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Abstract: In this paper we generalize Z2Zs[u]-linear codes to codes over Zp[u]/{u") X Zp[u]/(u®) where p is a
prime number and u” = 0 = u®. We will call these family of codes as Z,[u", u’]-linear codes which
are actually special submodules. We determine the standard forms of the generator and parity-check
matrices of these codes. Furthermore, for the special case p = 2, we define a Gray map to explore the
binary images of Zs[u", u*]-linear codes. Finally, we study the structure of self-dual Zs[u?, u*]-linear
codes and present some examples.
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1. Introduction

Linear codes are the most important family of codes in coding theory. Because they have some
advantages compared to the non-linear codes. For example, linear codes have an easier encoding and
decoding process than non-linear arbitrary codes. In the beginning, studies on linear codes were mainly
over fields, especially binary fields. Later, codes over extension fields and, in general, finite fields were
studied by many researchers. In 1994, a remarkable paper written by Hammons et al.[8] brought a new
direction to researches on coding theory. In this paper, they showed that some well known non-linear
codes are actually binary images of some linear codes over the ring of integers modulo 4, i.e., Z4. After
this work a lot of research has been directed towards codes over rings.

The structure of binary linear codes and quaternary linear codes have been studied in details for the
last sixty years. However, in 2010, Borges et al. have introduced a new class of error correcting codes,
actually mixed alphabet codes, over Zs X Z, called ZyZ4-additive codes in [7]. These family of codes
generalizes the class of binary linear codes and the class of quaternary linear codes. For positive integers
o, B, a ZoZ4-additive code C is defined as a subgroup of Z§ x Zf with a + 26 = n. Another important
ring with four elements which is not isomorphic to Z4 is the ring R = Zs + uZs = {0,1,u, 1 + u} where
u? = 0. There are many studies related to codes over the ring R = Zy 4+ uZy in the literature, the reader
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may see some of them in [1, 2, 6]. Recently, Aydogdu et al. have introduced ZsZs[u]-linear codes in
[3] where Za[u] = {0,1,u,1+ u} = R. Even though the structures of these codes and the structures of
Z9Z4-additive codes are similar ZoZs[ul-linear codes have some advantages compared to ZsZ4-additive
codes. Ome of these advantages is that, the Gray (binary) images of ZsZs[u]-linear codes are always
linear, but this is not always the case for codes over Z§ x Zf . Another advantage of working with such
linear codes is that the factorization of polynomials in Zs[x] is also valid since Zs is a subring of R (see
[6]) and Hensel’s lift is not necessary.

The generalizations of ZsZ4-additive codes are considered in the literature. For instance, Aydogdu
and Siap introduced ZsZos and ZyrZys additive codes in [4] and [5] respectively. This paper attempts
to study a further generalization. An important reason motivating us to study these families of additive
codes is that they can be mapped to codes over finite fields via Gray maps and moreover they offer some
interesting algebraic structures.

In this paper, we generalize ZoZs|[ul-linear codes to codes over Zy[u]/(u") X Zyu]/(u®) = Zp[u", u®
where p is a prime number and v" = 0 = u®. We also determine the structure of these codes by giving the

standard forms of generator and parity-check matrices. Finally, we present binary images of these codes
for the special case p = 2 and illustrate some examples. Throughout the paper we assume that r < s.

Let Ry = Zyp +uZy+u?Zy+- - +u""1Z, = Zy[u]/(u") and Rs = Zp, +uZyp +u?Zp +- - +u"1Z, =
Zp[u]/{u®) be the finite rings with v” = 0 = u®. Let us define the Z,[u]-module

Zyu", v’ ={(a,b)| a € R, and b € R,}.

Being inspired by the definition of ZyZs[u)-linear codes, we give the following definition.

Definition 1.1. Let C be the non-empty subset of Z&[u]/(u") x Z5[u]/(u®). If C is a Ry-submodule of
28 [u]l/(u") x ZBu]/(u®) then C is called a Zplu",u]-linear code.

We understand from the definition of Z,[u",u®]-linear codes that the first a coordinates of the

Zp[u",u’]-linear code C are elements from R, and the remaining S coordinates are elements from
Rs. Also, it can be easily concluded that this code is isomorphic to an abelian group Z];T’l X
Z,z,kr’2 X e X LR ¢ 810 Zz(f*l)ll X e X Zé;"l. Considering all these parameters we will say C
is of type («,B;ko,k1,... kr—1;l0,l1,...,ls—1). Further, the number of the codewords of the C is
Ic| = prRop(r=Dki .. pkr—1 . pslop(s=Dh . pls—r

Definition 1.2. Let C be a Z,[u", u®]-linear code. Let us define C,, (respectively Cg) as the punctured code
of C by deleting the coordinates outside o (respectively 5). If C = Cqo x Cg then C is called separable.

We also note that for a ZsZs[ul-linear code C of type («, 8; ko; k1, k2), the standard forms of the
generator and the parity-check matrices are given by

Iko Al ‘ 0 0 ul
G= 0 S Ikl A Bl + UBQ ; (1)
0 0|0 wul, uD

AL Lo —ust 0 0
H=| -1t 0 —(Bl + uBg)t + DtAY —Dt I,B—kl—kg (2)
0 0 —u At uly, 0

where A, Ay, By, Bo, D, S and T are matrices over Zs.



I. Aydogdu / J. Algebra Comb. Discrete Appl. 6(1) (2019) 39-51

2. Standard form of the generator matrices of Z,[u", v’]-linear
codes

In this section of the paper, we give standard form of the generator matrix of a Z,[u", u®]-linear
code C. A generator matrix G for a linear code C is the matrix such that the rows are basis vectors of
C. We can put this generator matrix in a special form by elementary row operations, and we say this
matrix is the standard form of the generator matrix. Generator matrices give us information about the
structure of a linear code. If we know the standard form, we can easily read the type of a code and
then find the number of elements. Further, we say any two codes are permutation equivalent or only
equivalent if one can be obtained from the other by permutation of their coordinates or (if necessary)
changing the coordinates by their unit multiples. The below theorem determines the generator matrix of
a Zy[u", u®]-linear code C.

Theorem 2.1. Let C be a Z,[u", u’]-linear code then C is permutation equivalent to a Z,[u", u®]-linear
code which has the following standard generator matriz of the form.

I (3)
B S
where
_Iko Roi Rox Roz -+ Ror2 Ror—1 Ro.» 1
0 wulp, uRiz uliz -+ uRy,_2 ulRy 1 uRy ,
R 0 0 U2]k2 U2R23 e u2R27T72 quQ,T,1 U2R2’T
0 0 0 0 cee ur7211€r_2 ur72RT_27r_1 UTﬁQRT_Q,T
L 0 0 0 0 cee 0 u’"‘llk,r,fl ur_er,l,T_
(00 -+ wTAy uTTAp - wTTAg,_o  uSTTAg,—1 utTTAg, |
00 0 us—r+1A12 US_T+1A177«_2 U/S_T+1A1,r—1 us—r+1A17T
A 00 --- 0 0 ce- US_T+2A2’T,2 ’U,S_T+2A2’T,1 US_T+2A27T
00 --- 0 0 s 0 u572AT727T71 U872AT,2’T
00 - 0 0 e 0 0 wr Ay,
(0 By Bos Bos e Bo,r—2 Bor—1 Bo, |
0 Bn Bia B3 e B2 B, By,
0 Bsfrfl,l Bsfrfl,Q BsfrfLS e Bsfrfl,'r72 Bsfrfl,rfl Bsfrfl,r
B = 0 0 UBs—r,Q UBS—T,S T UBS—T,T—Q UBS—T,T—I UBs—r,r )
0 0 0 uzBs—r-‘rl,?) o U2Bs—r+1,r—2 u2Bs—T+1,T—1 uzBs—r-i-l,T
0 0 0 0 - 0 0 ey N
0 0 0 0 0 0 0 |
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Iy, Sor So2  Soz - So,s—2 So,s—1 So,s
0 uIll u512 ’uSl3 T uSLS,g ’LLSl’Sfl uSl,S
0 0 UZIIQ ’LL2523 tee u25275_2 UZSQ’S_:[ U2SQ7S
S =
0 0 0 0 e u87355737572 u5735373,371 u8733573,s
0 0 0 0 - w2, w28 9.1 ut28, o,
00 0 0 - 0 W, wtT S

In this standard form of the generator matriz, R;;’s are matrices over R, and A;;’s are matrices
over Ry for0 <i < j<r. And for0<t<s—1,0<p<q <s,By’s are matrices over R, and Spq’s
are matrices over Rg. Further, Iy’s and I;’s are identity matrices with given sizes.

Proof. Let C C R xRS be aZ,[u",u*]-linear code of type (o, B; ko, k1, - - -, kr—13lo, 11, -, ls—1). Since
the first o coordinates of C is a submodule of R, and the last 8 coordinates of C is a submodule of R
then from [9] we can write the generator matrix for C as follows:

Ri1
2|8
where
(I, Rot R_oz R_o;a e IBL_O,T72 R_o,r4 R_o,r 1
0 uly, ulRig uly3z -+ uRy,—o ulty ;1 uly
R 0 0 U2Ik;2 u2R23 s u2R27r,2 U2R2’r,1 quQ’T
0 0 0 0 s ur72Ikr_2 'LLT72RT_2’T,_1 Urier_Q,T
L0 0 0 0o - 0 L (S Ty (A
and
(1, So1 592 §93 o 5'9,572 5'9,571 Sg,s 1
0 ulj, uS2 uSiz --- uSis—2 uS1 -1 uS1,s
5’ 0 0 uzllz U2523 tee UQSQ)S,Q u2§27s,1 u25‘2,s
0 0 0 0 s US_2I1572 US_2SS,2’S,1 ’LLS_QSS,ZS
L0 O 0 0 0 usflflsi1 usflgs_lﬂg_

Now, we have to determine the forms of the matrices in 1 and 2. We will put codewords to 1 such that
they do not change the form of the matrix R. So we have
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W Ap utT Age
u577‘+1A11 usfrJrlAlZ

u¥ " Ag 11
US?T+1A1,5+1

-2

u® Ar—2,s+1
‘_1 A

u® AT71,3+1

27 27

wTrA g utT A0 -
—1 7 1 7

uwT A1 uT A g -

2

Si

Similarly, putting codewords to 2 by protecting the form of the matrix S we get

usfrAOI usfrAOZ
us—r+1All us—r+1A12

—2 7 2 7

u A o uTE A 9 -
13 1

u' T A w T A

ut " Ag o1

}

us—r+1A17s+1

‘_2 A

u® AT72,3+1
—13x

us Ar—l,s+1

Bo1
B
Bsfrfl,l
UBs—r,l

0

Bo2
By
Bsfr71,2
UBS—T,Q

2D 2R
u BsfrJrl,l u Bsfr+1,2 et

u T Bs o1 u"T1Bs g9 -

0

BO,r—i—l
Biy11

Bsfrfl,qul
UBS—T,T+1

95
U Bsfr+1,7‘+1

1P
UT B572,r+1
0

Finally, by applying necessary elementary row operations to above matrix, we have the standard form in

3).

O

Example 2.2. Let C be a Zs[u?,u3]-linear code with the following generator matriz

1 w l4ull+utu? 0 U
u 0 wu U u+ u? U
14u u 1 14 42 1 u+ u?
1 0 wu U u + u? 0

l14+u v wu u? u? u?

Then, by applying elementary row operations we have the standard form of this generator matrix as,

Therefore,

o o o|lo =
o o o|lg o
—

o o + | o
I
o o r|lo o
o~ olo o
2 o olo o

o C is of type (3,3;1,1;2,1,0).
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o C has 2%1.21.932.921 .90 — = 2048 codewords.

Example 2.3. Now, we consider any Zp[u27u3]— linear code of type (a, B; ko, k1310, 1l1,12). So, r =2 and
s = 3. Then the generator matriz of C is permutation equivalent to a matriz of the form

Iko R01 RQQ 0 0 UA01 UA02
0 qul uR12 0 0 0 u2A12
G=1|0 Bo Bo2 I, S So2 Sos |- (5)
0 0 u312 0 UIll uSlg ’uSlg
0 0 0 0 0 w2, u®Ss

Corollary 2.4. Takingp =2, r =1 and s = 2 we have Zz[u, u?]-linear code which is equal to a ZoZs|u]-
linear code introduced in [3]. Then if C is a Zs[u,u?]-linear code of type (o, 3; ko;lo,l1), its generator
matrix is

Iy Ron 0 0 udn
G - 0 BOI Ilo S()l S()Q (6)
0 0 0 UIll u512

which is permutation equivalent to a matriz of the form (1).

3. Duality on Z,[u", u’]-linear codes and parity-check matrices

We have well known concept of duality over finite fields and rings. In this part, we define an inner
product for codes over R x R? and we determine the structure of the dual space of a Z,[u", u*]-linear
code C using this inner product.

The inner product for any two vectors v, w € R% x RY is defined by

a+pf
(Z%M) + Z VW .

j=a+1
Moreover, we can easily define the dual code C* of Z,[u", u®]-linear code C in the following standard
way':

:{wERﬁ‘xRéﬂv'w:OforaHUEC}.

It is also clear that C* is an R,-submodule of R® x RE. So, C* is also a Z,[u", u*]-linear code.

We know that the dual space of any linear code is generated by a parity-check matrix of C or
equivalently generator matrix of Ct. To establish the parity-check matrix of a Z,[u", u*]-linear code C
we first give the following definitions.

Let k(R) and [(S) be the number of rows of the matrices R and S, respectively. For i =0,1,..., r—
1(s — 1), let k; ( ) (1;(S)) denote the number of rows of R (S) that are divisible by u’ but not by u***.

Then, k(R) = Z ki(R) and [(S) = Z 1;(S). Therefore, we give the following theorem that determines
the standard form of the parlty—check matnx of a Z,[u", u®]-linear code C.

Theorem 3.1. The parity-check matriz for a Z,u",u’]-linear code C of type (c,B; ko, k1, .., kr_1;

loyl1,-..,ls—1) with generator matriz in (3) is given by the following standard form matriz.
H— R+ F ) M
N S+ F
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where R, F, M, N, S and E are matrices of the following forms.

R_o,r }_‘2_0,7‘71 -R_O,’er R_o,s R_o,z Roq  In—im)
ulty ulty p 1 ulRy 2 uRy 3 uRi2 uly, _ () 0
R: . : . .
U R0, U R g1 U Iy cr 0O 0 0 0
W Ry, w 0 00 0 0
[ Fo,—2 For—3 Foo Fo1 00 0]
uFLT_Q UF17T_3 UFLQ 0 000
F=\yr=F 4o uwFo_y,_s 0 0 000O0]>
U 3F, g, 0 0 0O 00O
0 0 0 0O 00O
L 0 0 0 0O 00 04
My s—1 My s—2 Mys Moo Moy 00
UMl,s—l UMLS_Q UM173 UMLQ 0 00
M = : : : : R
’U,T_QMT,Q,Sfl ’11,7‘_2Mr,2,8,2 <o 0 0 0 00
u’“’er_LS_l UrilMT_LS_Q 0 0 0 00
[ No» Noyr—1 Nor_2 Nos No2 Noi 0]
UNl,r uNl’Tfl UNLT,Q e ’U,Nl,g UNLQ 0 0
N = urleT717T 0 0 0 0 0 0f,
0 0 0 0 0 0 O
0 0 0 O 0 0 o0
59,5 59,571 59,572 5’9,3 59,2 Soqa Is—us)
uS1s uS1,s—1 uS1 -2 uS13 uSi2 uly_ (s 0
u9_2§5,275 us” 53,2’3,1 U Ilz(S) 0 0 0 0
ug_lgs_lé U 1111(5) 0 0 0 0 0
[ FEys—2 Eys—3 Eoys—4a Eo2 FEo1 00 0]
UELS_Q UEl,s—S UE1 s—4 uEl,g 0 000
E = UT_QET72 s—2 U 2ET72 s—3 U 2Er72 s—4 0 0 000
0 0O 00O

00 0]
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Also,
j—1
R > t t . .
R, ;=— E RikRy_j, g — Ri_j,_y for 0<i<j<nm,
k=i+1
Jj—1
S § ’ G t t . .
Sivj == Si7kSs—j,s—k - Ss—j,s—i? for 0<i<j<s,
k=it+1
Jj—1 j—1 j—3
— t = t ¢ ¢
Mij =~ E , Mi,kSs—j—l,s_k—1 -0 E Ri,lBs_j_l,r_l + E FimBs—j—l,r—m_z + Bs_j_u_i
k=i+1 I=i+1 m=i+1

fou i<
lgrl,mgri%andql{uj_rﬂv j>r}’

Jj—1 Jj—1 Jj—3
_ § . t _ Q. t _ L t _ 7t
Ni’j - NZ’kRT*j,T’*k : : S"skA’/‘*j,T*k § : El”LJr]*k*QArfj,rJrkfifj Arfj,rfi )

k=i+1 k=i+1 k=i+1
j—1 J
_ t t
Eij=— E EiJsz—j—Q,s—k—2 — Q2 E Nz’,lBs—j—z,r—l )
k=i+1 l=i+1

B . u, j<r
[ <r 1(17”L(Z(]2—{uj_r_|r27 jZT}’

j—1 J
_ ) t _ . t
Fm = E Fl,er—j—Zﬁ—k—Z E thAr—j—Q,r—k—l'
k=i+1 k=i+1

Proof. Firstly, we can check that GH' = 0. So, (H) C C*. Further,

C| = prRop(r—Vks . phr—1 o pslog(s=Dl o ples

r—1
Since k(R) =Y k;(R) and k;(R) = k;, then
=0

‘CL| — pr(af(koqulJr---+kr_1))p(r71)k7«_1 5(5*(lo+ll+'"+l.e—1))p(5*1)l-e—l cooph

Let |C||C*| = p™, hence

n=rko+(r—Dki+--+r—-r—-—1)k_1+slo+(s—Dl1+---+(s—(s—1))ls_1

+ra—rko— - —rkr1+(r—=Dko1+ -+ ki +88—slo— - — sls—1
(s = Dlgor o+l
=ra+ sp.

)

Consequently, |C||Ct| = p"@+s8. Therefore, the rows of the matrix H are not only orthogonal to C but

also they generate all dual space. So, the proof is completed.

O



I. Aydogdu / J. Algebra Comb. Discrete Appl. 6(1) (2019) 39-51

Example 3.2. Let C be a Zy[u?, u3]-linear code of type (v, B; ko, k1;lo, 11, l2) with the standard form of
the generator matriz in (5). We calculate the parity-check matriz of this code step by step as follows.

R+F M

H= _
N S+FE

Since r = 2, then F' = 0. Now,

R= R_02 Roy Ia_ko_kl where ROI = —R§2, ROQ = —R(nRél — R(t)g, ng = _Rél'
ung qul 0
No2 No1 O B
N = UN12 0 0 where N()l = —At12, N02 = —N01R61 - 8011461 - Af)?? N12 = _Af)l'
0 0 0
Moz Moy 00
M = uMiz 0 00 where My, = —’LLBiQ, My = _M01581 — ’U,(R()lBél + B(§2>7 My = —uBél.
0 0 00
FEyp1 000
E=|0 00 0| where Eyy = —uN, Bt,, and
0 00O
B 593 5’92 So1 Ig—tg—11—1»
S = u513 u512 UI[2 0
U25’23 UQIll 0 0
where
So1 = —S53, Soz = —S501575 — Sis,
Sos = —(S01502 + 502561) — St
Sz = —Siy, Sig = —51250; — Sia;
523 = — 61.
So,
R_oz Ror In—ko—k: Moz Mo O 0
uR12 qul 0 UM12 0 0 0
H=| Ny Ny 0 503TE01 5*92 Sor Ig—tg—11—1»
UN12 0 0 USlg u512 UI[2 0
0 0 0 u?Sy3  ull, 0 0

We can easily determine the type of C+ from the above matrix as (o, B; —ko— k1, k1; B—1lo—11 — I, 12, 11).

Example 3.3. Now, let C be a Zo[u?,u?]-linear code with the generator matriz in (4). We have found
the standard form of this generator matriz before in Example 2.2. Therefore,

10 0 (000

I
Ou u |000 ko Hor foz | 00
0 UIkl UR12 0 0

G=|001+ul1t00]|=
0 Bor Bo2 |1, Soi
00 01010 0 0 uBp| 0 ul
00 0 00w 12 b
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Hence, with the help of previous example we have the parity-check matriz of C as

01 1|lut+u®20 0
0 wuoO 0 0 0
00O 0 0 u?

So, C* is of type (3,3;1,1;0,0,1) and has |C+| = 221212! = 16 codewords.

Corollary 3.4. Let C be a Zs[u,u?]-linear code of type (., B; ko;lo, l1) with generator matriz in (6) then
the parity-check matriz of C is

"R, L., —uBl 0 0
—Apr 0 —Sfy + 515561 —Sia Is—1o-1,
0 0 —uSk, uly, 0

Note that this matriz is permutation equivalent to a matriz in (2).

4. Binary images of Zs[u", u’]-linear codes

Binary linear codes are the most important member of the family of linear codes. So, taking p = 2
we have Zs[u", u®]-linear codes. Then we can look at Zs[u”, u®]-linear codes as a binary codes under the
special Gray map, defined as follows.

Definition 4.1. Let R, = Zg + uZio + u?Zso + - - - + u*~'Zy with v* = 0. Define the mapping

2571
O, Ry — Zj
(ao-l-ual +"'+Us_1as—1) — (as—1,00 ® 51,01 D as_1,...,05_2 D as_1,
aDar ®as—1,...,60D 52D As—1,...,
ag®a; ®--- Das_1)

where a; ® aj = a; +a; mod 2. This is a linear Gray map from R, to Z%Sil.

As an example, let us consider

O3 : Ry — 73
0 — (0000)
1 — (0101)
u — (0011)
1+u — (0110)
u? — (1111)
1+u* — (1010)
u+u? — (1100)
L+u+u® — (1001).

This map can be extended to R x RY as follows.

Definition 4.2. Let x = (2, 71,...,%0-1) € RY and y = (Y0, Y1,--.,Ys—1) € RE and let & : RS x
RS — 73 be the map defined by

(I)(xa y) = (q)r(x0)7 ceey (I)T('Tll—l)? q)s(yO)a ceey q)s(yﬁ—l))'

We called the binary image ®(C) = C as a Zo[u",u®]—linear code of length n = 2" 1o + 257113,
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Example 4.3. Let C be a Za[u, u?]-linear code of type (7,7;0;0,1,3) with the following generator matriz

2 2 2

0101100 u+vw v ut+u ut+u” v u u
0111010 w* u? u? 0 u? 0 0
0011101 0 u?  u? u? 0 w2 0
1001110 0 0 u? v ou? 0 u?

Using the Gray map that we defined above, we have the Gray image ®(C) = C is a binary linear code
with the parameters [35,5,16). It is worth mentioning that C with this parameters is an optimal code, that
18, C has the best minimum distance d = 16 compared to the existing and known bounds for n = 35 and
k=5.

5. Self-dual Zs[u? u?]-linear codes

We know that if C = C* then C is called a self-dual code. In this section, we investigate the structure
of self-dual codes over Zs[u]/(u?) x Zz[u]/{u®). We give some conditions for a Zs[u?, u®]-linear code C to
be a self-dual. Further, we present some examples of self-dual codes.

Lemma 5.1. Let C be a self-dual Zs[u?,u?]-linear code. Then C is of type

(2ko + k1,2(lo + 11); ko, k15 1o, 11, 12) -
Proof. Since C is self-dual then the dual code C* has the same type with C. Therefore, we have

(o, Bi ko, kislo, Ui, 1) = (o, By — ko — Ky ks B — 1o — 1y — 1o, 12, 1h)
a—ky—ki=ko, B—lo—li—la=1ly, l1 =1
a = 2ky + ki, B =2ly+ 2.

Corollary 5.2. IfC is a self-dual code of type (o, B; ko, k1;lo,11,12), then B is even.

Corollary 5.3. If C is a separable Zy[u?,u®]-linear code of type (v, 3; ko, k1;lo,l1,12), then it has the
standard form of the following generator matrix

Iko R01 Roz 0 0 0 0
0 wlg, uRi2| 0 O 0 0
G=|0 0 0 |1, So1 So2 Sos
0 0 0 0 ul;, uSi2 uSis3
0 0 0 |0 0 wu?l, u?So

Theorem 5.4. Let C be a self-dual Zs[u?,u®]-linear code of type (2ko + k1,2(lo + 11); ko, k1;lo, 11, 12).
Then the following statements are equivalent.

i) Co is a self-dual code over Zy[u]/{u?).
i) Cs is a self-dual code over Zslu]/(u?).
iii) C is separable and |Cy| = 22Fotk1 |Cg| = 230t

Corollary 5.5. Let Cy be a self-dual code of length o over Za[u]/{u?) and Ca be a self-dual code of length
B over Zo[u]/{u®). Then, C1 x Cq is a self-dual Zs[u?, u3]-linear code of length o + 3.
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Example 5.6 (Separable). Let C be a Zs[u?,u3]-linear code of type (3,4;1,1;1,1,1) with the following
generator matric

10100 0 O
0w 000 0 O
00011 1 1
000(0u 0 u
00 0[00 w? wu?

Hence, C is a separable self-dual code.

3]-linear code C with the below generator matriz is a non-

Example 5.7 (Non-separable). A Zs[u?, u?]
,1).

2
u
separable self-dual code of type (4,4;1,2;1,1

(111 14+u|00 u+u? u ]
Ou0O w |00 O u?
00w w |00 0 0
001 1 11 1 14+ u?
00u u |0wu 0 U
L0000 0 (00 wu? u? ]

6. Conclusion

This paper generalizes ZsZso[u]-linear codes to Z,[u", u®]-linear codes. The original study was intro-
duced for the special case p = 2, r = 1 and s = 2. We give the standard forms of the generator and
parity-check matrices of these codes. Further, we study Za[u", u®]-linear codes, for the special case p = 2
and relate these codes to binary codes by using a special Gray map. Also, we investigate self-dual codes
over Zo[u]/{u?) x Zs[u]/{u?). Since this family of linear codes has been introduced recently many more
properties of these families of codes await explorations, such as cyclicity.
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