Investigating the Performance of Omega Index According to Item Parameters and Ability Levels*

Onder SUNBUL1, Seha YORMAZ2

Abstract

Purpose: Several studies can be found in the literature that investigate the performance of \(\omega \) under various conditions. However no study for the effects of item difficulty, item discrimination, and ability restrictions on the performance of \(\omega \) could be found. The current study aims to investigate the performance of \(\omega \) for the conditions given below.

Research Methods: \(b \) parameter range was restricted in two levels (\(-2.50 \to 0.00, 0.01 \to 2.50\)); \(a \) parameter range, in two levels (\(0.10 \to 0.80 \) and \(0.81 \to 1.50\)). After crossing \(a \) and \(b \) parameter ranges, four different item parameter cells were obtained. 10,000 examinee responses were generated for each item parameter cell for 20 items. After combining four data sets, an 80-item dataset was obtained. In order to obtain the effects of source’s and copier’s ability levels to the performance of \(\omega \), ability range was divided into four intervals (\(-3.00 \to -1.50, -1.50 \to 0.00, 0.00 \to 1.50 \) and \(1.50 \to 3.00\)). By crossing the ability ranges of source and copier, sixteen different combinations were obtained. Each of the sixteen ability pairs of source and copier cheating was investigated for item parameter crossing cells for power study of \(\omega \). For Type I error study, no cheating data were investigated for the same conditions and levels.

Findings: Type I error inflations were observed for the lower copier ability levels. The results of the power study indicate that when high ability level copier copied answers of the low difficulty level and high discriminative items from high ability level source, power of \(\omega \) was weakened.

Implications for Research and Practice: The study suggests that researchers must pay attention to copiers - source ability level and copied items’ difficulty levels while using \(\omega \) index for detecting answer copying.

*This study is the revised and improved version of the paper presented at Conference on Test Security in Madison, Wisconsin, 6-8 September, 2017.

1Mersin University, TURKEY, e-mail: ondersunbul@gmail.com, ORCID ID: orcid.org/0000-0002-1775-1404

2Mersin University, TURKEY, e-mail: sehayormaz@gmail.com, ORCID ID: orcid.org/0000-0002-8385-3724

Corresponding Author: Onder SUNBUL, Faculty of Education, Department of Measurement and Evaluation in Education, Mersin University, e-mail: ondersunbul@gmail.com, ORCID ID: orcid.org/0000-0002-1775-1404

© 2018 Ani Publishing Ltd. All rights reserved
Introduction

Multiple-choice items are frequently used for high-stakes examinations because of their particular advantages. Like any other examinations, reliability and validity of multiple-choice item tests are vital for making decisions about examinees. However, there are several threats to reliability and validity. One threat to validity is cheating. It is known that examinees often cheat in examinations. Technological developments, accelerated during the 21st century, combined with the creativity of examinees cause new ways of cheating in examinations. A subfield of measurement of test security domain upgraded itself as a reaction to new cheating ways, to protect the examination from cheating attempts before, during or after testing (mostly relevant with test security parts of testing organization). To escape unintended results of testing, testing organizations must be very careful about test security issues. The cost of weakness in test security will be very high for testing organizations. Despite test security sensitivity, testing organizations will still come across cheating. It is possible to detect cheating after examination in three distinct parts (Cizek and Wollack, 2017). The first part relates to answer copying - similarity - aberrance; the second part is item preknowledge; and the last part is unusual score gain and erasure detection.

Since systematic cheating is a big threat to validity, through the decades numerous methods have been developed to detect cheating (Bird, 1927, 1929; Anikeef, 1954; Saupe, 1960; Angoff, 1974; Frary, 1993; Frary, Tideman and Watts, 1977; Hanson, Harris and Brennan, 1987; Bellezza and Bellezza, 1989; Bay, 1994; Harpp, Hogan and Jennings, 1996; Holland, 1996; Wollack, 1997; Wosolsky, 2000; van Krimpen-Stoop and Meijer, 2001; Sotaridona and Meijer, 2002, 2003; van der Linden and Sotaridona, 2004, 2006; Giardano, Subhiyah and Hess, 2005; Sotaridona, van der Linden and Meijer, 2006; van der Ark, Emons and Sijtsma, 2008; Deng, 2008; Armstrong and Shi, 2009; Maynes, 2009; Belov and Armstrong, 2010; Clark, 2010; Hui, 2010; Belov, 2011; Shu, 2011; Wollack and Maynes, 2016). It should be noticed that the assumptions of these statistics are very important for their performance.

This study is related to the ω (omega) index, which is one of the most frequently-used answer copying statistics, due to its performance. Theoretical background of ω is given below:

ω Index

ω index computes the similarity of answer vectors of a given pair by comparing an observed match with an expected match (Wollack, 1997). ω index uses Nominal Response Model of Item Response Theory for probability calculations, which is required to obtain an expected match. It is possible to use Nominal Response Model to calculate the probability of selecting an option from a multiple-choice item for a given ability level.

To obtain the observed match of a given pair of suspected copier (C) and suspected source (S):
\[h_{CS} = \sum_{i=1}^{n} I[u_{iC} = u_{iS}] \]

where

\(h_{CS} \): Observed Match

\(n \): Number of Items

\(I \): In the case of match=1 else 0

\(u_{iC} \): Response of suspected copier to the \(i^{th} \) item

\(u_{iS} \): Response of suspected source to the \(i^{th} \) item

To obtain the expected match of a given pair of suspected copier (C) and suspected source (S):

\[E(h_{CS} | \theta_C, U_S, \xi) = E\left[\sum_{i=1}^{n} I[u_{iC} = u_{iS}] | \theta_C, U_S, \xi \right] = \sum_{i=1}^{n} [P(u_{iC} = u_{iS} | \theta_C, U_S, \xi)] \]

where

\(E(h_{CS} | \theta_C, U_S, \xi) \): Expected match

\(I \): In the case of match I=1 else I=0

\(u_{iC} \): Response of suspected copier to the \(i^{th} \) item

\(u_{iS} \): Response of suspected source to the \(i^{th} \) item

\(\theta_C \): Suspected copiers ability estimate

\(\xi \): Item parameters (a and b for dichotomous responses, lambda and zeta for nominal responses)

Depending on the local independence assumption of Item Response Theory, \(h_{cs} \) is the sum of independent Bernoulli variables under the estimation of copier ability level, source ability level, and item parameters (Wollack, 1997). The probability of responses that are copied from source by copier and its variance are given below:

\[P(u_{ic} = u_{is} | \theta_C, U_S, \xi) \]

and

\[[P(u_{ic} = u_{is} | \theta_C, U_S, \xi)][1 - P(u_{ic} = u_{is} | \theta_C, U_S, \xi)] \]

When the number of items approaches infinity, \(h_{cs} \) tends to show normal distribution, and \(\omega \) distribution approaches standard normal distribution, for a given copier and source (Wollack, 1997).

Formula of \(\omega \) is given below:

\[\omega = \frac{h_{CS} - E(h_{CS} | \theta_C, U_S, \xi)}{\sigma_{hCS} - E(h_{CS} | \theta_C, U_S, \xi)} = \frac{h_{CS} - \sum_{i=1}^{n} [P(u_{iC} = u_{iS} | \theta_C, U_S, \xi)]}{\sqrt{\sum_{i=1}^{n} [P(u_{iC} = u_{iS} | \theta_C, U_S, \xi)][1 - P(u_{iC} = u_{iS} | \theta_C, U_S, \xi)]}} \]
In summary: ω index is the standardized form of difference between the observed matches and expected matches of suspected copiers’ and sources’ responses.

$$\omega = \frac{\text{Observed Matches} - \text{Expected Matches}}{\text{Standard Error}}$$

Figure 1 shows the response probabilities of a given copier and source under Nominal Response Model of IRT for a multiple-choice test item. To compute ω statistic, response probabilities of each item is required. Figure 1 is used to explain the calculation of expected response probabilities.

![Figure 1. Response Probabilities of a Four-Option Multiple-Choice Item under Nominal Response Model](image)

Let’s say the suspected source has selected the option C. To obtain the expected value of the copier to select option C, a dashed line will be used.

A literature review for ω index is given below:

Wollack (1997) compared g_2 and ω indices in terms of answer copying type, sample size, test length, and amount of cheating (cheating ratio). The study showed that ω performed better than g_2 for all simulation conditions regarding Type I error rate and power.

Wollack and Cohen (1998) investigated the Type I error rates and power study of ω indices by using true and estimated ability parameters for sample sizes 100 and 500. The study showed that using estimated ability parameters instead of true ability parameters did not have a significant effect on Type I error rates. However, using estimated ability parameters instead of true ability parameters caused a slight decrease in power for the 100 sample size while remaining same power for the 500 sample size.

Sotaridona and Meijer (2002) compared K, R_1, K_2, and ω indices in terms of sample size, test length, and answer copying amount (ratio). The study showed that all indices performed well for Type I error rates. In addition, ω performed better than other
indices for power study. Another result of their study showed that, for cases which were not appropriate for ω, \overline{K}_2 performed better than K and \overline{K}_1 in terms of power.

Sotaridona and Meijer (2003) compared their S_1 and S_2 indices with K, \overline{K}_2, and ω in terms of sample size, test length, and amount of answer copying. Their study showed that S_1 was more powerful than \overline{K}_2. In addition, S_2 and ω indices were more powerful than other indices for answer-copying detection. In addition, with the appropriate estimate of item parameters from Nominal Response Model of Item Response Theory, ω performed better than other indices for any ability level of copier, and ω could be used for answer-copying detection for small sample sizes.

Wollack (2003) compared Scrutiny!, K, g_2, and ω. He showed that ω was the best performed index for all conditions.

Wollack (2006) suggested simultaneous use of \overline{K}_2, S_1, S_2, ω, H, and B indices. He showed that separate use of \overline{K}_2, S_1, S_2, ω, and B indices performed well for all nominal alpha levels (0.01, 0.005, 0.001, and 0.0005) in terms of Type I error rate; however, H index had higher Type I error rates. In addition, ω had best power study results among other indices. ω was followed by S_2 in terms of power rates. Simultaneous use of $\omega - H^*$ pair performed better than other index combinations. S_2 was stated as the most powerful index when it was not possible to compute ω index.

Sotaridona et al. (2006) showed that Kappa statistics had satisfactory results for five-option multiple-choice tests that have 30 and 60 test lengths. However, Kappa statistics for answer-copying detection was found to be sensitive to the ability levels of copier and source. Kappa statistics got high Type I error rates for 0.05 nominal alpha levels when the ability of copier was close to ability level of source.

Zopluoglu and Davenport (2012) compared Type I error rates and power of ω and GBT by manipulating ability levels of copier and source. The study showed that GBT index was slightly more powerful than ω index. In addition, it was observed that both indices were sensitive to the amount of cheating, and they couldn’t detect low amounts of answer copying. The power did not reach 0.50 unless the copier examinee copied 50% of the answers of the source examinee whose ability levels were greater than 1.00, or unless the copier examinee copied 80% of the answers of the source examinee whose ability levels were greater than 2.00.

Zopluoglu (2016) investigated the performance of ω, GBT, K, \overline{K}_1, \overline{K}_2, S_1, and S_2 indices for simulated and real response data sets by using different Item Response Theory Models (one- [1PL], two- [2PL], three-parameter [3PL] models, Nominal Response Model [NRM]) by the area under the receiver operating characteristic curve (ROC). In addition, difficulty of items that were copied (random copying and difficulty-weighted copying) and test difficulty (easy, medium) was taken into account in the investigation. The results of the study showed that using NRM outcomes for 20% answer copying increased the performance. Another finding from the study was the slight differences between the performance of indices for 40% and 60% answer copying ratio. In the medium-difficulty test, slight increase of performance was
observed for all conditions for the difficulty-weighted copying. Furthermore, consistencies were observed between the results of real and simulated data sets.

Purpose of the Study

The literature review shows several studies that investigate the performance of ω and compare its performance with other indices in terms of Type I error and power studies. The most recent studies investigated performance of several indices by crossing the ability levels for several amounts of copying and several types of tests and items. Only one study accounts for the properties of items which were copied. In addition to ability levels and amount of answer copying, item parameters are effective for the performance of answer-copying indices and need to be investigated, because item and ability restrictions might affect the similarity of responses of examinees. In this study, the effects of item parameters (a and b parameters) on the ω index will be investigated.

Method

Data Generation

For this study, a five-option multiple-choice raw data set was generated by using GEN3PL_RawDATA_V2 (Luecht, 2011) for an 80-item test length. Generation was conducted for 10000 examinees with standard normal ability distribution N(0~1). The scaling constant D was set at 1.00. Options were A, B, C, D, and E for all items. Range of item parameters (a and b) was divided into two categories: the a parameter ranged between (0.10 – 0.80) for low-discriminative items and between (0.81 – 1.50) for high-discriminative items. The b parameter ranged between (-2.50 – 0.00) for easy items and between (0.01 – 2.50) for difficult items. By crossing item parameter ranges, a four-cell table was obtained. The table regarding item parameter ranges is given below.

<table>
<thead>
<tr>
<th>Item Parameters</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-2.50 – 0.00</td>
</tr>
<tr>
<td>a</td>
<td>0.10 – 0.80</td>
</tr>
<tr>
<td></td>
<td>0.81 – 1.50</td>
</tr>
<tr>
<td></td>
<td>Item Group 3</td>
</tr>
</tbody>
</table>

20 items were generated for each item group cell and 4x20=80 items for the total test. Item Group 1 contains easy and low-discriminative items, Item Group 2 contains difficult and low-discriminative items, Item Group 3 contains easy and high-
discriminative items, and Item Group 4 contains difficult and high-discriminative items.

Procedure

To evaluate the ability level effects, ability range of examinees was divided into four categories (-3.00 – -1.50, -1.50 – 0.00, 0.00 – 1.50 and 1.5 – 3.00). By crossing ability levels for copier and source, a sixteen-cell table was obtained.

After crossing ability levels, sixteen different copier-and-source pair types were obtained. No cheating data was used for Type I error study. Cheating scenarios were implemented for each item group for the power study with 100 replications for three nominal alpha levels (0.05, 0.01, and 0.001). Amount of copying was held constant for the whole study. For the Type I error study, 16 different conditions were provided by ability crossing (4x4=16). With 100 replications, 16x100= 1600 honest pairs were examined by ω index. For the power study, simulation conditions are given in Table 2.

By crossing all conditions, 2x2x16x1x100=6400 pairs were investigated by ω index. Item parameter generation for given restrictions, ω index calculations, data and output management procedures were conducted by using R (2016) programming language. Graphs were obtained from Excel.

Table 2

<table>
<thead>
<tr>
<th>Simulation Conditions for Power Study</th>
<th>Number of Levels</th>
<th>Level Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Length</td>
<td>1</td>
<td>80</td>
</tr>
<tr>
<td>Item Difficulty (b parameter)</td>
<td>2</td>
<td>-2.50 – 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.01 – 2.50</td>
</tr>
<tr>
<td>Item Discrimination (a parameter)</td>
<td>2</td>
<td>0.10 – 0.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.81 – 1.50</td>
</tr>
<tr>
<td>Ability Range (Source and Copier)</td>
<td>4</td>
<td>-3.00 – -1.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.50 – 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00 – 1.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.50 – 3.00</td>
</tr>
<tr>
<td>Amount of Copying</td>
<td>1</td>
<td>25%</td>
</tr>
<tr>
<td>Number of Replications</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Results

Type I Error Study

The results of the Type I error study are given in Figure 2. When we investigated Figure 2, it was observed that Type I error rates of ω index were generally close to or below related nominal alpha levels, with some exceptions.

![Graph of Type I Error Rates of Omega for 0.001, 0.01, and 0.05 Nominal Alpha Levels](image)

Figure 2. Results of Type I Error Study for 0.001, 0.01, and 0.05 Nominal Alpha Levels
Type I error rates ranged between 0.11 and 0.00. 0.11 error rates were observed when -1.50 – 0.00 ability range copiers cheated from source whose abilities were below 0.00. It shows that the ability range of the source is an important factor for Type I error rates, and lower source ability levels may inflate Type I error rates. Type I error rates for higher source ability levels seemed quite satisfactory, even with the high copier ability levels for all nominal alpha levels.

Power Study

The results of the power study are given below, separately for each item group.

Results for Item Group 1: Low-Discriminative and Easy Items

The results of the power study for item group 1 (low-discriminative and easy items) are given in Figure 3. When we observe Figure 3, it can be seen that power rates of the \(\omega \) index range between 1.00 and 0.14. To summarize general tendency, power rates tend to decrease from 0.05 to 0.001 nominal alpha levels. Particularly for the 0.001 nominal alpha level, most of the results seem unsatisfactory in terms of power. An increase of power rate was observed to the low source ability levels, and best power rates for item group 1 are observed when the ability of the source ranged between -3.00 and -1.50. Another inference might be the decrease of copier ability levels, where the power rates tend to increase especially for 0.05 and 0.01 nominal alpha levels.
Figure 3. Results for Item Group 1 for 0.001, 0.01, and 0.05 Nominal Alpha Levels

Results for Item Group 2: Low-Discriminative and Difficult Items

The results of the power study for item group 2 (low-discriminative and difficult items) are given in Figure 4. When we observe Figure 4, it can be seen that power rates of the ω index ranged between 0.93 and 1.00. Nearly all power rates for all copier and source ability combinations were very close to 1.00. ω index performed very satisfactory for item group 2, despite the low-discrimination item statistics.
Figure 4. Results for Item Group 2 for 0.001, 0.01, and 0.05 Nominal Alpha Levels
Results for Item Group 3: High-Discriminative and Easy Items

The results of the power study for item group 3 (high-discriminative and easy items) are given in Figure 5.

![Figure 5](image1.png)

When we observe Figure 5, it can be seen that power rates of the ω index ranged between 1.00 and 0.00. ω showed extremely bad performance for several condition cells. To summarize the general tendency, power rates tend to increase with the
decrease of copier ability levels and of source ability levels for all nominal alpha levels for item group 3. The best power rate results of the ω index were obtained when the ability range of copier and source were between -3.00 and 1.50. Other results for other ability combinations seem unsatisfactory for all nominal alpha levels. The only exception may be the results for the conditions in which copiers' ability levels ranged between -3.00 and -1.50 for 0.05 nominal alpha level.

Results for Item Group 4: High-Discriminative and Difficult Items

The results of the power study for item group 4 (high-discriminative and difficult items) are given in Figure 6. When we observe Figure 6, it can be seen that power rates of the ω index ranged between 0.56 and 1.00. Most power rates for all copier and source ability combinations were very close to 1.00. ω index performed very satisfactorily for item group 4 between all the conditions of this research.
Discussion and Conclusion

Type I error rates and power studies are vitally important in evaluating the importance of statistics or indices for decision making. ω index is one of the most popular indices for detecting answer copying. Several studies investigate and compare the performance of ω statistic with other answer-copying detection statistics. The literature review shows that test length, amount of copying, IRT model used for item parameter estimation, and ability levels of copying are effective for the performance
of the \(\omega \) index. In this study, the amount of copying (25\%) and the test length (80 items) were held constant, with focus on the interaction of copied item properties in terms of item parameters as well as copier and source ability level crossings. Results of the Type I error study showed that the \(\omega \) index performed well for nearly all research conditions for all nominal alpha levels with some exceptions. The highest Type I error rate 0.11 was obtained when -1.50 – 0.00 ability range copiers cheated from sources whose abilities were below 0.00.

Researchers should be careful when using the \(\omega \) index to compare suspected copiers with low ability sources in terms of false positives. When we evaluated the power study results, it could be seen that item difficulty was very effective for the power study results. If the copiers copied from difficult items, the power of \(\omega \) statistic accelerated immediately, and most of them were acceptable. However, copying the answers of easy items decreased the power immediately, and most of them were unacceptable. Best results for easy item cheaters were found when copiers’ and sources’ ability levels were between -3.50 and -1.50. Since easy items are more informative for low ability ranges, item information might cause the increase of power for low ability levels. When we evaluate the effect of the discrimination parameter, it was not as dominant as item difficulty. However, best results were obtained when copiers cheated from discriminative and hard items, and the worst results were obtained from discriminative and easy items. More research need to be conducted that integrates the different amounts of copying with test and item-information functions.

References

Madde Parametreleri ve Yetenek Düzeyselere göre Omega İndeksinin Performansının İncelenmesi

Atıf:

Özet

Araştırmaın Amacı: Bu çalışmanın amacı alanyaza hizmet ortaya konmanın ω indeksinin madde güçlü, madde ayır edildiği ve yetenek sınırlımları altında performansını incelemektir.
Araştırmanın Yöntemi: Çalışmada beş seçenekli çoktan seçmeli 80 maddeden oluşan veri seti GEN3PL_Raw DATA_V2 yardımcıyla elde edilmiştir. Veri standart normal yetenek dağılımına \(N(0~1)\) sahip 10000 birey için üretilmiştir. Ölçekleme sabiti olan \(D\) ise 1.00 olarak alınmıştır. \(a\) ve \(b\) madde parametreleri iki kategoriye ayrılarak incelenmiştir. \(a\) ve \(b\) parametrelerinde düşük ayırt edici maddeler için \((-2.50 - 0.00)\) aralıkları, yüksek ayırt edici maddeler için \((0.81 - 1.50)\) aralıkları ele alınmıştır. \(b\) parametrelerinde kolay maddeler için \((-2.50 - 0.00)\) aralıkları, zor maddeler için \((0.01 - 2.50)\) aralıkları ele alınmıştır. Parametre aralıklarını çaprazlanarak dört hücreli tablo elde edilmiş ve böylece dört farklı madde grubu ortaya çıkmıştır. Her bir madde grubu için 20 maddelik veri üretmek toplamda \(4 \times 20 = 80\) maddelik veri seti elde edilmiştir. 1. Madde Grubu kolay ve düşük ayırt edici edici maddelerden, 2. Madde Grubu zor ve düşük ayırt edici edici maddelerden, 3. Madde Grubu kolay ve yüksek ayırt edici maddelerden ve 4. Madde Grubu zor ve yüksek ayırt edici edici maddelerden oluşmaktadır.

Kaynak ve kopyacı bireyin yeteneğinin, \(\omega\) indeksinin performansı üzerine etkisini \((-3.00 - -1.50, -1.50 - 0.00, 0.00 - 1.50, 1.50 - 3.00)\) olmak üzere dört kategoriye ayrılmasıdır. Kopyacı ve kaynak çifti için yapılan çaprazlama sonucu oluşan 16 hücre için karya durumu oluşturulup her bir veri için indeksin gücü incelenmiştir. 1. Tip hata için ise karya durumu oluşturulamadığı için incelenmiştir. İşlemler için 100 replikasyon yapılmıştır. Her replikasyondan elde edilen sonuçlar kullanılarak belirli \(\alpha\) düzeylerine \((0.001, 0.01\) ve 0.05) göre indeksin 1. Tip hata oranları ve karya belirleme güçleri hesaplanmıştır. 1. Tip hata çalışmasında 16 farklı koşulda 100 replikasyon sonucunda \(16 \times 100 = 16000\) karya çekmeyen birey çifti için \(\omega\) indeksine ait çıkarları ele edilmiştir. Güç çalışmasında ise sabit karya oranı \((\%25)\) ile \(2\times 2\times 16\times 16\times 100 = 6400\) karya çekmeyen birey çifti için çıkarları ele edilmiştir. Madde parametrelerinin üretimi, \(\omega\) indeksinin hesaplanması ve veri ve çıkarların elde edilmesinde R programlama dili kullanılmıştır.

Araştırmanın Bulguları: 1. Tip hata çalışmasında elde edilen bulgulara göre \(\omega\) indeksinin \((-3.00 - -1.50, -1.50 - 0.00, 0.00 - 1.50, 1.50 - 3.00)\) olmak üzere dört kategoriye ayrılmıştır. Kopyacı ve kaynak çifti için yapılan çaprazlama sonucu oluşan 16 hücre için karya durumu oluşturulup her bir veri için indeksin gücü incelenmiştir. 1. Tip hata için ise karya durumu oluşturulamadığı için incelenmiştir. İşlemler için 100 replikasyon yapılmıştır. Her replikasyondan elde edilen sonuçlar kullanılarak belirli \(\alpha\) düzeylerine \((0.001, 0.01\) ve 0.05) göre indeksin 1. Tip hata oranları ve karya belirleme güçleri hesaplanmıştır. 1. Tip hata çalışmasında 16 farklı koşulda 100 replikasyon sonucunda \(16 \times 100 = 16000\) karya çekmeyen birey çifti için \(\omega\) indeksine ait çıkarları ele edilmiştir. Güç çalışmasında ise sabit karya oranı \((\%25)\) ile \(2\times 2\times 16\times 16\times 100 = 6400\) karya çekmeyen birey çifti için çıkarları ele edilmiştir. Madde parametrelerinin üretimi, \(\omega\) indeksinin hesaplanması ve veri ve çıkarların elde edilmesinde R programlama dili kullanılmıştır.
Kolay ve yüksek ayırt edici maddelerin yer aldığı madde grubunda ise indeksin gücünün genelde oldukça düşük olduğu görülmüştür. Kaynağın yetenek düzeyinin arttığı ve kopyacının yetenek düzeyinin azaldığı kopya durumlarında gücün artma eğiliminde olduğu ve kopyacının yetenek düzeyi -3.00 ile 1.50 aralığında iken gücün bu grupta en yüksek değerler aldığı ortaya çıkmıştır. Diğer koşullarda ise sadece 0.05 alfa düzeyinde -3.00 ve -1.50 yetenek düzeyi aralığı haricinde tüm alfa düzeyinde ve tüm koşullarda ω indeksinin performansının düşük olduğu görülmüştür.

Zor ve yüksek ayırt edici maddelerin kopya çekildiği durumlarda ise ω indeksinin gücü 0.56 ile 1.00 arasında değişmektedir. Birey çiftlerinin yetenek düzeylerine ait kombinasyonların tümünde çoğunlukla gücün 1.00'e yakın olduğunu ortaya çıkmıştır.

Anahtar Kelimeler: Cevap kopyalamayı belirleme, hile, test güvenliği.