to BBM-B equation in
the past decades.

The organization of the paper is as follows: In Section 1, we describe quadratic

B-spline interpolation function and its some properties. In Section 2, the gBBM-B equation is
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considered and obtained its numerical solution using Galerkin finite element method based
on quadratic B-splines. In Section 3, stability of the applied method is investigated based on
von Neumann theory. In Section 4, numerical simulation is performed to check the

performance of the proposed method. Finally, a brief conclusion is given in Section 5.

1. Quadratic B-splines and Properties

In this study, gBBM-B equation (1) is considered where a, £, x4 and o are
arbitrary parameters, p is positive integer and the subscripts X and t denote the spatial

and temporal differentiations, respectively.

Firstly, solution domain of the problem is restricted over an interval a < x<b. Space

interval [a, b] is separated into uniformly sized finite elements of length h by the knots

X, like that a=x,<x <..<xy=Db . Lengths of these finite elements are

m

h= =Xy —X,) for m=1,2,..,N.

Eq. (1) is solved by taking
u(a,t)=0, u(b,t)=0,

_ _ 3)
u(a,t)=0,u(b,t)y=0 , t>0
homogeneous boundary conditions and
ux,0)=f(x) , a<x<h. (4)
the initial condition.
The cubic B-spline approximation functions ¢ (X) are defined as
(Xm+2 _X)2 _3(Xm+1 _X)2 +3(Xm _X)Z’ [Xm—1>xm]a
1 (X + _X)2_3(X + _X)Z’ [X » X +]a
¢m(x):_2 m+2 , m+1 m> m+1 (5)
h (Xm+2 - X) > [Xm+1 > X2 ]’
0, elsewhere.

at the knots x, are defined over the interval [a,b] for m=-1(1)N [21]. All spline
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functions apart from ¢, ,(X), ¢,(X) and @, ., (X) are zero over the element [X ,X..].
Each quadratic B-spline function covers three elements so that each element [X,X,. ] is
covered by three spline functions. The values of ¢, (X) and its first derivative may be

tabulated as in Table 1.

Table 1. Quadratic B-splines and its derivatives at nodes X,

X Xm—l Xm Xm+1 Xm+2
. (X) 0 1 1 0
he, (x) 0 2 2 0

The set of these approximation functions {¢71(X),¢0(X),...,¢N (X)} forms a basis for

approximate solution which will be defined over [a,b]. A global approximation is signified

in terms of the quadratic B-spline approximation functions as

Uy (X, 1) = D 4,(x)5, (), (6)

i=-1

where o,(t) are time dependent parameters to be determined from the boundary and

weighted residual conditions. A typical finite interval [X ,X..,] can be converted to the
interval [O, 1] by a local coordinate transformation defined as

hé=x-x, , 0<&<l1 (7)

In this way, it can be studied more easily on the defined new interval [0,1]. In this

case, quadratic B-spline functions (5) can be defined in terms of & over the interval as the

following.
B (&) =(1=8),
b (£) =1+25 287, (8)
b (§)=E7.

Variation of the function u(x,t) over element [X_,X . ] is approximated by
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m+1

uy (&= 4(£)s (1), 9)

i=m-1

where o, |,

5., 0

.1 act as element parameters and B-splines ¢, |, 4., ¢,,, as element

shape functions.

Using trial function (6) and quadratic splines (5), the values of U and U at the knots

are determined in terms of the element parameters o, by

Uy (Xpot)=Up =36, +6,,
ur'n = %(_6ml + §m+l)'

where the symbol “’ ” denotes first differentiation with respect to X. The splines ¢ (x) and

its first derivative vanish outside the interval [X  ,X..,].

2. Implementation of The Method

By applying the Galerkin method to the Eq. (1) with weight function w(X), the weak

form of Eq. (1) is obtained as
b
j w(u, —mu,, —au,, + pu, +ou’u, )dx =0. (10)

For a single element [X_,X ], the following equation is obtained by using transformation

m?> “'m+1

(7) into the equation (10)

1 1 1 1 1
o[ o o ooz =0,
Also, Eq. (11) can be written as

1
J'Ow[ut—alugft—a2u§§+a3u§+a4upu§]d§=0. (12)

where a, = hﬁ , , = %, a, = ﬁ , a, =% and z, =u”. Integrating Eq. (12) by parts and

? h
using Eq. (1) lead to
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1
J‘O[wut +a,W.U, +a,W.U, +a,Wu, +a,z,wu.]d& —awu, |, —a,wu, [,=0. (13)
Taking the weight function as quadratic B-spline shape functions given by Eq. (5) and
substituting approximation (9) in integral equation (13) with some manipulation, the element

contributions are obtained in the form

m+1

S [[dsacalasoc-angl |5

i,j=m-1

(14)
m+1 1 1 . 1 . - .
v 3 [afdderafgde az, [adds-and ] |5 =0
i,j=m-1
In matrix notation, this equation becomes
A +a,(B*-C*)15° +[ a,B +(a, +a,z,) D —a,C* |5 =0, (15)
where 6°=(5,,, &, , O,,) are the element parameters and the dot denotes

differentiation with respect to t. The element matrices A°,B°,C® and D° are given by the

following integrals:

e

e _ ! -
Aj—jo¢i¢jd§—30 13 54 13
1 13 6
N

e ., .

Bij=jo¢l¢jd§=§ -1 2 -1
-1 -1 2
1 -1 0

e _ ]
Cij_¢|¢j|0_21 -2 1
0 -1 1
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3 02 1
Dt = [ggde=L] -8 0 8
= Jpgds=— -

1 2 3

where the suffices i, j take only the values m—1, m, m+1 for the typical element
[Xp> Xyi1- A lumped value for @ and @ are found from (u, +u,,, )" /2" as
yn =21—p(5m_1+25m+5m+1)p. (16)

By assembling all contributions from all elements, Eq. (15) leads to the following matrix
equation;

A+a (B-C)l6+|a,B+(a, +a,4,)D-a,C|5=0, (17)
where 5=(5,, J,, ..., Oy, Oy)" are global element parameters. The rows of matrices

A, B, C and (a,+a,4,)D have the following form:
1
— —(1,26,66,26,1),
30

B =§(—1,—2,6,—2,—1)

(13)
C =(0,0,0,0,0),

_(a“s +a4/11)a_2(a3 +a4ﬂ1)_8(a3 +a4ﬂ,2),
D=l 3(a, +a,4)—3(a +a,4),
6
8(a, +a,4,)+2(a,+a,4).(a, +a,4,)

where
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m

1
A :F(5m—l +26,,+0,.)",

22=%(5m+25 +6,.,)", (19)

m+1

A =21—p(5 +25 ., +3,.,)"

m-+1 m+2

Replacing the time derivative of the parameter 6 by Crank-Nicolson formulation and

parameter & by usual forward finite difference approximation

1

_l n+ n S
5—5(5 R ) n

(5n+1 . 5n) (20)

into Eq. (17), it gives the (N +2)x (N +2) matrix system

At n+l1
{[A+ a,(B-C)]+[a,B+(a,+a,4,) D—azc]?}é
21

:{I:A+al(B—C)]—|:azB+(a3 +a4/1m)D—a2C]%}5“,

where At is time step. Applying the boundary conditions (3) to the system (22), a NxN
matrix system is obtained. This system is efficiently solved with a variant of the Thomas

algorithm. A typical member of the matrix system (22) may be written in terms of the nodal

parameters 8" and 6™ as

Vi0ns + V2Om + V30n" + VOt + VsOmis = VsOn_y + V4Ot + ¥30m + V200

m+1 m+2 m-+1

n
+ 71012

(22)
where
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1 2a aAt (a+ad,)At

"T303 T3 12
_26 4a 2aAt 10(a +a,4,)At
273073 3 2
7, =2 40 1201, (23)
30
_26 43 2aAt 10(a, +a,4, At
30 3 3 12 ’
1 2a aAt (a+ad,)At
V=T :
30 3 3 12
which all depend on &". The initial vector of parameters 5° = (5, ..., Jy) must be

determined to iterate the system (22). To do this, the approximation is rewritten over the
interval [a,b] attime t=0 as follows:
- 0
Uy (%,0)= D ¢, (X)5, (24)
m=-1

where the parameters 5, will be determined. U, (X,0) are required to satisfy the following
relations at the mesh points x, for m=0,1,...,N,

uN (Xmﬁo) = u(XmJO)a

Uy (%, 0) = U (Xy,0)=0. (25)

The above conditions lead to a matrix system of the form

I -1 591 u;\l(XOaO)
1 1 5(;) UN(XOaO)

St | Uy (Xy1,0)
1 1_5,3_ | Uy (Xy,0) |

which can be solved using a variant of the Thomas algorithm.
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3. Stability of the Scheme

The stability analysis is based on the von Neumann theory. The growth factor £ of the
error in a typical mode of amplitude
Oh = g™, (26)
where h the element size and Kk is the mode number, is determined from a linearization of

the numerical scheme. Substituting the Fourier mode (26) into (27) gives the following

equality
€1§n+1 i(m-2)k +82§n+1 —1)kh +S3§n+1 i(m)kh +g4§n+l |m+1)kh+€5§n+1e|(m+2)kh (27)
_775§n i(m-2)k +774§n i(m-1)k +773§ e +772§n |m+1)kh +771§nei(m+2)kh.
where
€1=I—E—M—K(ﬂ+02m), 77121—E+M—K(ﬂ+02m),
& =26-2E-2M —10K(ﬂ+azm),772 =26-2E+2M —10K(,B+azm),
& =66+6E+6M, n, = 66+6E -6M, (28)
£ =26-2E-2M +10K (B +01,),1n, =26—2E+2M +10K (S +017,),
&=1-E-M+K(p+0o1,), ns=1-E+M +K(B+017,),
and
20u 10 _ SAt
E= , M= , 29
h? h* 2h 29)
Now, if Euler’s formula
e"" = cos(kh)+isin(kh), (30)
is used in Eq. (27) and this equation is simplified to the following growth factor:
=a—Z (31
o, +iw

in which
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@, =(66+6E —6M )+(52—4E +4M )cos(kh) +(2—2E +2M ) cos(2kh),
@, =(66+6E +6M )+(52—4E —4M )cos(kh) +(2—2E —2M )cos(2kh), (32)
@ =20K (ﬂ+azm)sin(kh)+2K (ﬁ’+azm)sin(2kh).

The von Neumann criterion for stability |£|<1 will be satisfied when

y{(66h2 +60aAt) +(52h* — 40aAt ) cos(kh) + (h? —20aAt)cos(2kh)} > 0. (33)

4. Results and Discussion

Numerical results of the gBBM-B equation are obtained for two problems with zero

boundary conditions.

Example 1. Consider gBBM-B equation (1) with boundary condition
u(-1,t)=u(l,t)=0 , te[O,S] (34)
and initial condition
u(x,0) =sech k(x-x,)] , xe[-1,1]. (35)
The parameters are taken as f=-1, u=-1, o=1, a =1, c=1, h=0.01 and
At=0.01. Also, coefficient of dissipative term is chosen as o =-0.61, —1.16, —1.49,
—-1.75 for p=1,3,5,7, respectively. Amplitudes of the initial solitary waves are amp =1.
Numerical solution of Eq. (1) is given in Table 2 for some values of X in selected times.

It can be observed from Figure 1, the height of the solution waves to U is more and more

low with time elapsing according to the effect of dissipative term u,, and its coefficient.

Also, the wave is faster damping as the nonlinear effect increases. Because, coefficient of

dissipative term « is based on degree of the nonlinearity from Eq. (2).
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Table 2. Numerical results of Example 1 with different values of P

X/t 0 1 2 3
—0.5 .013475 -.067070 -.068412 -.047553
0 1.00000 464556 207699 .089697
0.5 .013475 -.005753 -.011119 -.010613
X/t 0 1 2 3
—0.5 .013475 -.052916 -.024984 -.008422
0 1.00000 244697 .061510 .015861
0.5 .013475 -.013665 -.007000 -.002474
X/t 0 1 2 3
—0.5 .013475 -.040678 -.012503 -.002813
0 1.00000 .168478 .030604 .005815
0.5 .013475 -.013936 -.004229 -.000930
X/t 0 1 2 3
—0.5 .013475 -.032560 -.007266 -.001208
0 1.00000 127011 .018016 .002692
0.5 .013475 -.012840 -.002717 .002692
[\ — A o
08 \ — =27 0.8 - .‘"I \ﬂl —t=2|
061 ;‘f \‘. 1 06| .c'; \.‘
] 0.4 / \\ g 04} _“-"‘; \\
El / ' \ E _ \
0zh VAN \\\ 1 02f Vi , \\‘
—— ————— f— e e
@p=1 (b)) p=3
/\ — )\ =
081 [ \‘.‘ —t=2| 08 / \“. Y
06 ,s"‘ \ 7 1 06 .‘"; \
g 04 ‘;‘;“ \ g 04l 5:"5 \\
= ‘-‘.“ \ & ‘-"; \
0zf ) \\ B 0z . \\
()p=>5 dp=7

Figure 1. Numerical solution of U(X,t) with different values of P for Example 1
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Example 2. Consider gBBM-B equation (1) with boundary condition
u(-4,t)=u4,t)=0, te[0,0.S] (36)
and initial condition
u(x,0)=—sin(zx) , xe[-4,4]. (37)
The parameters are chosen as f=-1, u=-1, o=1, a =1, c=1, h=0.01 and
At=0.01. Also, coefficient of dissipative term is taken as o =-0.61, —1.34, —1.75,
-2.07 for p=1,4,7,10, respectively. Numerical solution of Eq. (1) is given in Table 3

for some values of X in selected times. Figure 2 shows that the height of the numerical
approximation to U decreases as time progresses. It can be seen from Eq. (2), the effect of

the dissipative term U,, 1s based on value of p. So, the height of the solution waves to U

decreases faster as nonlinearity of Eq. (1) increases.

Table 3. Numerical results of Example 2 with different values of p

t/x 2.5 —0.5 1.5 35
0 1999995 1.00000 1999998 1999990
p=1 025 792202 940395 827620 724142
05 689313 885406 621824 474348

t/x 2.5 —0.5 1.5 3.5
0 1999995 1.00000 1999998 1999990
p=4 025 663783 750396 680732 611696
05 501421 567684 412100 350838

t/x 2.5 —0.5 1.5 3.5
0 1999995 1.00000 1999998 1999990
p=7 025 1602231 671759 602740 542607
05 432622 463117 300890 268881

t/x -2.5 -0.5 1.5 35
0 1999995 1.00000 1999998 1999990
p=10 025 556227 613212 552894 500271
05 380033 393360 241680 224114
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©p=7 (dp=10

Figure 2. Numerical solution of U(X,t) with different values of P for Example 2

5. Conclusion

In this paper, Galerkin finite element method based on quadratic B-spline interpolation
function is applied to gBBM-B equation. Stability analysis is investigated based on von
Neumann theory. Then, it is showed that the applied method is conditionally stable. Also,
two test problems with zero boundary conditions is successfully studied to prove
performance of the method. Consequently, it can be said that this method is a reliable method
for calculating the numerical solutions of similar type non-linear equations and representing

similar type waves.
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