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Abstract 

We know that Bonnet surfaces are the surfaces which can admit at least one non-trivial isometry that 
preserves the principal curvatures in the Euclidean three-dimensional space. In this study, firstly, we 
have examined the required conditions for the canal surfaces, which are called the special swept 
surfaces, to be Bonnet surfaces. After that, we have defined the Bonnet canal surfaces in the Euclidean 
three-dimensional space and have obtained some special results for the Bonnet canal surfaces. We 
have studied the Bonnet canal surfaces, which will be formed, when the curve generating the canal 
surface is a special curve. In addition, we have given an example of the Bonnet canal surface by 
considering the conditions. 

Keywords: Canal Surfaces, Bonnet Surfaces, Isothermic Surfaces 

Öz 

Bonnet yüzeylerin, Öklidyen üç boyutlu uzayda asli eğrilikleri koruyan en az bir ihmal edilebilir 
izometriyi kabul edebilen yüzeyler olduğunu biliyoruz. Bu çalışmada, öncelikle, özel bir süpürme 
yüzeyi olarak adlandırılan kanal yüzeylerin Bonnet yüzey olması için gereken koşulları inceledik. 
Sonrasında, Öklidyen  üç boyutlu uzayında, Bonnet kanal yüzeylerini tanımladık ve Bonnet kanal 
yüzeyler için bazı özel sonuçlar elde ettik. Kanal yüzeyi oluşturan eğri özel bir eğri olduğunda 
oluşacak olan Bonnet kanal yüzeyleri inceledik. Ek olarak, şartları göz önüne alarak Bonnet kanal 
yüzeyin örneğini verdik. 

Anahtar Kelimeler: Kanal Yüzeyler, Bonnet Yüzeyler, İzotermik Yüzeyler 

 

 

1. Introduction 

Bonnet [1] proposed a problem which was about  
classification of non-trivial one parameter 
families of isometries preserving both principal 
curvatures. But, it was restated as mean 
curvature instead of both principal curvatures, 
since Gaussian curvature is preserved by 
isometries. Although Bonnet raised this 
problem, the term “Bonnet surface” is firstly 
used by Lalan [2] and he defined as  “Bonnet 

surface is a surface which enables the isometric 
transformation that preserves the mean 
curvature”. After that,  many people [1, 3, 4] have 
studied these surfaces. Also, this topic has been 
examined in Minkowsi space. One of its most 
recent examples was done by Ersoy and Eren [5]. 
They worked on timelike tangent developable 
surfaces to be timelike Bonnet surfaces. 

According to the obtained results about the 
Bonnet surfaces, researchers  have been 
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categorised them into three types. The first of 
them is the surfaces with constant mean 
curvature where the plane and the sphere are 
excluded. If the surfaces are both the isothermic 
and the Weingarten surfaces with non-constant 
mean curvature, then these surfaces are 
isometric to surfaces of revolution. So, it is the 
second type. In this situation, they have infinite 
number of Bonnet nets. The last type is related to 
the surfaces with non-constant mean curvature 
which permit a single non-trivial isometry. If a 
surface is one of the three types mentioned 
above, then it is called a Bonnet surface [6].  

The set of all surfaces, which are non-trivially 
isometric to each other by conservation of the 
principal curvatures, is called a B-family. Such 
two surfaces are said to be associated with each 
other. If an orthogonal net on the surface 
consists of  the lines of curvature of an associated 
surface, then they are called B-nets or Bonnet 
nets [1, 3, 4, 6].  

 A surface occurs when we sweep a sphere on the 
space curve and that surface is called canal 
surface. It has been intensively studied by 
mathematicians as well as engineers since it is 
used in many fields, like the surface modeling for 
CAD/CAM, shape reconstruction [7]. One of 
these studies was done by Makeawa et.al. [8] 
They examined the regularity of pipe (tube) 
surfaces and for this, they have presented the 
required conditions. Then, Xu et.al. [9] studied 
on some algebraic, geometric properties of canal 
surfaces.  Specially, they obtained simple 
expressions of the area and Gausian curvature 
for the canal surfaces, which are very useful 
results. Doğan and Yaylı gave the relations 
between parameter curves and lines of 
curvature on canal surfaces. Morever, they 
investigated tubular surfaces with Bishop frame 
[10-11].  

In this study, firstly, we have examined the 
required conditions for canal surfaces, which are 
a special swept surface, to be Bonnet surfaces. 
Secondly, we have analyzed Bonnet canal 
surfaces in the Euclidean three-dimensional 
space and have obtained some special results for 
the Bonnet canal surfaces. 

2. Material and Method 

The canal surface is a surface which consists of 
cover of a family of the spheres. Specially, the 
centers of these spheres are located on a space 
curve. It is a surface of revolution when the 
centers of spheres is on the straight line . 

A canal surface 𝑋 is parametrized by 

𝑋(𝑢, 𝑣) = 𝑝(𝑢) + 𝑟(𝑢) [√1 − 𝑟′(𝑢)2𝒏(𝑢)𝑐𝑜𝑠𝑣

+ √1 − 𝑟′(𝑢)2𝒃(𝑢) sin 𝑣

− 𝑟′(𝑢)𝒆(𝑢)], 

 

(1) 

where 𝑝(𝑢) is the unit speed curve, {𝒆, 𝒏, 𝒃} is 
Frenet frame of 𝑝(𝑢) and 𝑟(𝑢) is called radius 
function of 𝑋.  Here, 𝒆 = 𝒆(𝑢) is the tangent 
vector, 𝒏 = 𝒏(𝑢) is the normal vector and 𝒃 =
𝒃(𝑢) is the binormal vector [7]. So, in [11], the 
coefficients of the first fundamental form for 
canal surfaces are written as 

𝐸 = [
𝜅(𝑢)𝑟(𝑢)√1 − 𝑟′2(𝑢) 𝑐𝑜𝑠 𝑣

+(𝑟(𝑢)𝑟′(𝑢))
′
− 1

]

2

 

       + [𝑟(𝑢)
√1 − 𝑟′2(𝑢)𝜏(𝑢)

+𝑟(𝑢)𝑟′(𝑢)𝜅(𝑢) 𝑠𝑖𝑛 𝑣

]

2

 

        + [
(𝑟(𝑢)√1 − 𝑟′2(𝑢))

′

−𝑟(𝑢)𝑟′(𝑢)𝜅(𝑢) 𝑐𝑜𝑠 𝑣

]

2

, 

 

 

 

 

 

(2) 

F=[
𝑟2(𝑢) (1 − 𝑟′

2(𝑢)) 𝜏(𝑢) +

𝑟2(𝑢)𝑟′(𝑢)√1 − 𝑟′2(𝑢)𝜅(𝑢) 𝑠𝑖𝑛 𝑣
], 

 

 

(3) 

G = r2(u) (1 − r′
2(u)). (4) 

Let 𝑝(𝑢) = (𝑥(𝑢), 𝑦(𝑢)) be a planar curve with 
arc length. So, its Frenet formulas have the 
following form 

𝐩′(u) = 𝐞(u), 
𝐞′(u) = κ(u)𝐧(u), 
𝐧′(u) = −κ(u)𝐞(u). 

 

(5) 

When we assume 𝒃′(𝑢) = 0, 𝑝(𝑢) is a planar 
curve. If 𝑟(𝑢) is a constant and is given as 𝑟, then 
𝑋(𝑢, 𝑣) is called a tube or pipe surface [10]. It is 
written as the following. 

𝑋(𝑢, 𝑣) = 𝑝(𝑢) + 𝑟[𝒏(𝑢) cos 𝑣
+ 𝒃(𝑢) sin 𝑣], 

(6) 

where 𝑟 is called the constant radius of the 
spheres [12]. 
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Morever, the theorems and definitions, which 
will be used in the study of Bonnet surface, are 
given as follows. 

Definition 2.1. If a surface in ℝ3 has the 
coefficients of fundamental forms which satisfy 
the conditions 𝐸 = 𝐺, 𝐹 = 0, (𝑀 = 0),  then it is 
called isothermic [13]. 

Also, the isothermic surface provides the 

condition 
𝜕2

𝜕𝑢𝜕𝑣
(log

𝐺

𝐸
) = 0 [14]. 

Theorem 2.2. The coordinate curves of a surface 
are line of curvature in a neighborhood of a non-
umbilical point if and only if  𝐹 = 𝑀 = 0, where 
F and M are the coefficients of the first and 
second fundamental form, respectively [12]. 

Definition 2.3. A net on a surface which satisfies 
the following conditions 

𝐸 = 𝐺, 𝐹 = 0, 𝑀 = 𝑐 ≠ 0  

is called an A-net, where the coefficients of the 
fundamental forms are 𝐸, 𝐺, 𝐹,𝑀 and 𝑐 is a 
constant [13]. 

Theorem 2.4. A surface is a Bonnet surface with 
no umbilic points if and only if the surface has an 
A-net [13]. 

According to this theorem, if the surface has an 
A-net, then it is a Bonnet surface. Using this 
theorem, a Bonnet surface is obtained that it 
permits a single non-trivial isometry. When the 
surface has more than one A-net, it is isothermic. 
If this surface is both isothermic and  Weingarten 
surface, then it has infinite number of Bonnet 
nets, and so, it is Bonnet surface [6]. 

3. Discussion and Conclusion  

In this section, we will obtain the Bonnet canal 
surface.  

Definition 3.1. Canal surfaces that provide the 
properties of Bonnet surfaces, are called Bonnet 
canal surfaces.  

To determine whether the canal surface is 
Bonnet surface, we work the isothermic 
Weingarten surfaces and the surfaces that 
permit a single non-trivial isometry for canal 
surfaces with non-constant mean curvature. 

Firstly, let us obtain isothermic Weingarten 
surfaces  for the canal surfaces. The coefficient 𝐹 
for isothermic surface is zero. To be 𝐹 = 0 in (3), 
we have the following cases: 

Case 1. If we assume 𝑟′ = 0 and 𝜏 = 0, then  

𝐹 = 0. 

Case 2. If we assume 𝜅 = 0 and 𝜏 = 0, then  

𝐹 = 0. 

Case 3.  If we assume 𝑟′ = 1,  then 𝐹 = 0. 

Now, we will investigate for the above three 
cases of the canal surface to be a Bonnet surface. 

For the case 1., let 𝑟′ = 0 and 𝜏 = 0. 

Since 𝑟(𝑢) is a constant, 𝑋(𝑢, 𝑣) is called a tube 
or pipe surface and it can be written as 

𝑋(𝑢, 𝑣) = 𝑝(𝑢) 

                +𝑟 [
𝒏(𝑢)𝑐𝑜𝑠𝑣
+𝒃(𝑢)𝑠𝑖𝑛𝑣

]. 
(7) 

Morever, due to 𝜏 = 0, 𝑝(𝑢) is the planar curve. 
Using the equation (5), we have the first 
derivatives of the surface 𝑋(𝑢, 𝑣) as follows: 

𝑿𝒖 =  𝒆(𝑢)[1 − 𝑟𝜅(𝑢) cos 𝑣], 

𝑿𝒗 = 𝑟[−𝒏(𝑢) sin 𝑣 + 𝒃(𝑢) cos 𝑣]. 
(8) 

Using (8), then we have 

𝐸 = 〈𝑿𝒖, 𝑿𝒖〉 = (1 − 𝑟𝜅(𝑢) cos 𝑣)
2; 

𝐺 = 〈𝑿𝒗, 𝑿𝒗〉 = 𝑟
2. 

(9) 

Also, there exists the condition 
𝜕2

𝜕𝑢𝜕𝑣
(log

𝐺

𝐸
) = 0 

to be isothermic surface [14]. If we try to 
calculate, then we have 

𝜕2

𝜕𝑢𝜕𝑣
(log

𝑟2

(1 − 𝑟𝜅(𝑢) cos 𝑣)2
) = 0 (10) 

This means that 

−2𝑟𝜅′(𝑢) sin 𝑣

(1 − 𝑟𝜅(𝑢) cos 𝑣)2
= 0 (11) 

From (11), we obtain that 𝜅(𝑢) is constant. Thus, 
the curvature of the planar curve is  constant and 
so, the tube surface drawing by the planar curve 
is an isothermic surface.  

The second derivates of the surface are 

𝑿𝒖𝒖 = 𝒏(𝑢)(𝜅 − 𝑟𝜅
2 cos 𝑣), 

𝑿𝒖𝒗 = 𝒆(𝑢)(1 + 𝑟𝜅 sin 𝑣), 

𝑿𝒗𝒗 = −𝑟[𝒏(𝑢) cos 𝑣 + 𝒃(𝑢) sin 𝑣]. 

(12) 

For the canal surface, the surface normal vector 
𝑼  is given by  
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𝑼 =
𝑋𝑢 × 𝑋𝑣
‖𝑋𝑢 × 𝑋𝑣‖

 

    = −𝒏(𝑢) cos 𝑣 − 𝒃(𝑢) sin 𝑣. 

(13) 

Using (12) and (13), the quantities of the second 
fundamental form are obtained as 

𝐿 = 〈𝑿𝒖𝒖, 𝑼〉 

   = 𝜅 cos 𝑣 (𝑟𝜅 cos 𝑣 − 1), 

 (14) 

𝑀 = 0                                (15) 

and 

𝑁 = 〈𝑿𝒗𝒗, 𝑼〉 = 𝑟.                               (16) 

In that case, Gaussian curvature 𝐾 and mean 
curvature 𝐻 of the canal surface 𝑋(𝑢, 𝑣) are 
written by 

 

𝐾 =
𝐿𝑁 −𝑀2

𝐸𝐺 − 𝐹2
=

𝑟𝜅 cos 𝑣

𝑟(1 − 𝑟𝜅 cos 𝑣)
 (17) 

and 

𝐻 =
𝑁𝐸 − 2𝐹𝑀 + 𝐺𝐿

2(𝐸𝐺 − 𝐹2)
 

     =
1 − 2𝑟𝜅 cos 𝑣

𝑟(1 − 𝑟𝜅 cos 𝑣)
. 

(18) 

From (18), we see that 𝐻 is non-constant. Then, 
we need to show the necessary condition to be a 
Weingarten surface that is 

𝜕𝐾

𝜕𝑢

𝜕𝐻

𝜕𝑣
−
𝜕𝐾

𝜕𝑣

𝜕𝐻

𝜕𝑢
= 0. (19) 

When we consider the equations (17), (18) and 

(19), we find  
𝜕𝐾

𝜕𝑢
= 0 and 

𝜕𝐻

𝜕𝑢
= 0. Thus,  the canal 

surfaces, which are isothermic and provide the 
condition 𝑟′ = 0 and 𝜏 = 0, are Weingarten 
surfaces. Then, the following theorem is given. 

Theorem 3.2. Let 𝑝(𝑢) be a planar curve, which 
generates tube or pipe surface. If the curvature 
of 𝑝(𝑢) is a constant, then the tube surface has 
infinite number of Bonnet nets. So, these 
surfaces have A-nets, i.e. they are Bonnet 
surfaces. 

Thus, we write the following result since the 
planar curves with constant curvature are a 
circle or a straight line. 

Corollary 3.3. Bonnet canal surfaces, which 
provide the conditions 𝑟′ = 0 and 𝜏 = 0, are 
torus or right cylinder where 𝑟 is the radius 
function for canal surface, 𝜏 is the torsion of 
curve forming the canal surface. 

So, after we make a suitable transformation for 
the Bonnet canal surface, it  is modified to 
isothermal system of coordinates that is 𝐸 = 𝐺. 
For this, if we replace 𝑣 → 𝑓(𝑣), the surface in 
equation (7) is written as 

𝑋(𝑢, 𝑣) = 𝑝(𝑢) 

                +𝑟 [
𝒏(𝑢) cos 𝑓(𝑣)

+𝒃(𝑢) sin 𝑓(𝑣)
]. 

(20) 

According to the expression (20), the 
fundamental quantities of the surface become 

𝐸 = 〈𝑿𝒖, 𝑿𝒖〉 

     = (1 − 𝑟𝜅 cos 𝑓(𝑣))2; 

(21) 

 

and 

𝐺 = 〈𝑿𝒗, 𝑿𝒗〉 = (𝑟𝑓′(𝑣))
2. (22) 

For 𝐸 = 𝐺, we obtain the following equalities: 

1 − 𝑟𝜅 cos 𝑓(𝑣) = 𝑟𝑓′(𝑣) (23) 

or  

1 − 𝑟𝜅 cos 𝑓(𝑣) = −𝑟𝑓′(𝑣). (24) 

Let 1 − 𝑟𝜅 cos 𝑓(𝑣) = 𝑟𝑓′(𝑣). Taking 𝑓(𝑣) = 𝑦, 
the solution of the differential equation  

𝑦′ =
1−𝜅𝑟 cos𝑦

𝑟
  is obtained as 

𝑓(𝑣)

= 2𝑎𝑟𝑐 tan(√
1 − 𝑟𝜅

1 + 𝑟𝜅
tan

√1 − (𝑟𝜅)2

2𝑟
𝑣), (25) 

Hence, the Bonnet canal surface could be 
parametrized as the following: 

𝑋(𝑢, 𝑣)
= 𝑝(𝑢)

+ 𝑟

[
 
 
 

𝒏(𝑢) cos

{
 

 

2𝑎𝑟𝑐 tan

(

 √
1 − 𝑟𝜅

1 + 𝑟𝜅
tan

√1− (𝑟𝜅)
2

2𝑟
𝑣

)

 

}
 

 

+ 𝒃(𝑢) sin

{
 

 

2𝑎𝑟𝑐 tan

(

 √
1 − 𝑟𝜅

1 + 𝑟𝜅
tan

√1− (𝑟𝜅)
2

2𝑟
𝑣

)

 

}
 

 

]
 
 
 

. 

(26) 



DEU FMD 21(61), 195-200, 2019 

 
199 

So, coefficients of the first fundamental form 
provide the condition 𝐸 = 𝐺, 𝐹 = 0 for canal 
surface with the form (26). Here, 𝑝(𝑢) is the 
planar curve, radius function 𝑟 and curvature κ 
are constants. 

Special case: Let 1 − 𝑟𝜅 = 1 + 𝑟𝜅. From here, 
we have 𝑟 = 0 or 𝜅 = 0.  

Since 𝑟 is not equal to zero, we get 𝜅 = 0. So, if 
the surface is formed with a straight line, then we 
write the equation of the Bonnet canal surface as 
the following: 

𝑋(𝑢, 𝑣) = 𝑝(𝑢) 

                +𝑟 [𝒏(𝑢) cos
𝑣

𝑟
+ 𝒃(𝑢) sin

𝑣

𝑟
]. 

(27) 

such that 

𝑓(𝑣) = 2𝑎𝑟𝑐 tan (tan
𝑣

2𝑟
) =

𝑣

𝑟
. (28) 

Then, the first derivates of the surface 𝑋(𝑢, 𝑣) are 
obtained 

𝑿𝒖 =  𝒆(𝑢) 

𝑿𝑣 = −𝒏(𝑢) sin
𝑣

𝑟
+ 𝒃(𝑢) cos

𝑣

𝑟
 . 

(29) 

So, we have 𝐸 = 1, 𝐺 = 1. The canal surface with 
constant radius, which is generated by straight, 
is the Bonnet canal surface. Actually, it is right 
cylinder. 

Theorem 3.4. Let 𝑋(𝑢, 𝑣) be a regular tube 
surface formed by a planar curve. Then, we have 
the follows: 

i) If the planar curve 𝑝(𝑢) of the Bonnet canal 
surface 𝑋(𝑢, 𝑣) is a geodesic, it is a cylinder. 

ii)If the planar curve 𝑝(𝑢) of the Bonnet canal 
surface 𝑋(𝑢, 𝑣) is an asymptotic curve, then it is 
a cylinder. 

Proof. i) Let 𝑋(𝑢, 𝑣) be a regular surface. The 
unit speed curve 𝑝(𝑢), which lies on 𝑋(𝑢, 𝑣), is a 
geodesic curve if and only if the acceleration 
vector 𝒑′′(𝑢) and the surface normal vector U are 
linearly dependent. In that case, let 𝑝(𝑢) be a 
geodesic curve on the tube.  From the equations 
(5) and (13), we find 

𝑼 × 𝒑′′(𝑢) = κ sin 𝑣 𝐞(u) = 0 (30) 

According to the equation (30), we have 𝜅 = 0 or 
sin 𝑣 = 0. 

If sin 𝑣 = 0, then 𝑋(𝑢, 𝑣) could not be surface. 
Therefore, for the geodesic curve 𝑝(𝑢), if 𝜅 = 0, 
then the regular tube is formed as a cylinder. 

ii)Let 𝑋(𝑢, 𝑣) be a regular surface. The unit speed 
curve 𝑝(𝑢), which lies on 𝑋(𝑢, 𝑣),  is an 
asymptotic curve if and only if the acceleration 
vector 𝒑′′(𝑢) is tangent to the surface. In that 
case, let the planar curve 𝑝(𝑢) be an asymptotic 
curve on the tube. From the equations (5) and 
(13), we have 

〈𝑼, 𝒑′′(𝑢)〉 = −𝜅 cos 𝑣. (31) 

From cos 𝑣 ≠ 0, we take 𝜅 = 0. In this case, we 
see that the regular tube becomes a cylinder.  

For the case 2., let 𝜅 = 0 and 𝜏 = 0. In that case, 
𝑝(𝑢) is a straight line and these canal surfaces 
are surfaces of revolution. 

The surfaces of revolution with non-constant 
mean curvature are the Bonnet canal surfaces 
since they are an isothermic Weingarten 
surfaces. So, we write the following result. 

Corollary 3.5. The surfaces of revolution are 
Bonnet canal surfaces. 

For the case 3., let 𝑟′ = 1. We can take the linear 
radius function as 𝑟(𝑢) = 𝑢 + 𝑐, 𝑐 ∈ ℝ. From 
here, the Bonnet canal surface is reparametrized 
as the following: 

 

𝑋(𝑢, 𝑣) = 𝑝(𝑢) + 𝑢[−𝒆(𝑢)]. (32) 

So, it is not a surface. 

Example 3.6. Assume that the planar curve 
𝑝(𝑢) = (cos 𝑢 , sin 𝑢 , 0) for the canal surface. We 
have 

𝒑′(𝑢) = (− sin 𝑢 , cos 𝑢 , 0) = 𝒆(𝑢),       

𝒆′(𝑢) = −(cos 𝑢 , sin 𝑢 , 0) = 𝒏(𝑢),             (33) 

𝒏′(𝑢) = −(− sin 𝑢 , cos 𝑢 , 0). 

For 𝑟 =
1

5
 , the tube equation is given by 

𝑋(𝑢, 𝑣) =

(

 
 
cos 𝑢 (1 −

1

5
cos 𝑣) ,

sin 𝑢 (1 −
1

5
cos 𝑣) ,

1

5
sin 𝑣

)

 
 

               (34) 

 

Morever, canal surface, which is given by  

equation(34), is like in Figure 1. The  
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parametrization (34) is the torus equation. 

For this surface, the coefficients of the first 
fundamental form are obtained as 

𝐸 = (1 −
1

5
cos 𝑣)

2

, 𝐺 =
1

25
.  (35) 

 

Figure 1. Example of the canal surface 

For 𝐸 = 𝐺, from (25), we have 

𝑓(𝑣) = 2𝑎𝑟𝑐 tan (√
2

3
tan√6𝑣). (36) 

Hence, the equation of the Bonnet canal surface 
is written by 

𝑋(𝑢, 𝑣)

=

(

 
 
 
 
 
 
 
 cos 𝑢 (1 −

1

5
cos(2𝑎𝑟𝑐 tan(√

2

3
tan√6𝑣))) ,

sin 𝑢 (1 −
1

5
𝑐𝑜𝑠 (2𝑎𝑟𝑐 tan(√

2

3
tan√6𝑣))) ,

1

5
sin (2𝑎𝑟𝑐 tan(√

2

3
tan√6𝑣)) .

)

 
 
 
 
 
 
 
 

 (37) 

Morever, the Bonnet canal surface, which is 
given by equation (37) and is obtained by 
changing parametrization such that 𝐸 = 𝐺, is in 
Figure 2. 

 

Figure 2. Example of Bonnet canal surface 

So, we obtain the necessary conditions to be 
Bonnet surface of the canal surface with more 
than one A-net. Also, there is not an A-net from 

𝑀 = 0 for canal surfaces with 𝐹 = 0. Then, we 
have the following conclusion. 

Corollary 3.7. There is not the canal surface 
with non-constant mean curvature that permit a 
single non-trivial isometry. 
All the figures in this study is drawn by using 
Maple programme. 
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