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Abstract — In this paper, we proposed  a new three–term Conjugate Gradient 

(CG) method. the derivation of the method based on the descent property and conju-

gacy condition, the global convergence property is analyzed; numerical results indi-

cate that the new proposed CG-method is well compared against other similar CG-

methods in this field.  
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1  Introduction 
Consider the unconstrained optimization problem: 

{ }nRxxf ∈)(min                                                                                         (1) 
where f  is a continuously differentiable function of n  variables. In order to introduce 

our new modified CG-method which is a generalization of three-term [6].  (HS)-CG me-

thod. Let us simply recall the well-known BFCG Quasi-Newton (QN) direction [4]. QN-

methods for solving )1(  often needed the new search direction kd  at each iteration by : 

kkkk dxx α+=+1                                      (2)  
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where )( kk xfg ∇=  is the gradient of f  evaluated at the current iterate kx . One then 

computes the next iterate by 

kkk gHd −=                                      (3)  
where the step size kα  satisfies the Wolfe–conditions 

k
T
kkkkkk gdxfdxf αδα 1)()( +≤+  

k
T
kk

T
kkk gdddxg 2)( δα ≥+  

                  (4) 
               (5)  

where 2/10 1  δ  and 121 δδ , and 1+kH  is an approximation to { } 12 )( −
∇ kxf  . The  

matrix 1+kH  satisfies the actual quasi-Newton condition 

                  kkkk vyH ρ=+1                                          )6(  

where kkkkkk xxvggy −=−= ++ 11 , , kρ  is a scalar, for exact QN-condition 1=kρ .  

For BFGS-update, where   is obtained by the following BFGS formula:  

                                        
(7) 

If       (where I is the identity matrix). Then the above BFGS method becomes the 

memoryless BFGS method introduced by Shanno [8]. In this case the search direction 

 can be defined as: 

                    (8) 

which  shows that   possesses the following  form: 

                                                          
(9) 

which  is called  the three-term CG-algorithm. 

In [7], it is proposed another CG- algorithm using a  three -term recurrence formula: 

                                                             
(10) 

with    

 If  is quadratic convex function,  then for any step length   the search direction  

generated  by (10)  are  conjugate  subject  to  the  Hessian  of  the nonlinear function , 
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even  without  exact  line search. In  the  same  context, in [9] it is proposed  another des-

cent  modified  HSCG method with  three–term, say, ZTCG where its search direction 

was defined as: 

                                                      (11) 

where . 

A remarkable property of this method is that produce descent direction i.e. 

                           
(12) 

The convergent properties of (11) for a convex optimization are  given in [9].  

2  A New Three-Term CG-Method 
Consider the search direction which is suitable for any three-term CG-type methods is 

defined by the following formula: 

1 1,2 1 1,2 ( )PRP
k k k k k k k kd g s yθ θ γ γ β+ += − + − +   

where 
T
k 1 kg (s ) .

( )
k

k T
k k k

y
y s y

γ + −
=

−  

1 2 , θ θ  Barzilai-Borwein (BB) methods to compute the step size [3]. We use it to 
search for less memory. 

1 1 1 1 ( )PRP
k k k k k k k kd g s yθ θ γ γ β+ += − + − +  

             
(14) 

 

k 1 1
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1 2 1 2 1 ( )PRP

k k k k k k kd g s yθ θ γ β γ+ + += − + − +
 

                                
(15) 
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Outlines of the New Algorithm:  
 
Step1.  Given an initial point  and .  Set  0=k  

Step2.  Set   k=k+1  and calculate )( kxg .  

Step3.  Check  if ε≤kg , then stop. 

Step4.  Calculate step length using  Wolfe line searches (4) and (5).                        
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Step5.  Set  . 

Step6.  Calculate and . 

Step7.  Calculate The search direction defined in (14,15). 

Step8.  Go to Step2. 
 

3  The Descent Property of the new formula  

To show that the search directions  of (14, 15) are descent directions: 

Proposition 3.1 Suppose that the line search satisfies the Wolfe condition (4) and (5) 

then given by (14,15) is a descent direction. 

 Proof: See [1]. 

4  Convergence  Analysis Property 
In this section, we  have to prove the basic global convergence property of  the proposed 

algorithm under the following assumptions:  

Definition 4.1 The level set  is bounded, i.e. there exists a 

positive constant  such that, for all:  

            . 

Definition 4.2 In a neighborhood   of  S the function  f  is  continuously differentiable  

and  its  gradient is  Lipschitz  continuous , i.e.  there exists a constant  such that:  

           . 

Under these assumptions on 𝑓𝑓, there exists a constant  such that , for all 

:    

                                                            (16)  

Observe that in the  above assumption, the function f is bounded below is weaker than the 

usual assumption that the level set is bounded. Although the search directions generated 

by (14, 15) are always descent directions, to ensure convergence of the algorithm we need 

to constrain the choice of the step length .  Now, the following proposition shows that 

the Wolfe line search always gives a lower bound for the step length . 

kkkk dxx α+=+   1
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Proposition 4.3 Suppose that  is a descent direction and that the gradient   satis-

fies the Lipschitz condition  for all  on the line segment 

connecting  and   , where  is a positive constant. If the line search satisfies the 

Wolfe conditions (4) and (5), then: 

       
.                                       (17) 

Proof :  See [2]. To prove the global convergence we need the following lemma [11]. 

 

Lemma 4.4 Suppose that  is a starting point for which assumptions (5.1) and (5.2) 

hold. Let be generated by the descent algorithm (New) with  satisfies the Wolfe line 

search conditions (4) and (5) then we have: 

                   .                                                                                       (18) 

       

It easy to get from Proposition 4.1   that (18) is equivalent to the following equation: 

                     .                                                                                         (19) 

Theorem 4. 5 Suppose that assumptions (5.1) and (5.2) holds, and consider the new al-

gorithm  (New), where   is computed by the Wolfe line search conditions (4) and (5) 

then: 

                                                                                                    (20) 

Proof : The prove is by contradiction we suppose that the conclusion is not true. Then 

there exist a constant  such that: 

                                                                              (21) 

since and with Proposition (4.1) it follows that . Consider the search di-

rection defined by the equation (20): 
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1 1 1,2 ( )PRP
k k k k k k k kd g s yθ γ γ β+ += − + − + 

22
1 1,2 1 1,2 ( )PRP

k k k k k k k kd g s yθ θ γ γ β+ += − + − + 
2 2 2

1 1,2 1 1,2 ( )PRP
k k k k k k kd g s yθ θ γ γ β+ +≤ + + + 

2
1,2 ( )PRP

k k k k ka s yθ γ γ β= + + 
2 2

1 1,2 1k kd g aθ+ +≤ + 
22

1,21  k ad θ γ+ ≤ + 
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5 Numerical Results 

In this section, we compare the performance of new formal 2,   3KI KI   developed A 

New Three-Term CG-Method. we have selected (75) large scale unconstrained optimiza-

tion problem, for each test problems taken from [1]. For each test function we have con-

sidered numerical experiments with the number of variables 100 ,..., 1000n = . These 

two new versions are compared with well-known conjugate gradient algorithm, the YS 

algorithm. All these algorithms are implemented with standard Wolfe line search condi-

tions (4) and (5) with. In all these cases, the stopping criteria is the 610−=kg . All codes 

are written in double precision FORTRAN Language with F77 default compiler settings. 

The test functions usually start point standard  initially, summary numerical results are 

recorded in the Figs. 1, 2 and 3. The performance profile by [5]  is used to display the 

performance of the developed A New Three-Term CG- algorithm with KI1  algorithm. 

Define 750p =  as the whole set of pn  test problems and 3S = , the set of the inter-
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ested solvers. Let ,p sl  be the number of objective function evaluations required by solver 

s  for problem p . Define the performance ratio as 

,
, *

p s
p s

p

l
r

l
=                                                                                                                      (21) 

Where *
,min{ : }p p sl l s S= ∈ . It is obvious that , 1p sr ≥   for all ,p s . If a solver fails 

to solve a problem, the ratio ,p sr  is assigned to be a large number M . The performance 

profile for each solver s  is defined as the following cumulative distribution function for 

performance ratio ,p sr ,  

,{ : }
( ) p s

s
p

size p P r
n

τ
ρ τ

∈ ≤
=                                                                                 (22) 

Obviously, (1)sp represents the percentage of problems for which solver s  is the best.  

 

 

 

  

 

 

 

 

 

 

 

 

Figure 1.The performance based on the epoch 

See [5] for more details about the performance profile.  The performance profile can also 

be used to analyze the number of iterations, the number of gradient evaluations and the 

cpu time. Besides, to get a clear observation, we give the horizontal coordinate a log-

scale in the following Figs. 1, 2 and 3. 
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Figure 2. The graph function gradient performance. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The graph of performance of the algorithm based on time. 
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