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Background: Most of the studies in academic
journals use p values to represent statistical
significance. However, this is not a good
indicator of practical significance. Although
confidence intervals provide information about
the precision of point estimation, they are,
unfortunately, rarely used. The infrequent use of
confidence intervals might be due to estimation
difficulties for some statistics. The bootstrap
method enables researchers to calculate
confidence intervals for any statistics. Bootstrap
resampling is an effective method of computing

Methods of bootstrapping
R software

confidence intervals for nearly any estimate, but
it is not very commonly used. This may be
because this method is not well known or people
may think that it is complex to calculate. On the
other hand, researchers may not be familiar with
R and be unable to write proper codes.

Purpose: The purpose of this study is to present the steps in the bootstrap resampling method to
calculate confidence intervals using R. It is aimed toward guiding graduate students and researchers
who wish to implement this method. Computations of bootstrapped confidence interval for mean,
median and Cronbach’s alpha coefficients were explained with the R syntax step-by-step. Moreover,
traditional and bootstrapped confidence intervals and bootstrapped methods were compared in order
to guide researchers. Main Argument and Conclusions: With the help of statistical software today it
is easy to compute confidence intervals for almost any statistics of interest. In this study R syntax were
used as an example so that beginners can use R to compute confidence intervals. Results showed that
traditional and bootstrapped confidence intervals have very similar results for normally distributed
data sets. Moreover different bootstrapped methods produce different results with skewed data sets.
This is because bias corrected and accelerated interval methods are suggested for use with skewed
data sets. Implications for Research and Practice: R codes presented in this study guide researchers
and graduate students while computing bootstrap confidence intervals. Furthermore findings about
the comparison of bootstrap methods help researchers choose the most appropriate bootstrap
methods. Results and the main argument of this study may encourage researchers to compute
bootstrap confidence intervals in their studies.
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Introduction

The p value is the probability under the assumption that there is no true effect or
no true difference of collecting data that shows a difference equal to or more extreme
than what it is actually observed (Reinhart, 2015). Hypothesis testing uses p value to
get statistical significance. It is the most widely reported statistic in academic
journals. M. Marshall et al. (2000) highlighted that significance of testing is reported
in 97% of the research papers in experimental psychology research journals.
However the p value has some limitations and it is not an indicator of practical
significance. It is well known that confidence intervals provide more information
than p values (Haukas & Lewis, 2005). Effect sizes, confidence intervals, and
confidence intervals of effect sizes are indicators of practical significance (Banjanovic
& Osborne, 2015). Editors of many scientific journals require the use of confidence
intervals (Cooper, Wears & Schriger, 2003). Moreover APA’s Publication Manual
(2001) highlighted the importance of calculating and reporting confidence intervals
and effect sizes in academic research.

Unfortunately confidence intervals are rarely reported in academic papers.
Reinhart (2015) stated the reasons for this as follows:

It’s best to do statistics the same way everyone else does, or else the
reviewers might reject your paper. Or maybe the widespread
confusion about p values obscures the benefits of confidence intervals.
Or the overemphasis on hypothesis testing in statistics courses means
most scientists don’t know how to calculate and use confidence
intervals.

According to Banjanovic and Osborne (2015) the infrequent use of confidence
intervals is due to estimation difficulties for some statistics. Some statistics may
require multi-step formulas with assumptions that might not always be viable for
calculating confidence intervals.

The bootstrap method enables researchers to calculate confidence intervals for
any statistics regardless of the data’s underlying distribution. The empirical
bootstrap was introduced in 1979 (Efron 1988), but it was feasible to implement it
without modern computing power. However, computers and statistical software
have improved a lot, and today it is possible to calculate confidence intervals using
the bootstrap method. Moreover free and open source R software enables researchers
to write their own syntax to calculate confidence intervals for various statistics.

Bootstrapping

Briefly, bootstrap methods are resampling techniques for assessing uncertainty.
In a broad sense the bootstrap is a widely applicable and extremely powerful
statistical tool that can be used to quantify the uncertainty associated with a given
estimator or statistical learning method (James et al., 2014). Bootstrap resampling is a
method of computing confidence intervals for nearly any estimate. In most studies
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the researchers begin with the population and take a sample from the population and
run an analysis on that sample. In bootstrap resampling additional sub-samplings
and replications are implemented on the original sample. In other words in the
beginning of the process thousands of “bootstrapped resamples” are generated from
the original sampling using random sampling with replacements. Then the
designated statistic (mean, median, regression, Cronbach’s alpha coefficient, etc.) is
replicated in each of these resamples. Therefore, researchers may get thousands of
estimates on the designated statistics. Distribution of those estimates is called
“bootstrap distributions”. The bootstrap distribution may be used to estimate more
robust empirical confidence intervals. In bootstrap sampling the number of
replications is very important. Diciccio and Efron (1996) highlight the importance of
using at least 2000 replications while conducting bootstrap resampling. A schematic
description of the steps for estimating confidence intervals using bootstrap formed
by Haukoos & Lewis (2005) is shown in Figure 1.

Bootstrap
Bootstrap Replications of
Samples Statistic
Resampled ’ i
Dataset |
Resampled - i
Dataset 2
Original ® ® Bootstrap Estimate
Dataset —»=  of Confidence
(Size n) Interval
L ] @
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Figure 1: Description of the steps in bootstrapping.

Methods of Bootstrapping

There are different methods for estimating confidence intervals from a
bootstrapped distribution. The most frequently used methods are:

¢ The normal interval method
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* The percentile interval method
¢ The basic interval method
* The bias corrected and accelerated interval method.

The normal interval method computes an approximate standard error using
bootstrap distribution (sampling distributions resulting from bootstrap resamples).
Then Z distribution is used to get the confidence interval. The percentile interval
method uses a frequency histogram of the specific statistics computed from bootstrap
samplings. The 2.5 and 97.5 percentiles constitute the limits of 95% confidence
intervals (Haukoos & Lewis, 2005). The percentile interval method makes no
adjustment while the student interval method corrects each statistic by its associated
standard error and converts the distribution to studentized distribution. Then the
confidence intervals are found at the 0.025 and 0.975 quantiles as done in the
percentile interval method. The bias corrected and accelerated interval method
corrects the distribution for bias and acceleration. This method adjusts the
distribution based on two coefficient called “bias correction” and “acceleration”. The
bias correction adjusts for the skewness in bootstrap distribution; it will be zero when
bootstrap sampling is perfectly symmetric. On the other hand, coefficients of
acceleration do corrections for non-constant variances within the resampled data set
(Efron, 1988). Then confidence intervals are found at the 0.025 and 0.975 quantiles of
the corrected distribution. The basic interval method corrects the distribution for bias
and detects the lower and upper bounds which cover the desired confidence interval
(Banjanovic & Osborne, 2015). Each bootstrapping method has advantages and
disadvantages, and it is important to use the more appropriate method when
computing confidence intervals for the statistic of interest.

Unfortunately, it is not very common to use the bootstrap method to calculate
confidence intervals. This may be because they are not well known or people may
think that it is complex to calculate. There is statistical software that enables users to
compute confidence intervals using bootstrap methods. R is one such software. It is a
language and environment for statistical computing and graphics. Because it is free
and open-sourced, R has become popular recently for statistical data analysis.
Moreover R syntax may seem complicated for people and this may dissuade them
from use bootstrapping methods to calculate confidence intervals. Furthermore,
comparisons of bootstrapping methods may guide researchers while deciding the
methods to be used.

The purpose of this study is to present the steps in the bootstrap resampling
method to calculate confidence intervals using R syntax. It is aimed to guide
graduate students and researchers who wish to implement bootstrap resampling
using R programming language. Computation of bootstrapped confidence intervals
for mean, median and Cronbach’s alpha coefficient were explained step-by-step
using the R syntax. Moreover, some comparisons have been made. Traditional and
bootstrapped confidence intervals were compared while computing mean for
normally distributed data and median for normally distributed and skewed data
sets.
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In this study R codes were written on R consoles and directly copied and pasted
on this manuscript. This is why R codes have different letter characters and sizes
from the other texts in the paper; so many R codes were presented in the paper, they
were not defined as figures.

Traditional Confidence Interval for Mean

Traditionally confidence intervals are computed using the formula x + 1.96 *
(\/ii) where x is the mean and s is the standard deviation and n is the sample size. In

this part at first a pedagogical example is presented to compare traditional
confidence intervals and bootstrap confidence intervals. We will first generate
random data with 100,000 observations. This data set is viewed as population. The
population has random mnormal distribution (Mu=60, Sigma=7) with 100,000
observations.

> population<-rnorm (100000, 60,7)
¥ str(population)
num [1:100000] &4.5 €5.2 51.9 &1.5 50.5

Next we take six random samples of 50 observations from the population in order
to compute traditional confidence intervals.

» list<-wector("list"™,6)
» for ( i in 1:6) {list[[i]]<-sample (population,50)}
» str(list)
Li=st of &6

g nam [1:50] 51.3 63.5 74.7 60.5 £2.8

g num [1:50] 57.5 48.7 70.2 74.8 57

g num [1:50] 52.9 50.3 63.2 56.7 62.3

g num [1:50] 57 55.3 62.7 69.4 62 .

g num [1:50] 59.5 56.6 59.1 55.6 58

g num [1:50] 595.9 54.4 52.8 57.5 52

The next step is to write a simple function to calculate confidence intervals for the
six samples taken randomly from the population.

> conf.interval<-function(x){ mean=mean(x); =sd<-z3d(x),; n<-length(x)

+ =ze<-1.96% (=2d/ (n**.5)); ci<-c(mean=mean,lowerci=mean-se, upperci=mean+ze)
+ returnici)}

» conf.interval (list[[1]]

mean lowercli upperci
59735779 57.6643% 62.05118

Now it is easy to compute 95% confidence intervals for the samples randomly
taken from the population. We can round the results to two digits using the round ()
function.
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> round{conf.interval (list[[1]]),2)
mean lowerci upperci
59.86 57.66 62 .05

We can also write another function to take six random samples from the
population. It would be better to define set.seed () for each sample. We will use the
same samples to generate six different bootstrap distributions so we can compare
confidence intervals.

> conf.intervall

function(x, seed) { set.seed(seed)

sanple<-samnple (X, 50) ;7 mean<-mean (sanple) ;sd<-sd (sanple)
n<-length (sample); =se<-1.36*%(=d/ (n**.5))

ci<-round (c (mean-mean, lowWwerci=mean-se,upperci=mean+se) . 2)
returnici)}

conf.intervall (population, seed=10)
mean lowerci upperci

61.33 53.76 62.90

conf.intervall (population, seed:
mean lowerci upperci

60.46 58.27 62.65
conf.intervall (population, seed=30)
mean lowerci upperci

59.73 5T7.55 61.91
conf.intervall (population, seed=40)
mean lowerci upperci

59.21 57.33 61.09
conf.intervall (population, seed=50)
mean lowerci upperci

61.71 59.53 63.89
conf.intervall (population, seed=60)
mean lowerci upperci

6l.24 59.03 63.45

L[}
35
(=]

Now we can compute 95% confidence intervals of six samples randomly taken
from the population. We defined set.seeds as 10, 20, 30, 40, 50 and 60 for 6 samples

respectively.

Bootstrapped Confidence Interval for Mean

In order to get bootstrap distribution, the “boot” package will be used (Canty &
Ripley 2016). The “boot” function is used to generate bootstrap distribution for
specific samples, but this function requires writing simple functions about the
statistics of interest.
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> select

function(x,seed) { set.seed(seed)
sanple<-sample (X, 50)

return (sample) }

> mean.func

fu;ction[x,i]{ mean (x[i])

The first function is used for the first argument of “boot” function. It is used to
take the specific sample from the population. The second one is the statistics of
interest that is “mean” in this example.

> boot.samplel<-boot (select (population,seed=10)  mean.
> boot.sampleZ<-boot (select (population,seed=20) mean.
> boot.sample3<-boot (select (population, seed=30) ,mean
> boot.sampled4<-hoot (select (population, seed=40) ,mean
> boot.sampleS<-boot (select (population, seed=50) ,mean
> Faat.sarp;eﬁi—ba:t[se;ect[pap:;atiaz,3EEd=SG],Kea*

So we generated six bootstrap distributions with 2,000 resamples. We used the
“select” and “mean.func” functions within the “boot” functions. Below is the
bootstrap statistics for the first sample.

Bootstrap Statistics
original bias std. error
tl* §1.33011 -0.02389115 0.8002305

The value original is the mean of the whole sample while bias is the difference
between the original mean and the mean of the bootstrapped samples. Standard
error is the standard deviation of the simulated values. The next step is calculating
confidence intervals for each original and bootstrapped samples. We used
the”boot.ci” function to compute confidence intervals for each bootstrapped sample.

> cl.bootl<-boot.ci(boot.zamplel) > ci.bootd<-boot.ci(boot.=zample2)
> ci.boot3<-boot.ci(boot.sample3) > ci.boot4<-boot.ci(boot.zampled)

> ci.bootS<-boot.ci(boot.samples) > ci.booté<-boot.ci(boot.zampled)

Intervals

Level Hormal Basic
95% (59.79, 62.892 ) [(59.75, &62.%94 )
Level Percentile BCa

95% (59.72, 62.91 ) (59.79, &62.9%96 )

Calculations and Intervals on Original Scale

The “basic” title in the R output refers to “basic interval method”. In this method
confidence intervals are estimated by correcting the bootstrap distribution for bias or
skew. The “Bca” title in R output refers to the “bias corrected and accelerated interval
method”. In the Bca method the bootstrap distribution is corrected for bias and
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acceleration and the CI are found at the .025 and .975 quantiles of the corrected
distribution (Carpenter & Bithell 2000; Banjanovic & Osborne, 2015).

Comparison of Traditional and Bootstrapped Confidence Intervals for Mean

The result of the “boot.ci” function produces confidence intervals for four main
bootstrapped methods discussed earlier. Table 1 presents the comparison of
confidence intervals of each original random sample and its associated bootstrap
distributions.

Table 1
Confidence Intervals for Original and Bootstrapped Samples

Sample Mean Traditional 95% CI Bootstrapped 95% CI

Lower Bound Upper Bound Lower Bound Upper Bound

1 6133  59.76 62.90 59.79 62.92
2 60.46  58.27 62.65 58.34 62.59
3 59.73 5755 61.91 57.54 61.94
4 59.21 57.33 61.09 57.32 61.08
5 61.71  59.63 63.89 59.53 63.88
6 6124  59.03 63.45 58.97 63.46

As seen in Table 1 two methods produce very similar results. The differences are
at the first or second decimal place. However, it is very important to note that those
methods will yield very similar results unless the data violates parametric
assumptions such as normality (Banjanovic & Osborne, 2015).

Bootstrapped Confidence Intervals for Median

Median is the observation at the 50th percentile in a set of data ordered from the
lowest value to the highest value. It is commonly reported and considered a more
valid definition of center when the frequency distribution of the variable is skewed.
No simple formula exists for computing confidence intervals for median. According
to central limit theorem, the number of resampled data sets increasing the
distribution of the resulting statistic will become approximately normal (Zar, 1999).
However, using the bootstrapped resampling method, it is possible to calculate the
confidence interval for median.

In this example we will calculate the confidence interval for median using two
different data sets; one is normally distributed and the other is skewed. Next we will
compare bootstrapped methods with each other.

We had a normally distributed data set with 1,000,000 observations called
“population”. Now we generate another data set called “population 2”7 with
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1,000,000 observations using skewed chi-square distribution. In the previous example
the population had 100,000 observations. There is no technical reason for increasing
the number of the observations from 100,000 to 1,000,000. Both are large enough. It is
aimed to demonstrate to the reader how R could easily generate big data sets.

> population?<-rchi=sg(1000000,5)

» str(population?)

num [1:1000000] 1.82 2.05 2.682 3.71 3.22
> |

First we will compute a confidence interval for median using a normally
distributed population. We compute bootstrapped distributions and bootstrapped
confidence intervals using the functions below, previously mentioned in detail.
Additionally we added a new simple function called “median.func” to calculate the
median within the “boot” function.

> median. func
function(x,1i) { median(x[i])

» norm. 2ample<-boot (select (population, seed=15) ,median. func,B=2000)
> norm.sample

> boot.ci(norm.sample)

Then we will compute bootstrapped confidence intervals for the median using
skewed distributed population.

» skew.zample<-boot (select (population?2, seed=15) median.func, R=2000)
> boot.ci(zkew.zample)
Comparison of Bootstrapping Methods Regarding Distributions of Data Sets

Table 2 summarizes the confidence intervals for normally distributed and skewed
data sets regarding bootstrapping methods.
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Table 2

Comparison Confidence Intervals Regarding Bootstrapping Methods

Normally Distributed = Skewed Data

Data
Methods for Bootstrapping 95% Confidence 95% Confidence
Interval Interval
Lower Upper Lower Upper
Bound Bound Bound Bound
The normal interval method 56.80 59.04 4.133 6.071
The percentile interval method  56.87 59.35 4.081 5.865
The basic interval method 56.66 59.14 4.295 6.078
Bias corrected and accelerated 56.86 59.32 3.740 5.848

interval method

Table 2 shows that all bootstrapping methods for normally distributed data sets
produce very similar confidence intervals. The only differences are at the first or
second decimal place. On the other hand, for skewed data sets bootstrapping
methods produce different confidence intervals. Therefore, different methods of
skewed data sets of bootstrapping may produce different results. Before deciding the
bootstrapping method to be used, their assumptions should be taken into
consideration. The bias corrected and accelerated interval method requires no
assumptions about the distribution of the data sets while others do. So it is better to
consider using this method to compute confidence intervals with skewed data set.

Bootstrapped Confidence Intervals for Cronbach’s Alpha Coefficient

Cronbach’s alpha coefficient is an indicator of reliability that is commonly used,
especially in psychological tests. In fact, it is the indicator of internal consistency.
Many researchers use Cronbach’s alpha coefficient for a set of items to construct a
scale. Coefficient alpha (commonly called Cronbach’s alpha) was developed by Lee
Cronbach in 1951 to provide a measure of the internal consistency of a test or scale; it
is expressed as a number between 0 and 1. Calculating alpha has become common
practice because it is easier to use than other estimates (e.g. test retest reliability
estimates) as it only requires one test administration (Tavakol & Dennick, 2011).
Item-total correlations are the correlation between an item and all other items, where
the total of the other items is achieved by summing and averaging them (Banjanovic
& Osborne, 2015). Moreover computing confidence intervals for Cronbach’s alpha
coefficient and item total correlations provides a very good indication of the
generalizability of the results.
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To compute traditional item total correlations and Cronbach’s alpha coefficient
the “CTT” package was used (Willse, 2014). In order to compute bootstrapped
confidence intervals for Cronbach’s alpha coefficient and item-total correlations,
“boot” package has been used. The data is taken from a five-item scale that was
administered to 300 hundred participants.

First the item total correlations and Cronbach’s alpha coefficient were computed
with the codes given below. “cr.datal” is the original data set. The object “cr.alp”
was created to compute the statistics of interest. “cr.alp$alpha” is the Cronbach’s
alpha coefficient and “cr.alp$pBis” is the item total correlations for each of the five
items.

» cr.alp<-reliabilityv(cr.datal, itemal=TRUE)

> cr.alpfalpha
[1] ©0.8346358
> cr.alpSpBis
[1] 0.5964466 0.7006749 0.6642530 0.61539572 0.6021944

Before bootstrapping 2,000 resamples we were required to write a simple
function to use within the boot function. “cr.samp1” is the function that might be
used to compute Cronbach’s alpha coefficients and item total correlations for
bootstrapped resamples.

> cr.sampl

function(data, indices) {
sample<—data[indices, ]
cr.alpha<-reliabkility(sample, itemal = TRUE)
result=with(cr.alpha,c(alpha,pBis))
IeFaIn[IesaltJ}

Next 2,000 bootstrapped resamples were generated using the boot function given
below. This process may take 30 minutes to 1 hour depending on the size of the
original sample and the number of the bootstrapped samples. The values named as
original in the output are the Cronbach’s alpha coefficient (the first row) and item
total correlations (rows 2 to 5) for the original data set. Bias is the difference between
the original and the bootstrapped values. Standard error is the standard deviation of
the simulated values.

> cronbach <- boot (data=cr.datal, statistic=cr.sampl, E=2000)
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Bootstrap Statistics
original bias std. error

tl® 0.8346358 -0.0014286370 0.02290934
t2* 0.59644866 0.001719922%9 0.05168665
t3* 0.7006745 -0.0001259864 0.03830456
t4* 0.6642530 -0.0016074008 0.04738270
t5* 0.6159572 -0.0007566143 0.05757076
te® 0.6021944 0.0001811386 0.05587665

The next task is to compute confidence intervals for Cronbach’s alpha coefficient
and item total correlations. The function “boot.ci” was used to calculate those
intervals, but we needed to write another function including the “boot.ci” function.
This function is called “computeCI” When writing the code, I was inspired from the
code written by Banjanovic and Osborne (2015). The first line in the output gives
confidence intervals for Cronbach’s alpha coefficient and the rest of the lines give the
intervals for item total correlations for each item respectively. I restricted the output
only with the “percentile” method of bootstrapping discussed above.

> computeCI<-function(alpha) {

+ Conf.Interval<-do.call ("rbind", =sapply(l:&6, FUN = function (i)
+ boot.ci(alpha,type="perc", index=1)%perc[4:5], =simplify = FAL3E))
+ return(Conf.Interwval)}

> computelI (cronbach)
[,1] [.2]

[1,] 0.7851932 0.8749758
[2,] 0.4932083 0.7001377
[3,] 0.8206685 0.7704308
[4,] 0.5632592 0.7518773
[5,] 0.4953220 0.7198234

0.4808203% 0.7054129

[8,1]
1
Table 3 presents the values and confidence intervals for the statistics of interest.

Table 3
Item Total Correlations, Cronbach’s Alpha Coefficient, and Related Confidence Intervals

Items Original Item Total Bootstrapped confidence
Correlation Intervals
Lower CI Upper CI
1 0.60 0.49 0.70
2 0.70 0.62 0.77
3 0.66 0.56 0.75
4 0.62 0.49 0.71
5 0.60 0.48 0.71

Cronbach Alpha 0.83 0.79 0.87
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As seen in Table 3, Cronbach’s alpha coefficient for the scale is 0.83 and the item
total correlations vary between 0.60 and 0.70. The confidence intervals for Cronbach’s
alpha is relatively small compared to those for item total correlations (0.79 - 0.87). On
the other hand, confidence intervals for item total correlations are wide. This may
lead us to expect that there will be significant variability in the point to estimate for
item total correlations in other similar samples. The purpose of this study is not to
construct or adopt a scale, so the results are not discussed in detail. But the point is
that computing confidence intervals for Cronbach’s alpha coefficient and item total
correlations may guide the researcher while constructing scales.

Discussion

Confidence intervals are good indicators of practical significance, unlike p values
and they also provide more information than p values (Haukas & Lewis, 2005).
Unfortunately, confidence intervals are rarely reported in academic papers. This is
because computing confidence intervals are not practical and not possible for some
statistics. This is why bootstraps methods, which are resampling techniques for
assessing uncertainty, have become popular.

In this study the basic principles of bootstrapping and some commonly used
bootstrapping methods were briefly presented. Then computation of bootstrapping
methods for mean, median and Cronbach’s alpha coefficient were explained using R
syntax. Furthermore, some comparisons were done. Traditional and bootstrapped
confidence intervals were compared for mean. Moreover bootstrapped methods
were compared while calculating median for normally distributed and skewed data
sets.

With the help of statistical software today it is easy to compute confidence
intervals for almost any statistics of interest. R, which is a free and open-sourced
software, is one of them. This is why in this study R syntax was used as an example
so that beginners could use the R software to compute confidence intervals. Those
syntax are not the only solutions but they are just some of the many other possible
ways to write syntax while computing confidence intervals.

The results of the comparisons done in this study show that with normally
distributed data, traditional and bootstrapped confidence intervals are close to each
other. However, with skewed data sets this may not be so. In these cases the
bootstrapped methods come into prominence.

The other important point is deciding the bootstrapped methods to be used when
computing confidence intervals. Banjanovic and Osborne (2015) present very
effective strategy to decide the bootstrapped methods to be used. They suggest that
researchers answer four simple questions.

1.  Is there a formula to estimate the standard error of the statistics?
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2. Is the distribution symmetrical around the mean of the bootstrapped
distribution?

3. Is the distribution normal?
4. Is the sample estimate a biased estimate of the population statistics?

The answer for the first question is “yes” for mean but “no” for median. For
example, for small samples or skewed distributions it may be advised to run
different methods. If the results differ from each other it may be advised to use the
bias corrected and accelerated interval method since it has no assumptions about the
distributions while the others do. Therefore, for the example presented in Table 2 it
would be better to use the bias corrected and accelerated interval method. However,
Banjanovic and Osborne (2015) highlighted that bootstrap analysis may not repair
highly biased samples. This principle should be kept in mind. For in-depth
information about the assumptions of bootstrapped methods, see Davison & Hinkley
(1997), Carpenter & Bithell (2000) and Chernick & Labudde (2011).

Using bootstrapped analysis is also very effective for statistics that already have a
formula to calculate standard error. Although it is possible to compute standard
errors for intercept and slope of the regression line in linear regression analysis,
bootstrapped analysis may produce more accurate standard errors (James et al.
2014).

In this study computing bootstrapped methods for mean, median and Cronbach’s
alpha coefficient were illustrated because they are commonly used in social sciences.
But it is also possible to compute bootstrapped confidence intervals for almost any
statistics of interest such as effect size, linear regression, logistic regression, factor
analysis, etc. Each of them may be calculated using “boot” packages illustrated in
this paper. But this package requires writing a simple chunk of code about the
statistic of interest, which can be used within the “boot” function.

Briefly, with help of statistical software like R it is possible to conduct
bootstrapped analysis. Researchers are now able to compute confidence intervals for
almost any statistics. Unfortunately, reporting bootstrapped confidence intervals in
academic journals is very rare. In this study basic steps for calculating bootstrapped
confidence intervals for some commonly used statistics were illustrated using R
syntax. Therefore, it is expected that this study guide will enable researchers to
compute bootstrapped confidence intervals and lead them to report confidence
intervals in their academic studies.
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Bootstrap Ornekleme Yonteminin Cesitli Istatistikler icin Giiven
Araliginin Hesaplanmasinda R Yazilimi ile Kullanimi

Calismanin Temeli: Yokluk hipotezine dayali istatistiksel testler istatistiksel
manidarligr belirlemek icin p degerini kullanir. Akademik dergilerde en ¢ok rapor
edilen istatistik olan p degeri pratik manidarlik anlaminda ¢nemli sinirliliklara
sahiptir. Giiven araliginin p degerine kiyasla daha fazla bilgi sagladig: belirtilebilir.
Etki buytkligl, gtuven aralifi ve etki buytiklugiine iliskin giiven aralifi pratik
manidarhigm gostergeleri olarak goriiliir. Pek ¢ok akademik dergi editorii giiven
aralig1 hesaplarinin makalelerde rapor edilmesi gerektigini vurgulamaktadir. Aym
sekilde APA 2001 raporunda giiven aralig1 ve etki buiytiklugtintin raporlanmasinin
onemi vurgulanmistir. Ancak tiim bunlara ragmen akademik makalelerde giiven
araliginin raporlanma orani ¢ok duistiktiir. Bunun bir nedeni arastirmacilarin ¢ok
yaygin rapor edilen p degerinden daha farkl: bir istatistigi rapor etme konusundaki
cekinceleri olabilir. Bu durum arastirmacilarin hatali da olsa grubun biiytik
¢ogunluguna uyum saglama davranisi sergilemelerine ve bu sayede makalenin kabul
edilme olasiligma artirmak istemelerine dayalt olabilir. Bir diger neden ise bazi
istatistikler igin gtiven araligmmin hesaplanmasmin pratik veya miumkiin
olmamasidir. Bootstrap Ornekleme yontemi giiven aralifi hesaplama siirecinde
kullanilabilecek gti¢lii bir istatistiksel yaklasimdir. Temel amag evrenden secilen bir
orneklem tizerinden yerine koyarak o6rnekleme yontemi ile yeni o6rneklemler
olusturmaya dayanir. Elde edilen yeni 6rneklemlere iliskin istatistikler hesaplanarak
standart hata ve gtiven aralig1 kestirimi yapilabilir. Bu sayede geleneksel olarak
standart hata ve giiven aralif1 tahmini yapilamayan pek ¢ok istatistik i¢in giiven
araliginin  hesaplanmasma olanak tanir. Yerine koyarak ornekleme yontemi
kullarildigy icin orijinal 6rneklemden daha fazla gézlem sayisini iceren 6rneklemler
olusturulabilir. Temelleri 1979 yilinda atilan bootstrap analizinin kullanimi bilgisayar
yazilimlarmin gelisimi ile yayginlik kazanmistir. Yazilimlarin da yardimu ile pratik
bir sekilde hesaplanabilecek bu yontem maalesef ¢ok nadir kullamilmakta ve
arastirma makalelerinde rapor edilmemektedir. Bu durumun temel nedeni bootstrap
yonteminin ve bu stiregte R yazilimmin nasil kullanilacagmin yeteri kadar
bilinmemesi yatabilir. Alan yazimna bakildiginda bootstrap yonteminin R kodlar: ile
aciklandig: calismalarin sinirli oldugu belirlenmistir.

Calismanin Amaci: Bu ¢alismada bootstrap ¢rnekleme yontemine dayali olarak
yaygin kullanilan baz istatistikler icin giiven aralig1 hesaplama stirecinin R kodlar1
ile aciklanmasi amaglanmistir. Calismada oncelikli olarak bootstrap 6rnekleme
yontemine iliskin kuramsal bilgiler verilmis ve kullanilabilecek farkli bootstrap
yontemlerine iliskin aciklamalar yapilmistir. Akabinde sosyal bilimlerde yaygin
olarak kullanilan aritmetik ortalama, ortanca ve Cronbach Alfa ictutarlik katsayisina
iliskin bootstrap giiven aralig1 hesaplama siireci orneklendirilmistir. flk olarak R
kodlar1 kullanilarak aritmetik ortalama icin geleneksel giiven araliklari ve “boot”
paketinden faydalanarak bootstrap giiven araliklari hesaplanmis ve sonuglar
karsilastirilmistir. Daha sonra normal ve carpik olan iki dagilim {izerinden ortanca
icin bootstrap giiven araliklari hesaplanmis ve farkli bootstrap yontemleri bu
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baglamda karsilastirilmistir. Son olarak Cronbach Alfa igtutarlik katsayisina iligskin
bootstrap giiven araliklar: hesaplanmis ve drneklendirilmistir.

Kaynak Kanitlar: Calisma stirecinde geleneksel giiven araligi hesaplama siirecine
iliskin R kodlar1 sunulmustur. Ayrica “boot” paketinden faydalanilmis ve bu paket
icerisinde yer alan “boot” ve “boot.ci” fonksiyonlar1 agiklanmustir. Bu paket
icerisinde yer alan “boot” ve “boot.ci” fonksiyonlari giiven aralig1 i¢in hesaplanacak
her istatistik icin yeni kodlarin yazimini gerektirmektedir. Bu kodlar da arastirma
icerisinde sunulmus ve nasil kullanilacagima yonelik agiklamalarda bulunulmustur.
Calismanin 6zet bolimiin sayfa sinirliligt nedeni ile orijinal Ingilizce metninde
sunulan R kodlar1 ve fonksiyonlar burada verilmemistir. Ancak tartisma ve sonuglar
bolimiinde ©ne ¢ikan bulgular ve ilgili yontemin kullanimina iliskin 6nemli
aciklamalar sunulmustur.

Tartisma ve Sonuglar: Bootstrap ornekleme yontemi uygulama ve yorumlama
acisindan oldukga pratiktir. R programlama diline iliskin temel diizeyde bilgiler ile
bootstrap ornekleme yontemi kolaylikla gerceklestirilebilir. Calisma kapsaminda
gerceklestirilen karsilastirmada aritmetik ortalama icin geleneksel ve bootstrap
yontemi ile kestirilen giiven araliklarinin birbirine ¢ok yakin oldugu gozlenmistir.
Ancak bu durumun normal dagilima sahip veri setleri i¢in boyle oldugu belirtilebilir.
Bunun yani sira ¢arpik ve normal dagilima sahip veri setleri tizerinden ortanca icin
kestirilen bootstrap giiven araliklarmin farkli yontemlere gore degistigi gortilmiistiir
(Normal aralik, ytizdelikli aralik, temel aralik ve yanlilik diizeltmeli aralik). Carpik
dagilimlar icin “yanlilik diizeltmeli aralik” yonteminin daha dogru sonug verdigi
alan yazinda vurgulanmustir. Olcek gelistirme stirecinde kullanilan gercek veri seti
tzerinde Cronbach Alfa ictutarlik katsayis1 ve madde toplam korelasyonlar: igin
hesaplanan bootstrap giiven araliklarinin ise oldukca genis oldugu gozlenmistir. Bu
baglamda olcek uyarlama ve gelistirme siirecinde bootstrap giiven araliklarimnin
hesaplanmasinin arastirmacilara ¢nemli boyutta yol gosterecegi ve daha nitelikli
araclarin gelistirilmesine katki saglayacag:1 belirtilebilir. Bootstrap ornekleme
yonteminin uygulamasi pratik olmakla beraber 6nemli kuramsal temellere dayandig:
belirtilebilir. Bu baglamda ilgili okuyucularmn Ingilizce tam metinde onerilen
kaynaklara ulagsmalar1 6nerilir. Bu ¢alismanin arastirmacilara bootstrap drnekleme
yontemini kullanma stirecinde yol gostermesi ve arastirmacilar giiven araliklarini
rapor etmeleri konusunda tesvik etmesi beklenmektedir.






