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ABSTRACT 
 

The complex modified Korteweg-de Vries (CMKdV) equation is solved numerically using collocation method based on quintic 

trigonometric B-Splines. A Crank Nicolson rule is used to discretize in time. The well-known examples, propagation of bell-

shaped initial pulse and collision of multi solitary waves are simulated using Matlab programme language. Computational results 

are examined by calculation of the accuracy of the method in terms of maximum error norm and the three conservation laws I1, I2 

and I3. Because the absolute changes of the lowest three laws are also good indicators of valid results even when the analytical 

solutions do not exist. 
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KOMPLEKS MODIFIYE KORTEWEG-DE VRIES (CMKdV) DENKLEMİNİN KUİNTİK 
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ÖZET 
 

Bu çalışmada, kompleks modifiye Korteweg-de Vries (CMKdV) denklemi, kuintik trigonometrik B-spline tabanlı 

kolokasyon yöntemi ile nümerik olarak çözülmüştür. Zaman ayrışımı için Crank-Nicolson yöntemi kullanılmıştır. Oldukça 

iyi bilinen bazı test problemlerinin, Matlab programlama dili kullanılarak simulasyonu yapılmıştır. Korunum kanunlarındaki 

mutlak değişiklikler, analitik çözümler olmadığında bile geçerli sonuçların iyi göstergeleri olduğundan, yöntemin doğruluğu, 

maksimum hata normu ve I1, I2 and I3 korunum kanunları cinsinden hesaplanarak, sonuçlar incelenmiştir. 

 

Anahtar Kelimeler: Kompleks modifiye Korteweg-de Vries denklemi, Trigonometrik B-Spline, Sonlu elemanlar yöntemi, 

Solitary dalgalar, Korunum kanunları 
 

 

1. INTRODUCTION 
 

The complex modified Korteweg-de Vries (CMKdV) equation in the following form 
 

 
∂𝑤

∂𝑡
+
∂3𝑤

∂𝑥3
+ 𝛼

∂(|𝑤|𝑤)

∂𝑥
= 0 (1) 

where the subscripts 𝑥 and 𝑡 denote partial differentiation, 𝛼 is a real parameter and 𝑖 = √−1. 𝑤(𝑥, 𝑡) 
is a complex-valued function. 
  

Some exact solutions to the CMKdV equation have been determined by various techniques like sine-

cosine and tanh methods [1]. Since the CMKdV has an analytical solution, it has been used as a test 

problem to check the validity of the numerical methods by researchers. The numerical methods such 

as the split-step Fourier method (SSFM) [2], parallel split-step Fourier method [3], collocation method 
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[4-5], Galerkin method [6], differential quadrature method [7-8], finite difference method [12] are 

applied to obtain numerical simulations of this equation. 
 

The B-splines are the known alternative basis functions providing continuity of some degree 

depending on the choice of the type of the B-splines. So far, many works have been done to show the 

efficiency of the B-spline functions of various orders covering finite elements, spectral and differential 

quadrature methods [9-11]. Especially the combination of B-splines is used as an approximation 

solution in collocation scheme to to solve the differential equations. Most researchers have choosen the 

collocation method for determination of the unknown parameters of the approximate solution in the 

finite elements method (FEM) formulation since writing FEM program based on the collocation together 

B-spline is easier than other techniques. The use of the trigonometric B-splines is not common for 

numerical methods to solve differential equations. The numerical approaches to solve a type of ODE with 

trigonometric B-splines for degree 2 and 3 are given by A. Nikolis [13-14]. Recently, trigonometric cubic 

B-spline collocation procedures are set up to solve the hyperbolic type problem, non classical diffusion 

problem and RLW, Fisher and Burgers’ equation [15-19]. The few papers have come out  dealing with 

solutions of the differential equations using quintic trigonometric B-spline. This study aims to fill the gap 

in the related literature by solving some initial boundary value problems constructed on CMKdV 

equation. For this purpose, the numerical solution of CMKdV equation by use of the collocation method 

based on the quintic trigonometric B-splines is given. To do this, boundary conditions 
 

 

𝑤(𝑎, 𝑡)     = 𝑤(𝑏, 𝑡) = 0, 𝑡 ≥ 0

𝑤′(𝑎, 𝑡)   = 𝑤′(𝑏, 𝑡) = 0, 𝑡 ≥ 0

𝑤′′(𝑎, 𝑡)  = 𝑤′′(𝑏, 𝑡) = 0, 𝑡 ≥ 0

 (2) 

 

and initial condition 
 

 𝑤(𝑥, 0) = 𝑓(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏 (3) 
 

will be used according to test problem. 
 

2. CONVERTING CMKdV TO A REAL PDE SYSTEM 
 

We use the transformation  

 𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) + 𝑖𝑣(𝑥, 𝑡) (4) 
 

to decompose 𝑤(𝑥, 𝑡) into its real and imaginary parts, and get the real valued-modified Korteweg-de 

Vries (MKdV) equation system  
 

 

∂𝑢

∂𝑡
+
∂3𝑢

∂𝑥3
+ 𝛼(3𝑢2 + 𝑣2)

∂𝑢

∂𝑥
+ 2𝛼𝑢𝑣

∂𝑣

∂𝑥
= 0

∂𝑣

∂𝑡
+
∂3𝑣

∂𝑥3
+ 2𝛼𝑢𝑣

∂𝑢

∂𝑥
+ 𝛼(3𝑣2 + 𝑢2)

∂𝑣

∂𝑥
= 0

 (5) 

 

This system include the third-order derivatives with respect to space variable so that smooth 

approximation can be done with the quintic trigonometric B-splines. 
 

3. NUMERICAL METHOD 
 

Consider a uniform partition of the problem domain [𝑥0 = 𝑎, 𝑥𝑁 = 𝑏] with the points 𝑥𝑚, 𝑚 =
0,1,… ,𝑁 and ℎ = (𝑏 − 𝑎)/𝑁 and the ghost points 𝑥−3, 𝑥−2, 𝑥−1, 𝑥𝑁+1, 𝑥𝑁+2, 𝑥𝑁+3 positioned 

outside the problem interval. Gost grid points are necessary to construct quintic B-splines basis on 

problem domain. Trigonometric quintic B-spline functions 𝑇𝑚(𝑥), 𝑚 = −2,… ,𝑁 + 2 are defined at 

the nodes 𝑥𝑚 by [20] 
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𝑇𝑚(𝑥) =
1

𝜃

{
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
𝜏5(𝑥𝑚−3) , 𝑥𝑚−3 ≤ 𝑥 < 𝑥𝑚−2
−𝜏4(𝑥𝑚−3)𝜏(𝑥𝑚−1) − 𝜏

3(𝑥𝑚−3)𝜏(𝑥𝑚)𝜏(𝑥𝑚−2)

−𝜏2(𝑥𝑚−3)𝜏(𝑥𝑚+1)𝜏
2(𝑥𝑚−2) − 𝜏(𝑥𝑚−3)𝜏(𝑥𝑚+2)𝜏

3(𝑥𝑚−2)

−𝜏(𝑥𝑚+3)𝜏
4(𝑥𝑚−2)

, 𝑥𝑚−2 ≤ 𝑥 < 𝑥𝑚−1

𝜏3(𝑥𝑚−3)𝜏
2(𝑥𝑚) + 𝜏

2(𝑥𝑚−3)𝜏(𝑥𝑚+1)𝜏(𝑥𝑚−2)𝜏(𝑥𝑚)

+𝜏2(𝑥𝑚−3)𝜏
2(𝑥𝑚+1)𝜏(𝑥𝑚−1) + 𝜏(𝑥𝑚−3)𝜏(𝑥𝑚+2)𝜏

2(𝑥𝑚−2)𝜏(𝑥𝑚)

+𝜏(𝑥𝑚−3)𝜏(𝑥𝑚+2)𝜏(𝑥𝑚−2)𝜏(𝑥𝑚+1)𝜏(𝑥𝑚−1)

+𝜏(𝑥𝑚−3)𝜏
2(𝑥𝑚+2)𝜏

2(𝑥𝑚−1) + 𝜏(𝑥𝑚+3)𝜏
3(𝑥𝑚−2)𝜏(𝑥𝑚)

+𝜏(𝑥𝑚+3)𝜏
2(𝑥𝑚−2)𝜏(𝑥𝑚+1)𝜏(𝑥𝑚−1)

+𝜏(𝑥𝑚+3)𝜏(𝑥𝑚−2)𝜏(𝑥𝑚+2)𝜏
2(𝑥𝑚−1) + 𝜏

2(𝑥𝑚+3)𝜏
3(𝑥𝑚−1)

, 𝑥𝑚−1 ≤ 𝑥 < 𝑥𝑚

−𝜏2(𝑥𝑚−3)𝜏
3(𝑥𝑚+1) − 𝜏(𝑥𝑚−3)𝜏(𝑥𝑚+2)𝜏(𝑥𝑚−2)𝜏

2(𝑥𝑚+1)

−𝜏(𝑥𝑚−3)𝜏
2(𝑥𝑚+2)𝜏(𝑥𝑚−1)𝜏(𝑥𝑚+1) − 𝜏(𝑥𝑚−3)𝜏

3(𝑥𝑚+2)𝜏(𝑥𝑚)

−𝜏(𝑥𝑚+3)𝜏
2(𝑥𝑚−2)𝜏

2(𝑥𝑚+1)

−𝜏(𝑥𝑚+3)𝜏(𝑥𝑚−2)𝜏(𝑥𝑚+2)𝜏(𝑥𝑚−1)𝜏(𝑥𝑚+1)

−𝜏(𝑥𝑚+3)𝜏(𝑥𝑚−2)𝜏
2(𝑥𝑚+2)𝜏(𝑥𝑚) − 𝜏

2(𝑥𝑚+3)𝜏
2(𝑥𝑚−1)𝜏(𝑥𝑚+1) −

𝜏2(𝑥𝑚+3)𝜏(𝑥𝑚−1)𝜏(𝑥𝑚+2)𝜏(𝑥𝑚) − 𝜏
3(𝑥𝑚+3)𝜏

2(𝑥𝑚)

, 𝑥𝑚 ≤ 𝑥 < 𝑥𝑚+1

𝜏(𝑥𝑚−3)𝜏
4(𝑥𝑚+2) + 𝜏(𝑥𝑚+3)𝜏(𝑥𝑚−2)𝜏

3(𝑥𝑚+2)

+𝜏2(𝑥𝑚+3)𝜏(𝑥𝑚−1)𝜏
2(𝑥𝑚+2) + 𝜏

3(𝑥𝑚+3)𝜏(𝑥𝑚)𝜏(𝑥𝑚+2)

+𝜏4(𝑥𝑚+3)𝜏(𝑥𝑚+1)

, 𝑥𝑚+1 ≤ 𝑥 < 𝑥𝑚+2

−𝜏5(𝑥𝑚+3) , 𝑥𝑚+2 ≤ 𝑥 < 𝑥𝑚+3
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6) 

where 
 

 𝜏(𝑥𝑚) = sin (
𝑥−𝑥𝑚

2
), 

 𝜃        = sin (
ℎ

2
) sin(ℎ)sin (

3ℎ

2
) sin(2ℎ)sin (

5ℎ

2
), 

 𝑚       = 0(1)𝑁. 
 

Let 𝑈(𝑥, 𝑡) and 𝑉(𝑥, 𝑡)be approximate solution to 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) respectively, defined as  
2 2

2 2

( , ) ( ) ( ), ( , ) ( ) ( )
N N

m m m m

m m

U x t t T x V x t t T x 
 

 

     

 

where 𝛿𝑚 and 𝜙𝑚 are time dependent parameters that are by applying collocation procedure at the grid 

points 𝑥𝑚,𝑚 = 0,1,… ,𝑁. Quintic trigonometric B-splines and its first four derivatives are continuous 

on element [𝑥𝑚−3, 𝑥𝑚+3]. The functional and derivative values of 𝑈(𝑥, 𝑡) (and 𝑉(𝑥, 𝑡)) at a grid 𝑥𝑚 

can be obtained in terms of time dependent parameters 𝛿 (and 𝜙) as 
 

𝑈𝑚 = 𝑈(𝑥𝑚) = 𝑎1𝛿𝑚−2 + 𝑎2𝛿𝑚−1 + 𝑎3𝛿𝑚 + 𝑎2𝛿𝑚+1 + 𝑎1𝛿𝑚+2, 
𝑈𝑚
′ = 𝑈′(𝑥𝑚) = 𝑏1𝛿𝑚−2 + 𝑏2𝛿𝑚−1 − 𝑏2𝛿𝑚+1 − 𝑏1𝛿𝑚+2, 

𝑈𝑚
′′ = 𝑈′′(𝑥𝑚) = 𝑐1𝛿𝑚−2 + 𝑐2𝛿𝑚−1 + 𝑐3𝛿𝑚 + 𝑐2𝑚+1 + 𝑐1𝛿𝑚+2, 

𝑈𝑚
′′′ = 𝑈′′′(𝑥𝑚) = 𝑑1𝛿𝑚−2 + 𝑑2𝛿𝑚−1 − 𝑑2𝛿𝑚+1 − 𝑑1𝛿𝑚+2 

𝑈𝑚
′′′′ = 𝑈′′′′(𝑥𝑚) = 𝑒1𝛿𝑚−2 + 𝑒2𝛿𝑚−1 + 𝑒3𝛿𝑚 + 𝑒2𝛿𝑚+1 + 𝑒1𝛿𝑚+2. (7) 

 

where 
 

 𝑎1 = sin
5(
ℎ

2
)/𝜃 

 𝑎2 = 2sin
5(
ℎ

2
)cos(

ℎ

2
) (16cos2(

ℎ

2
) − 3) /𝜃 

 𝑎3 = 2(1 + 48cos
4(
ℎ

2
) − 16cos2(

ℎ

2
)) sin5(

ℎ

2
)/𝜃 

 𝑏1 = (−5/2)sin
4(
ℎ

2
)cos(

ℎ

2
)/𝜃 
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 𝑏2 = −5sin
4(
ℎ

2
)cos2(

ℎ

2
) (8cos2(

ℎ

2
) − 3) /𝜃 

 𝑐1 = (5/4)sin
3(
ℎ

2
) (5cos2(

ℎ

2
) − 1) /𝜃 

 𝑐2 = (5/2)sin
3(
ℎ

2
)cos(

ℎ

2
) (−15cos2(

ℎ

2
) + 3 + 16cos4(

ℎ

2
)) /𝜃 

 𝑐3 = (−5/2)sin
3(
ℎ

2
) (16cos6(

ℎ

2
) − 5cos2(

ℎ

2
) + 1) /𝜃 

 𝑑1 = (−5/8)sin
2(
ℎ

2
)cos(

ℎ

2
) (25cos2(

ℎ

2
) − 13) /𝜃 

 𝑑2 = (−5/4)sin
2(
ℎ

2
)cos2(

ℎ

2
) (8cos4(

ℎ

2
) − 35cos2(

ℎ

2
) + 15)/𝜃 

 𝑒1 = (5/16) (125cos
4(
ℎ

2
) − 114cos2(

ℎ

2
) + 13) sin(

ℎ

2
)/𝜃 

 𝑒2 = (−5/8)sin(
ℎ

2
)cos(

ℎ

2
) (176cos6(

ℎ

2
) − 137cos4(

ℎ

2
) − 6cos2(

ℎ

2
) + 15)/𝜃 

 𝑒3 = (5/8) (92cos
6(
ℎ

2
− 17cos4(

ℎ

2
) + 62cos2(

ℎ

2
) − 13) (−1 + 4cos2(

ℎ

2
)) sin(

ℎ

2
)/𝜃 

 

Applying of the Crank-Nicolson and the classical forward difference leads to 

 
𝑈𝑛+1−𝑈𝑛

Δ𝑡
+
𝑈𝑥𝑥𝑥
𝑛+1+𝑈𝑥𝑥𝑥

𝑛

2
+ 3𝛼

(𝑈2𝑈𝑥)
𝑛+1+(𝑈2𝑈𝑥)

𝑛

2
+ 𝛼

(𝑉2𝑈𝑥)
𝑛+1+(𝑉2𝑈𝑥)

𝑛

2
+ 2𝛼

(𝑈𝑉𝑉𝑥)
𝑛+1+(𝑈𝑉𝑉𝑥)

𝑛

2
= 0

𝑉𝑛+1−𝑉𝑛

Δ𝑡
+
𝑉𝑥𝑥𝑥
𝑛+1+𝑉𝑥𝑥𝑥

𝑛

2
+ 2𝛼

(𝑈𝑉𝑈𝑥)
𝑛+1+(𝑈𝑉𝑈𝑥)

𝑛

2
+ 3𝛼

(𝑉2𝑉𝑥)
𝑛+1+(𝑉2𝑉𝑥)

𝑛

2
+ 𝛼

(𝑈2𝑉𝑥)
𝑛+1+(𝑈2𝑉𝑥)

𝑛

2
= 0

 (8) 

 

where 𝑈𝑛+1 = 𝑈(𝑥, 𝑡𝑛 + Δ𝑡), 𝑉
𝑛+1 = 𝑉(𝑥, 𝑡𝑛 + Δ𝑡). The nonlinear terms (𝑈2𝑈𝑥)

𝑛+1, (𝑉2𝑈𝑥)
𝑛+1, 

(𝑈𝑉𝑉𝑥)𝑥
𝑛+1, (𝑈𝑉𝑈𝑥)𝑥

𝑛+1, (𝑉2𝑉𝑥)
𝑛+1 and (𝑈2𝑉𝑥)

𝑛+1  in Eq. (8) are linearized by using the following 

forms [21]: 
2 1 1 2 1 2( ) 2 ( ) -2( )n n n n n n n n

x x x xU U U U U U U U U   
2 1 1 2 1 2( ) 2 ( ) 2( )n n n n n n n n

x x x xV U V V U V U V U    
1 1 1 1( ) 2n n n n n n n n n n n n n

x x x x xUVV U V V U V V U V V U V V      
1 1 1 1( ) 2n n n n n n n n n n n n n

x x x x xUVU U V U U V U U V U U V U      
2 1 1 2 1 2( ) 2 ( ) 2( )n n n n n n n n

x x x xV V V V V V V V V      
2 1 1 2 1 2( ) 2 ( ) 2( )n n n n n n n n

x x x xU V U U V U V U V      

  

Substitution the approximate solution (7) into (8) and evaluating the resulting  equations at the knots 

yields the system of the fully-discretized equations 
 

 

𝜇1𝛿𝑚−2
𝑛+1 + 𝜇2𝜙𝑚−2

𝑛+1 + 𝜇3𝛿𝑚−1
𝑛+1 + 𝜇4𝜙𝑚−1

𝑛+1 + 𝜇5𝛿𝑚
𝑛+1

+𝜇6𝜙𝑚
𝑛+1 + 𝜇7𝛿𝑚+1

𝑛+1 + 𝜇8𝜙𝑚+1
𝑛+1 + 𝜇9𝛿𝑚+2

𝑛+1 + 𝜇10𝜙𝑚+2
𝑛+1

= 𝜇11𝛿𝑚−2
𝑛 + 𝜇12𝜙𝑚−2

𝑛 + 𝜇13𝛿𝑚−1
𝑛 + 𝜇14𝜙𝑚−1

𝑛 + 𝜇15𝛿𝑚
𝑛

+𝜇16𝜙𝑚
𝑛 + 𝜇17𝛿𝑚+1

𝑛 + 𝜇14𝜙𝑚+1
𝑛 + 𝜇18𝛿𝑚+2

𝑛 + 𝜇17𝜙𝑚+2
𝑛

 (9) 

 

 

𝜇2𝛿𝑚−2
𝑛+1 + 𝜂1𝜙𝑚−2

𝑛+1 + 𝜇4𝛿𝑚−1
𝑛+1 + 𝜂2𝜙𝑚−1

𝑛+1 + 𝜇6𝛿𝑚
𝑛+1

+𝜂3𝜙𝑚
𝑛+1 + 𝜇8𝛿𝑚+1

𝑛+1 + 𝜂4𝜙𝑚+1
𝑛+1 + 𝜇10𝛿𝑚+2

𝑛+1 + 𝜂5𝜙𝑚+2
𝑛+1

= 𝜂6𝛿𝑚−2
𝑛 + 𝜂7𝜙𝑚−2

𝑛 + 𝜂8𝛿𝑚−1
𝑛 + 𝜂9𝜙𝑚−1

𝑛 + 𝜂10𝛿𝑚
𝑛

+𝜂11𝜙𝑚
𝑛 + 𝜂8𝛿𝑚+1

𝑛 + 𝜂12𝜙𝑚+1
𝑛 + 𝜂6𝛿𝑚+2

𝑛 + 𝜂13𝜙𝑚+2
𝑛

 (10) 
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where 

 

𝜇1 = (
2

Δ𝑡
+ 6𝛼𝑃𝑄 + 2𝛼𝑅𝑆)𝑎1 + 𝛼(3𝑃

2 +𝑅2)𝑏1 + 𝑑1

𝜇2 = 2𝛼(𝑅𝑄 + 𝑃𝑆)𝑎1 + 2𝛼𝑃𝑅𝑏1

𝜇3 = (
2

Δ𝑡
+ 6𝛼𝑃𝑄 + 2𝛼𝑅𝑆)𝑎2 + 𝛼(3𝑃

2 +𝑅2)𝑏2 + 𝑑2

𝜇4 = 2𝛼(𝑅𝑄 + 𝑃𝑆)𝑎2 + 2𝛼𝑃𝑅𝑏2

𝜇5 = (
2

Δ𝑡
+ 6𝛼𝑃𝑄 + 2𝛼𝑅𝑆)𝑎3

𝜇6 = 2𝛼(𝑅𝑄 + 𝑃𝑆)𝑎3

𝜇7 = (
2

Δ𝑡
+ 6𝛼𝑃𝑄 + 2𝛼𝑅𝑆)𝑎2 − 𝛼(3𝑃

2 +𝑅2)𝑏2 − 𝑑2

𝜇8 = 2𝛼(𝑅𝑄 + 𝑃𝑆)𝑎2 − 2𝛼𝑃𝑅𝑏2

𝜇9 = (
2

Δ𝑡
+ 6𝛼𝑃𝑄 + 2𝛼𝑅𝑆)𝑎1 − 𝛼(3𝑃

2 + 𝑅2)𝑏1 − 𝑑1

𝜇10 = 2𝛼(𝑅𝑄 + 𝑃𝑆)𝑎1 − 2𝛼𝑃𝑅𝑏1

𝜇11 = (
2

Δ𝑡
+ 3𝛼𝑃𝑄 + 2𝛼𝑅𝑆)𝑎1 − 𝑑1

𝜇12 = (𝛼𝑅𝑄)𝑎1

𝜇13 = (
2

Δ𝑡
+ 3𝛼𝑃𝑄 + 2𝛼𝑅𝑆)𝑎2 − 𝑑2

𝜇14 = (𝛼𝑅𝑄)𝑎2

𝜇15 = (
2

Δ𝑡
+ 3𝛼𝑃𝑄 + 2𝛼𝑅𝑆)𝑎3

𝜇16 = (𝛼𝑅𝑄)𝑎3

𝜇17 = (
2

Δ𝑡
+ 3𝛼𝑃𝑄 + 2𝛼𝑅𝑆)𝑎2 + 𝑑2

𝜇18 = (
2

Δ𝑡
+ 3𝛼𝑃𝑄 + 2𝛼𝑅𝑆)𝑎1 + 𝑑1

 

 

 

𝜂1 = (
2

Δ𝑡
+ 6𝛼𝑅𝑆 + 2𝛼𝑃𝑄)𝑎1 + 𝛼(3𝑅

2 + 𝑃2)𝑏1 + 𝑑1

𝜂2 = (
2

Δ𝑡
+ 6𝛼𝑅𝑆 + 2𝛼𝑃𝑄)𝑎2 + 𝛼(3𝑅

2 + 𝑃2)𝑏2 + 𝑑2

𝜂3 = (
2

Δ𝑡
+ 6𝛼𝑅𝑆 + 2𝛼𝑃𝑄)𝑎3

𝜂4 = (
2

Δ𝑡
+ 6𝛼𝑅𝑆 + 2𝛼𝑃𝑄)𝑎2 − 𝛼(3𝑅

2 + 𝑃2)𝑏2 − 𝑑2

𝜂5 = (
2

Δ𝑡
+ 6𝛼𝑅𝑆 + 2𝛼𝑃𝑄)𝑎1 − 𝛼(3𝑅

2 + 𝑃2)𝑏1 − 𝑑1

𝜂6 = (𝛼𝑃𝑆)𝑎1

𝜂7 = (
2

Δ𝑡
+ 2𝛼𝑃𝑄 + 3𝛼𝑅𝑆)𝑎1 − 𝑑1

𝜂8 = (𝛼𝑃𝑆)𝑎2

𝜂9 = (
2

Δ𝑡
+ 2𝛼𝑃𝑄 + 3𝛼𝑅𝑆)𝑎2 − 𝑑2

𝜂10 = (𝛼𝑃𝑆)𝑎3

𝜂11 = (
2

Δ𝑡
+ 2𝛼𝑃𝑄 + 3𝛼𝑅𝑆)𝑎3

𝜂12 = (
2

Δ𝑡
+ 2𝛼𝑃𝑄 + 3𝛼𝑅𝑆)𝑎2 + 𝑑2

𝜂13 = (
2

Δ𝑡
+ 2𝛼𝑃𝑄 + 3𝛼𝑅𝑆)𝑎1 + 𝑑1

 

𝑃 = 𝑎1𝛿𝑚−2
𝑛 + 𝑎2𝛿𝑚−1

𝑛 + 𝑎3𝛿𝑚
𝑛 + 𝑎2𝛿𝑚+1

𝑛 + 𝑎1𝛿𝑚+2
𝑛

𝑄 = 𝑏1𝛿𝑚−2
𝑛 + 𝑏2𝛿𝑚−1

𝑛 − 𝑏2𝛿𝑚+1
𝑛 − 𝑏1𝛿𝑚+2

𝑛

𝑅 = 𝑎1𝜙𝑚−2
𝑛 + 𝑎2𝜙𝑚−1

𝑛 + 𝑎3𝜙𝑚
𝑛 + 𝑎2𝜙𝑚+1

𝑛 + 𝑎1𝜙𝑚+2
𝑛

𝑆 = 𝑏1𝜙𝑚−2
𝑛 + 𝑏2𝜙𝑚−1

𝑛 − 𝑏2𝜙𝑚+1
𝑛 − 𝑏1𝜙𝑚+2

𝑛
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To have a solvable system, eight boundary conditions 𝑈(𝑎, 𝑡) = 0, 𝑈𝑥(𝑎, 𝑡) = 0, 𝑈(𝑏, 𝑡) = 0, 𝑈𝑥(𝑏, 𝑡) =
0, 𝑉(𝑎, 𝑡) = 0, 𝑉𝑥(𝑎, 𝑡) = 0, 𝑉(𝑏, 𝑡) = 0, 𝑉𝑥(𝑏, 𝑡) = 0 are used to have additional eight equations, so 

that system of dimension (2𝑁 + 2) × (2𝑁 + 10)  is solved to have the (2𝑁 + 10) unknown parameters  
 

 𝐱𝑛+1 = (𝛿−2
𝑛+1, 𝜙−2

𝑛+1, 𝛿−1
𝑛+1, 𝜙−1

𝑛+1, … , 𝛿𝑛+1
𝑛+1, 𝜙𝑛+1

𝑛+1, 𝛿𝑛+2
𝑛+1, 𝜙𝑛+2

𝑛+1) 
 

This system is solved with Matlab packet program using Gauss elimination. 
 

Time evolution of parameters 𝛿𝑚
𝑛+1 (and 𝜙𝑚

𝑛+1) are computed once the initial parameters 𝛿𝑚
0  (and 𝜙𝑚

0 ) 

are obtained with help of the boundary and initial conditions below: 
 

𝑈(𝑎, 0) = 𝑎1𝛿−2
0 + 𝑎2𝛿−1

0 + 𝑎3𝛿0
0 + 𝑎2𝛿1

0 + 𝑎1𝛿2
0 = 0,

𝑈𝑥(𝑎, 0) = 𝑏1𝛿−2
0 + 𝑏2𝛿−1

0 − 𝑏2𝛿1
0 − 𝑏1𝛿2

0 = 0,

𝑈(𝑥, 0) = 𝑎1𝛿𝑚−2
0 + 𝑎2𝛿𝑚−1

0 + 𝑎3𝛿𝑚
0 + 𝑎2𝛿𝑚+1

0 + 𝑎1𝛿𝑚+2
0 = 𝑈(𝑥𝑚, 0),𝑚 = 1(1)𝑁 − 1

𝑈(𝑏, 0) = 𝑎1𝛿𝑁−2
0 + 𝑎2𝛿𝑁−1

0 + 𝑎3𝛿𝑁
0 + 𝑎2𝛿𝑁+1

0 + 𝑎1𝛿𝑁+2
0 = 0,

𝑈𝑥(𝑏, 0) = 𝑏1𝛿𝑁−2
0 + 𝑏2𝛿𝑁−1

0 − 𝑏2𝛿𝑁+1
0 − 𝑏1𝛿𝑁+2

0 = 0.

 

 

4. NUMERICAL EXAMPLES 
 

The maximum error norm measuring the error between the numerical and the analytical solutions, if 

exist, defined as  

𝐿∞ = |𝑤 −𝑊|∞ = max
𝑚
|𝑤𝑚

𝑛 −𝑊𝑚
𝑛| 

The conservation laws can also be good indicators of the validity of the numerical methods, especially 

when the analytical solutions do not exist. The lowest three conservation laws are defined as  

𝐼1 = ∫

∞

−∞

𝑤𝑑𝑥

𝐼2 = ∫

∞

−∞

|𝑤|2𝑑𝑥

𝐼3 = ∫

∞

−∞

𝛼

2
(|𝑤|4 − |𝑤𝑥|

2)𝑑𝑥

 

The conserved quantities are taken from the paper [22]. The absolute relative changes 𝐶(𝐼1
𝑡), 𝐶(𝐼2

𝑡) 

and 𝐶(𝐼3
𝑡) of the conservation laws 𝐼1, 𝐼2 and 𝐼3 are  

𝐶(𝐼1
𝑡) = |

𝐼1
𝑡 − 𝐼1

0

𝐼1
0 | 

𝐶(𝐼2
𝑡) = |

𝐼2
𝑡 − 𝐼2

0

𝐼2
0 | 

𝐶(𝐼3
𝑡) = |

𝐼3
𝑡 − 𝐼3

0

𝐼3
0 | 

 

where 𝐼1
0, 𝐼2

0 and 𝐼3
0 are initial quantities, 𝐼1

𝑡, 𝐼2
𝑡 and 𝐼3

𝑡 are the numerically computed values of the 

conserved quantities at the time 𝑡. 
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4.1. Motion of Single Solitary Wave 
 

The CMKdV equation has complex valued exact solutions [2] 

 𝑤(𝑥, 𝑡) = √
2𝑐

𝛼
secℎ[√𝑐(𝑥 − 𝑥0 − 𝑐𝑡)]exp(𝑖𝜃0) (11) 

 

describing propagation of an initial pulse of height √
2𝑐

𝛼
 with constant velocity 𝑐 moving along space axis, 𝜃0 

denotes the angle of polarization. The parameters are chosen as 𝑐 = 1, 𝛼 = 2, 𝑥0 = −15, 𝜃0 = 𝜋/4  for 

convenience. This form of the equation is a good describer for non-linear evolution of plasma waves. 

 

The boundary conditions are adapted to the numerical method at both end of the finite interval 

[−20,60]. The suggested algorithm is run for the time step Δ𝑡 = 0.001 and five varying spatial steps 

to make comprasion with the results of the quintic B-spline collocation method [4] given at the 𝑡 = 3 

in Table 1. Generally, the error is reduced by one decimal digits by use of the trigonometric B-spline 

collocation method for getting the solution of CMKdV.  
 

Table 1. Comparison of the 𝐿∞ × 1000 for the single soliton for Δ𝑡 = 0.001 at 𝑡 = 3 various N. 

 

N Trigonometric spline Polynomial spline [4] 

300 0.09013 0.41519 

400 0.02468 0.13715 

600 0.00444 0.02589 

800 0.00115 0.00780 

1000 0.00044 0.00293 

 

A three dimensional simulation of the propagation is depicted in Figure 1a and the maximum error 

distributions of the solution obtained by present method at the simulation terminating time is depicted 

in Figure 1b. The designed routines are run to the terminating time 𝒕 = 𝟑 with the discretization 

parameters 𝑵 = 𝟏𝟎𝟎𝟎 and 𝚫𝒕 = 𝟎. 𝟎𝟎𝟏 in the finite problem interval [−𝟐𝟎, 𝟔𝟎].  Maximum error 

occurs around the peak of solitary wave seeing in Figure 1b. 
 

 
(a) 

 
(b) 

 

Figure 1. Propagation of the initial pulse and the maximum absolute error at t=3. 

The initial exact values of the conservation laws are computed using the initial conditions over 

[−20,60] as as  

𝐼1
0 = 3.14159265

𝐼2
0 = 2.00000000

𝐼3
0 = 0.66666677
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The conservation laws are calculated using the numerical solution at the grid points for the parameters 

Δ𝑡 = 0.001 and the spatial steps at the 𝑡 = 3. Conservation quantities remain constants and the relative 

error becomes smaller when the number of grid points are increases seen in Table 2. 
 

Table 2. Conservative laws and their relative changes for Δ𝑡 = 0.001 at 𝑡 = 3 various 𝑁. 

 

N 𝑰𝟏
𝟎 𝑰𝟐

𝟎 𝑰𝟑
𝟎 𝑪(𝑰𝟏

𝟑) 𝑪(𝑰𝟐
𝟑) 𝑪(𝑰𝟑

𝟑) 
300 3.14159265 2.00000000 0.66666738 0.00023078 0.0000000104 0.0000003766 

400 3.14159265 2.00000000 0.66666678 0.00003031 0.0000000000 0.0000000134 

600 3.14159265 2.00000000 0.66666668 0.00000385 0.0000000002 0.0000000008 

800 3.14159265 2.00000000 0.66666667 0.00000093 0.0000000002 0.0000000005 

1000 3.14159265 2.00000000 0.66666667 0.00000038 0.0000000002 0.0000000005 

 

4.2. Interaction of Two Solitary Waves 

 

The interaction of two solitary waves is studied by using the inital condititon [5]: 

 𝑤(𝑥, 0) = √
2𝑐1

𝛼
secℎ[√𝑐1(𝑥 − 𝑥1)]exp(𝑖𝜃1) + √

2𝑐2

𝛼
secℎ[√𝑐2(𝑥 − 𝑥2)]exp(𝑖𝜃2) 

 

This initial condition represents two solitary waves, one positioned around 𝑥1, the other one around 𝑥2 

initially. The artifical problem interval is chosen as [0,100]. The remaining parameters are chosen as 

𝑐1 = 2, 𝑐2 = 0.5, 𝜃1 = 0, 𝜃2 =
𝜋

2
, 𝑥1 = 25 and 𝑥2 = 50. The program is run until time 𝑡 = 25 with 

the discretization parameters 𝑁 = 500 and Δ𝑡 = 0.001 over the interval [0,100]. The propogation of 

two solitary waves with different amplitudes travelling in the x-axis. After the interaction, they 

conserve the original shapes rights is observed to pass through each other and keep their magnitudes 

after the interaction in Figures 2. When the time reaches 𝑡 = 10, it is observed that the interaction has 

started, Figure 2b. The height of the higher solitary is measured as 1.4145 and its peak is positioned at 

𝑥 = 45. The height of the lower one increases to 0.7071 and the position of its peak is determined as 

𝑥 = 55. The height of the higher wave reaches 1.1790 as the height of the lower one 0.7898 at the 

time 𝑡 = 15, Figure 2c. The peaks of both the higher and the lower solitaries are positioned at 𝑥 =

54.8 and 𝑥 = 57.4, respectively. When the time reaches 𝑡 = 16, the solitaries begin to separate, 

Figure 2d. In Figure 2e, the height of the higher one increases to 1.4408 and it is positioned at 𝑥 =

66.6. The peak of the lower one is positioned at 𝑥 = 56.8 and the height of it decreased to 0.6372. At 

the end of the simulation, we observe both solitaries are separated completely and return to their 

original shapes and heights, Figure 2f. The heights of both solitaries are determined as 0.6028 and 

1.4411 as the peaks reach 𝑥 = 58.6 and 77.2 as keeping to propagate on their own ways.   
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(a) t=0 

 
(b) t=10 

 
(c) t=15 

 
(d) t=16 

 
(e) t=20 

 
(f) t=25 

 

Figure 2. Interaction of two solitary waves. 
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4.3. Interaction of Three Solitary Waves 

 

The collusion of three solitary waves is simulated by studying with the initial data  [5], 

 𝑤(𝑥, 0) = ∑3𝑗=1 √
2𝑐𝑗

𝛼
secℎ[√𝑐𝑗(𝑥 − 𝑥𝑗)]exp(𝑖𝜃𝑗) 

The three solitary waves are well seperated and their peaks are located at 𝑥1, 𝑥2 and 𝑥3. All moves to 

the right as time proceeds. The algorithm is run in the artificial interval [0,100] with the parameters 

𝑥1 = 10, 𝑥2 = 30, 𝑥3 = 50 up to time 𝑡 = 80. We assume that 𝑐1 = 1, 𝑐2 = 0.5, 𝑐3 = 0.3, 𝜃1 =
0, 𝜃2 = 0 and 𝜃3 = 0. 
 

This initial condition gives three positive bell shaped solitaries of heights 1.0000, 0.7071 and 0.5477 

positioned 𝑥 = 10, 𝑥 = 20 and 𝑥 = 30 respectively in Figure 3a. All solitaries propagate in the same 

directions along the horizontal axis as time goes. Interaction of three solitary waves are exhibited in 

Figures 3. 

 

 
(a) t=0 

 
(b) t=10 

 
(c) t=30 

 
(d) t=40 



Ersoy Hepson / Eskişehir Technical Univ. J. of Sci. and Tech.  B – Theo. Sci. 6 (2) – 2018 

 

203 

 
(e) t=50 

 
(f) t=80 

 

Figure 3. Interaction of three solitary waves 

 

The conserved laws are given in Table 3 for varios 𝑡 and fixed Δ𝑡 = 0.001,𝑁 = 1000. The values are 

computed as 𝐼1
0 = 9.42468708, 𝐼2

0 = 4.51000556 and 𝐼3
0 = 1.01209702 initially. According the 

Table 3, these are almost constant during the interaction simulation. 
 

Table 3. Conservative laws and their relative changes for Δ𝑡 = 0.001 and 𝑁 = 1000 various 𝑡 
 

t 𝑰𝟏
𝒕  𝑰𝟐

𝒕  𝑰𝟑
𝒕  𝑪(𝑰𝟏

𝒕 ) 𝑪(𝑰𝟐
𝒕 ) 𝑪(𝑰𝟑

𝒕 ) 
0 9.42468708 4.51000556 1.01209702    

10 9.42523161 4.51000556 1.01209687 0.00005778 0.000000000 0.000000015 

30 9.42541556 4.51000546 1.01209781 0.00007729 0.000000022 0.000000078 

40 9.42558213 4.51000553 1.01209714 0.00009497 0.000000005 0.000000012 

50 9.42574272 4.51000549 1.01209755 0.00011201 0.000000015 0.000000052 

80 9.31891836 4.51001022 1.00628948 0.01122252 0.000001034 0.000573813 

 

5. CONCLUSION 
 

Based on quintic trigonometric B-spline functions, a collocation approach has been implemented to 

some initial boundary value problems for the CMKdV equation. To be able obtain numerical 

solutions, firstly CMKdV equation was converted to a system of ordinary differential equations. The 

Crank–Nicolson scheme was used to discretize both equation in time variable. Quintic trigonometric 

B-spline functions were used for the space integration. Resultant ordinary differential equation system 

was solved via Gauss elimination using Matlab programme language. The validity of the method was 

checked by computing maximum error in the first problem. Then, absolute relative changes of the 

lowest three conserved quantities were computed for first and third test problems. The conserved 

quantities were preserved during the simulations. The preservation of conservation quantities shows 

the efficiency of the algorithm. As a conclusion, quintic trigonometric B-spline collocation method 

gives numerical solutions of the CMKdV equation with high accuracy.  
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