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Abstract — In this research  we estimation a new hybrid conjugate gradient algo-

rithm, whom is convex combination of the Liu-Story algorithm and Dixon algorithm, 

the descent property and global convergence are establish for the new suggested me-

thod. Numerical comparisons show that the present method often behaves better than 

Liu-Storey and Dixon methods.  
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1 Introduction 
Estimation the non-linear unconstrained optimization problem 

}  : )({ min nRxxf ∈                       (1) 

where  RRf n →:  is continuously differentiable function and bounded from below. 
There are many different methods for solving the problem (1) see [7], [9], [11] and [14]. 
We are attentive in conjugate gradient (CG) methods, which have low memory require-
ments and strong local and global convergence properties [1], [12]. For solving the prob-
lem (1), we estimation the CG method, which starts from an initial point nRx  1∈  and 

generates a sequence n
k Rx ⊂}{  as follows: 
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kkkk dxx α+=+1                          (2) 

 where 0>kα is a step size, recipient from the line search, and directions kd are given   
 
[16], [1] by,  11 gd −=  and  

kkkk sgd β+−= ++ 11             (3) 

In the equation (3) )( kk xfg ∇= , kkk xxs −= +1 and kβ  is the conjugate gradient parame-
ter. The standard Wolfe line search conditions are repeatedly used in the conjugate gra-
dient methods, these conditions are given by [17] 

k
T
kkkkkk dgxfdxf ραα +≤+ )()(                          (4) 

k
T
kk

T
k dgdg  1 σ≥+                          (5) 

where kd is descent direction i e 0 <k
T
k dg  and 10 <<< σρ . Strong Wolfe conditions 

contain of (4) and the next stronger version of (5) 

k
T
kk

T
k dgdg  1 σ−≤+                          (6) 

  Various choices of the scalar kβ  exist which give different performance on non- qua-
dratic functions, yet they are equivalent for quadratic functions. In order to select the pa-
rameter kβ for the method in current paper, we mention the following choices: 
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  Where 1k k ky g g+= − . Balance that these algorithms can be classified as algorithms 

with 11  ++ k
T
k gg  in the numerator of kβ  and algorithms with k

T
k yg   1+  in the numerator of 

parameter kβ . The first CG algorithm with FRβ  (FR) for nonlinear function introduced 

by [8]. DYβ (DY)  method  proposed by [4] and DXβ (DX) conjugate gradient method 

suggested by [5]. With 11  ++ k
T
k gg   in the numerator of kβ  having strong convergence 

theory but all these methods are susceptible to strays. They begin to pick small steps 
without making any marked progress to the minimum [9]. On the other hand the HSβ  

(HSCG) suggested by [10], PRβ  (PR) developed by [15] and LSβ  (LS) derived by [13] 

methods with k
T
k yg   1+  in the numerator of parameter kβ , have a built in restart feature 

that addresses the strays phenomenon. When the step 1k k kx xs += −  is small, the factor 

ky  in the numerator of kβ  tends to zero. Therefore kβ  becomes small and the new di-

rection 1+kd  in (3) is essentially steepest descent (SD) direction. With other words HS, 
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PR and LS methods automatically adjust kβ  to avoid strays and their performances are 

better than the performance of method with 11  ++ k
T
k gg  in the numerator of  kβ [1]. 

 
2   New hybrid conjugate  gradient  algorithm (NK1- say) 
The conjugate gradient algorithms with 1 1

T
k kg g+ +  in the numerator of kβ  having strong 

convergence theory, but all these methods are susceptible to strays On the other hand the 
methods with  1

T
k kg y+   in numerator of parameter kβ  performance better than perfor-

mance of methods with 1 1
T
k kg g+ + in the numerator of kβ  [9]. In this paper, we suggest a 

new  hybrid 1NK
kβ  conjugate gradient algorithm for unconstrained optimization, which is 

convex combination of DX
kβ  (Dixon)  and  LS

kβ ( Liu-Storey)  as follows:  

Let  DX
k

LS
k

NK
k βγβγβ  )1( 1 −+=                 (7) 

Where R∈γ  is scalar, then  
       k

NK
kkk sgd 1

11  β+−= ++                 (8) 

 To fined the value of, γ  we use the pure conjugacy condition i. e 
       01 =+k

T
k dy                 (9) 

 Therefore  
01

11 =+−= ++ k
T
k

NK
kk

T
kk

T
k sygydy β   

  
       0))1((1 =−++− + k

T
k

DX
k

Ls
kk

T
k sygy βγγβ

       

        
0))1(( 111

1 =
−

−+
−

+− +++
+ k

T
k

k
T
k

k
T
k

k
T
k

k
T
k

k
T
k sy

gd
gg

gd
gy

gy γγ
 
 

 

with simple algebra we get 
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1

111

+

+++ +
=γ                                                                        (10)                                         

 We restrict γ  by 10 ≤≤ γ , for 0<γ  or 1>γ , we set 1γ = . In the following we sum-
marize our new suggested (NK1) algorithm as follows: 
 
Algorithm NK1-CG  
Step 1. Select an arbitrary nRx ∈1 ,  compute )( 1xf   and 1g . Set 

           11 gd =    and set the initial guess 11 /1 g=α , and k=1. 

Step 2. Fined 0>kα  which satisfies  the Wolfe line search condition  
             (4) and (5) or strong condition (4) and (5) and  



K. K Abbo and N. H. Hameed 

94 
 

              update the variables kkkk dxx α+=+1 . 

Step 3. If    6
1 10−
+ <kg , then stop, balance evaluate 1

1
NK
k+β  from (7) 

             where γ defined in (10) and calculate 1+kd   according to 
 

                   k
NK
kkk sgd 1

11 β+−= ++                                                                                 (11) 
 
Step 4.  Increase k by one and go to Step 2. 
 
3 Global convergence analysis 
   In order to derive the global convergence to the NK1 conjugate gradient algorithm we 
use the following assumptions. 
Assumption 1 
(i): The level set )}()( :{ 1xfxfRx n ≤∈=Ω   is bounded, where 1x  is the 
      starting point. 
(ii): In some neighborhood Ν  of  Ω , f  is continuously differentiable, 
       and it is gradient is Lipschitz continuous: 

      NyxyxLygxg ∈∀−≤−  ,        )()(                   (12) 

      under assumption (i) and (ii) it is clear that   

       χ≤x  and ω≤∇ )(xf   nRx∈∀     

where χ  and ω   are scalars. 
 First we prove that our suggested algorithm (NK1) generates descent search directions in 
the following theorem. 
Theorem 3.1 Suppose that assumption_1 holds. Let the sequence }{ kx  be generated by 

kkkk dxx α+=+1  where kd defined in equation(3), 1
1

NK
kβ + and γ are computed from equa-

tions (7) and (10), if kα satisfies Wolfe conditions or strong Wolfe conditions, then 
2 T

k k kg d c g≤ − for all 1k ≥ , where 0c > . 

Proof : The result can be establish by induction. When k=1 we have 
2

1 1 1 1 1 T Tg d g g c g= − ≤ −  

Let .T
k k kg d c g≤ −  To prove the conclusion for k+1, note that from strong Wolfe condi-

tion we have 

  1
T
k k
T
k k

g d
g d

σ σ+− ≤ ≤ . From equations (3), (7) and (10) we have 

2
1 1 1 1 1 1{ (1 ) }T LS DX T

k k k k k k kd g g s gγβ γ β+ + + + + += − + + −  
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2 1 1 1
1 1{ (1 ) }
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k k k k
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2
1 1 1 1{  (1 ) }T T

k k k k k kg y g g gγ γ α σ+ + + +≤ − + − − −  
2

1 1 1 1 1 1 1 1{  g  g  }T T T T
k k k k k k k k k kg g g g g g gγ γ γ α σ+ + + + + + + += − + − + − +  

2
1 1 1 1{  g }T T

k k k k k kg g g gγ α σ+ + + += − + −  

  Since 1 1 1 gT T
k k k kg g g+ + +≤  therefore, we have 

2 2 2
1 1 1 1 1{ }T

k k k k k kd g g g gγ σα+ + + + +≤ − + −  

2 2 2
1 1 1k k k k kg g gγσα σα+ + += − + −  

2
1

2
1

(1 )k k k

k

g

c g

γσα σα +

+

= − − +

= −
 

 Where 0 (1 ) 1k kc γσα σα< = − + < . 

Theorem 3.2 [9] Consider any iterative method of the form (3) and (7), where kd satis-

fies a descent condition or sufficient descent condition, and kα satisfies strong Wolfe 
conditions, if the assumption 1 holds, then either 

liminf 0kk
g

→∞
=   or  

4

2
1

k

k k

g
d

∞

=

< ∞∑  

In the following theorem we prove that our algorithm (NK1) is globally convergent 
Theorem 3.3 Consider the iterative method (11). Let all conditions of Theorem 3.2 hold. 

Then  liminf 0kk
g

→∞
= .  

Proof : Assume, on the contrary, that the method is not convergent i. e there exists a real 

number 1>0 c such that 1 kg c≥  for all .k  From (11) we get 

   1
1 1 {  (1 ) } NK LS DX

k k k k kd g sγ β γ β+ += − + + −  

           = 1 1 1  (1 )  LS DX
k k k k k k kg g g s sγ γ γ β γ β+ + +− + − + + −  

           = 1 1 (1 ) (1 )  LS DX
k k k k k kg s g sγ γ β γ γ β+ +− + + − + −  

           = 1 1 (1 )LS DX
k kd dγ γ+ ++ −  
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Therefore   

   
1

1 1 1 NK LS DX
k k kd d d+ + +≤ +                                                         (13) 

Furthermore 

   1 1 LS LS
k k k kd g sβ+ +≤ +                                          

From assumption_1, 1 kg ω+ ≤  and by descent we have 

   T
k k kg d c g− ≥   then   

1 1 
c T

k k kg d g
≤

−  .                                   
 

Therefore  
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 where D is a diameter of the level set Ω . Similarly  
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 From (13), (14) and (15) we have    
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4 4
1

21
1

1
2 ( )

k

NK
k

g c
L Dd ω ω

+

+

≥ +
+  ,                                       

 

where from 

4
1

21
1

k

NK
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d
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= ∞∑    which is contradiction with Theorem 3.2. 

 
4  Numerical results and comparisons  
In this section we shall report numerical performance of  FORTRAN implementation of 

our new NK1  conjugate gradient algorithm  on a set of unconstrained optimization test 

problems pick from [2] and [3] . We choose (70) large scale test problems in extended or 
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generalized form, for each function we have believe numerical experiments with the 

number of variables n=100, …,1000. We have compared the performance of these algo-

rithms versus to the Dixon method( DXβ )and Liu-Storey( LSβ ) method. All these algo-

rithms are perform with the standard Wolfe line search conditions with 0001.0=ρ  and 

9.0=σ where the initial step size 11 /1 g=α and initial guess for other iterations i.e. 

(k>1);  )/( 11 kkkk dd −−=αα .  

In the all cases the stopping criteria is the -6
2

  10kg ≤  and the maximum number of ite-

ration is 1000. The codes are written in double precision FORTRAN (2000) and compiled 

with F77 default compiler settings. This code originally written by Andrei and modified 

by us. Our comparisons includes the following: 

1- iter: the number of iteration 

2- fg : number of function and gradient evoluations  

3- CPU time 

Figs. 1, 2 and 3 shows performance of these methods for solving 70  unconstrained opti-

mization test problems, relative to the iterations (iter), function–gradient evaluations (fg) 

and  CPU time, which are evaluated using the profile of Dolan and More [6]. That is, for 

each method, we plot the fraction p of problems for which the method is within a  factor τ 

of the best (iter) or (fg) or CPU time.  

 
 

Figure 1. Performance  based on iteration. 
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The left side of the figure gives the percentage of the test problems for which a method is 

the fastest, the right side gives the percentage of the test problems that are successfully 

solved by each of the methods. The top curve is the method that solved the most problems 

in a (iter, fg, time) that was  within a factor τ of the best (iter, fg, time). 

 

 
Figure 2. Performance based on function gradient evaluations. 

 
 

 
Figure 3. Performance based on time. 
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