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In this study, a rectangular prism made of an orthotropic material is considered. It is assumed that this 
prism contains a band crack whose edge-planes are parallel to the upper and lower face planes. It is 
also assumed that uniformly distributed normal forces are imposed the top and bottom surface of the 
prism. The aim of this paper is to analyze the effect of the shear modulus on planes which is 
perpendicular to the crack’s edge-planes and parallel to the crack’s front on the Energy Release Rate 
(ERR) for different geometric parameters in a rectangular prism. The mathematical formulation of the 
corresponding boundary-value problem is carried out within the framework of the 3-dimensional linear 
theory of elasticity. In order to solve this problem, the 3D finite element method was employed. The 
numerical results are presented. 
  

 

Bant Çatlak Içeren Ortotropik Malzemeden Yapılmış bir Dikdörtgen 
Prizmada, Çatlak Düzlemine Dik ve Çatlak Yüzüne Paralel Kayma 
Modülünün ERR’ye Etkisi  
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Özet 
Bu çalışmada, ortotropik malzemeden yapılmış dikdörtgen prizma ele alınmıştır. Bu prizmanın bir bant 
çatlak içerdigi ve çatlağın düzlemlerinin, prizmanin alt ve üst düzlemlerine paralel olduğu kabul 
edilmiştir. Ayrıca prizmanın alt ve üst yüzeylerine düzgün yayılımlı normal kuvvetlerin etki ettiği kabul 
edilmiştir. Bu çalışmanın amacı; bir dikdörtgen prizmada, çatlak düzlemine dik ve çatlak yüzüne paralel 
olan kayma modülünün ERR’ye etkisini, farklı geometrik parametreler için incelemektir. Uygun sınır 
değer problemin matematiksel formülasyonu 3 boyutlu lineer elastistise teorisi çerçevesinde 
yapılmıştır.  Bu problemi çözmek için 3 Boyutlu Sonlu Elemanlar Yöntemi kullanılmıştır. Sayısal sonuçlar 
sunulmuştur. 
 

© Afyon Kocatepe Üniversitesi

 

1. Introduction 

In recent years, the importance of fracture 
mechanics in engineering applications has 
increased considerably  owing to the growing 
requirement to predict the behavior of cracked 
structures under external factors. Therefore,  many 
structural engineers and scientists have 
concentrated on crack-fracture problems in order 
to determine the  

 
 
 
role of the parameters related to the crack’s 
geometry and material properties, the crack’s 
position, method of loading etc.  It should be 
emphasized that Stress Intensity Factor (SIF) and  
Energy Release Rate (ERR) are critically typical 
fracture mechanics parameters for this 
determination. It is known that a wide range of 
such problems have been studied by many 
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researchers. Approximate and exact solutions deal 
with ERR and SIF were tabulated in handbooks such 
as Tada et.al (1985) and Sih (1973).  

 
Moreover, various methods of evaluating the SIF 
and ERR have been developed so far by 
Cherepanov (1967), Rice (1968), Shivakumar 
(1988), Fan et al. (2007), Knowles and Sternberg 
(1972), Maiti (1992), Gosz et al. (1998) etc. Based 
on the analyses of the above-mentioned 
investigations, there are many studies on the 
effects of the orthotropic and mechanical 
parameters on the SIF or on the ERR (Akbarov and 
Turan, 2009, Oneida et al., 2015, Ding and Li, 2014 
and Yusufoğlu and Turhan, 2012). However, these 
studies were discussed within the framework of 
the two-dimensional (2D) problem formulation.  A 
few of the investigations related to 3D crack 
problems were carried out by Sukumar et al.(2000) 
and Li et al.(1998). In these studies, 3D edge crack 
problem for the rectangular prism was considered.  
This prism was made of homogeneous, isotropic 
material. 
The present paper considers the 3D corresponding 
problem for a rectangular prism which contains a 
band crack. Moreover, it is assumed that the 
material of the prism is orthotropic. The aim of the 
present investigation is to determine the influence 
of the shear modulus in a plane which is 
perpendicular to the crack’s edge-planes and 
parallel to the crack’s front on the values of ERR for 
various parameters. The 3D finite elements method 
is utilized so as to provide a solution to the 
corresponding boundary-value problem. 

2. Formulation of the problem 

Consider a rectangular prism which contains a band 
crack at { 0 1 02 2 2 2/ / x / / ,− < < +     

}2 30x h , x t= ≤ ≤ . Assume that the prism 
occupies the region 

}{ 1 2 30 0 0x , x h, x t≤ ≤ ≤ ≤ ≤ ≤  in the Cartesian 
Coordinate system 1 2 3Ox x x . The half-prism’s 
geometry (i.e. the case where 10 2x /≤ ≤  )  is 
shown in Figure 1.  
 

 
Figure 1. Considered rectangular prism geometry 

Suppose that the material of the prism is 
orthotropic with symmetry axes 1Ox , 2Ox and 3Ox

The prism is simply supported at its ends and on 
upper and lower face of the prism act with 
intensity p uniformly distributed normal forces 

(Figure 1). To find ERR at the band crack front is 
investigated stress-state in the prism.  Within the 
framework 3D linear theory of elasticity for 
anisotropic bodies, the stress-state can be 
determined by the solution to the boundary-value 
problem given below: 
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Boundary conditions: 
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
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2 2
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In Eq. (4), 1E , 2E and 3E  denote the moduli of 

elasticity in the 1Ox , 2Ox  and 3Ox  directions, 

respectively; 12ν  , 23ν  and 13ν  are Poisson’s 

ratios of the material; and 12G , 23G  and 13G  are 

the shear moduli of the material in the 1 2Ox x , 

2 3Ox x  and 1 3Ox x  planes, respectively. (Lekhnitskii 

, 1981). Thus, the mathematical formulation of the 
problem considered is complete. 
 
3. FEM Modelling 

For the 3D FEM modeling of the boundary-value 
problem, the standard Ritz technique (Zienkiewicz 
and Taylor, 1989) and the following functional is 
used:  

 
(
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where 
 

{ }1 2 30 0 0x , x h, x tΩ= ≤ ≤ ≤ ≤ ≤ ≤ , 

( ) ( ){
}

0 1 0 2

3

2 2 0

0

' x , x h ,
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( ) ( ){ }0 1 0 2 32 2, 0, 0− < < + = + ≤ ≤   x x h x t
                                                                                

 
In this case, from the first variation of functional (5) 
with respect to the displacement, i.e. from the 
equation 0uδΠ = , the equilibrium equation of (1) 
and the boundary conditions with respect to the 
forces in Eq. (2) are found. In such a way, the 
validity of functional (5) in the 3D FEM modeling of 
boundary value problems is ensured. 
 
In the Finite Element solution by using the 
symmetry of 1 2x /=  , only half-region Ω  of the 

prism considered (Figure 1). The half part of the 
prism is discretized into eight-node rectangular 
brick finite elements (Figure 2), i. e.  the region Ω   

is expressed as 
1

M

k
k

Ω Ω
=

=  where kΩ  is a region of 

the k th−  finite element. Using a normalized local 
coordinate system ′(Oξηζ)  the shape functions of 
the brick elements are written as, 
 

1
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8
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8
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3
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8
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8
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5
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8

= − + −N (ξ)( η)( ζ) , 6
1 1 1 1
8

= + + −N (ξ)( η)( ζ) ,

7
1 1 1 1
8

= + + +N (ξ)( η)( ζ) , 8
1 1 1 1
8

= − + +N (ξ)( η)( ζ)    (7)  

(Zienkiewicz and Taylor, 1989). The transformation 
relation between the 1 2 3Ox x x  and ′Oξηζ   

coordinate systems is expressed as, 

1 10 2 20 3 30− − −
= = =

℘
x x x x x x

ξ ,η ,ζ
β α

.                     (8) 

In Eq. (8), 10x ; 20x ; 30x are components of the 

vector ′

OO at 1 2 3Ox x x coordinate system. 

In this study, it is used the displacement-based 
FEM, in other words, according to FEM procedure, 
only displacements at the nodes are supposed to 
be unknown. So, the displacement functions are 
defined as follows: 

(k) (k) (k)u N a≈ , 1 2k , ,.....M=                                         (9) 
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{ }1 1 2 3 2 1 2 3 3 1 2 3
(k) T k k k(u ) u (x ,x ,x ) u (x ,x ,x ) u (x ,x ,x )=               

                                                                                     (10) 
 
After some mathematical manipulations, finally 
yields the following system of algebraic equations : 
  
  K a =r                                                                          
(11) 
 
where, K is the stiffness matrix, a is the 
displacement vector at finite-element nodes and r 
is the force vector. 

 
Figure 2. The geometry of brick (rectangular) finite 
element 
 
After consideration of the FEM modelling, the ERR 
(denoted by γ ) is calculated by using the 
expression: 
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(14) 
 
In the above expressions, U denotes the strain 
energy, cS is the area of the crack’s edge surface. 
 
First, we calculate the strain energy for the 
unperturbed case using (13). Then, we apply a 
small perturbation (area of which is defined by 

S(s / t)∆  which is itself determined by the 
parameter s / t   on the crack front ) on the area of 
the crack surface and calculate the strain energy 
again for the perturbed case using (14).  It should 
be noted that the arc length co-ordinate s  is 
measured along the crack front from the center of 
the crack ( s 0= ) to the point where it reaches the 
free surface ( s t 2/= ). The domains Ω  and 'Ω  in 
(12) are determined by the expressions in (6),  

S(s/t)'' ( )∆′Ω = Ω + Ω  and S(s/t)∆Ω  are the domains 
corresponding to the aforementioned perturbation 
of the crack’s edge area. 
 
In the calculation procedure,  the S(s / t)∆  values 
are chosen small enough to ensure the numerical 
convergence.  The values of γ  for various values of 

S(s / t)∆  are calculated. Obviously, the results are 
improved with smaller S(s / t)∆ . Moreover, 
dimensionless  Energy Release Rate  (denoted by 
ERR) is used and this parameter is defined by  

1

γERR
E

= . 

 
4. Numerical Results 
 
Before obtaining numerical results, the PC 
programs composed and used by the author are 
tested on the problems considered in Sukumar et 
al. (2000) and Li et al. (1998). To allow comparison 
with corresponding numerical results Sukumar et 
al. (2000) and Li et al. (1998), first, it is considered a 
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rectangular prism which contains a single edge 
crack. The top and bottom surface of this prism 
impose uniformly distributed normal forces as 
shown Figure 3. The geometrical parameters are 
taken as 0 0 5/ .=  , 0 75t / .=  and 0 875h / .= .   

In Figure 4, the values of the SIF for the mode I for 
isotropic case i.e. 1 2 3E E E E= = = , 

12 13 23ν = ν = ν = ν , 12 2 1= +νG E / ( ( ))  and 0 3ν = .  

are presented and comparisons with the results 
obtained by Sukumar et al. (2000) and Li et al. 
(1998) are shown. Here, two different finite 
meshes are considered in the FEM model a) Mesh 
1 consists of 20x20x20 brick elements and b) Mesh 
2 consists of 24x24x24 brick elements along the 

1Ox , 2Ox  and 3Ox  axes, respectively. As seen, in 

Figure 4 , there is close agreement between the 
results obtained and the reference solutions. Thus, 
it is verified the validity of the present FEM 
modelling and PC programs.    

 
Figure 3. Edge cracked rectangular prism  

 

 

Figure 4. Comparison of the values of IK   with the 

present study and the reference papers  for the edge 
crack problem in  isotropic case. 

 
Now, let us focus on the band crack problem 
regarding to the effect of the shear modulus in a 
plane which is perpendicular to the crack’s edge-
planes and parallel to the crack’s front (i.e. in the 
present case the modulus 23G )  on the values of 

the ERR for various parameter (Figure 1). Assume 
that  the material of the prism is orthotropic  and 
the numerical investigations are made for 

12 13 23 0 3.ν = ν = ν = , 12 1 13 1 0 09G / 9 G / 9 .= = , 

2 1 3 1 0 5E / E E / E .= = ,  0 / 0.5=  , 0 75t / .=  and 

0 875h / .= . The half part of the prism is 

discretized into brick elements with eight nodes, 
where the 1Ox  direction is taken as 20, the 2Ox  

direction is taken as 20, and the 3Ox  direction is 

taken as 20. The results are presented below. 
 
The graph of the dependencies between the ERR 
and s / t  is given in Figure 5 . As can be seen in this 
graph that the increase of the absolute values of 
the ratio s / t  causes the decrease of the values of 
the ERR. Moreover, in Figure 5, ERR reaches 
maximum value (denoted by the symbol (★)) at 
the center of crack (at 0s / t = ). This result again 
confirms the trustiness of the algorithm and PC 
programs composed by the author.  
 
 

 
 
Figure 5. The graphs of the dependencies between ERR 
and s / t  at 0 2 0 25/ .=  and 23 1 0 09G / 9 .=  

 In Table 1, the effect of the ratios 23 1G / E  (where 

23G  is the shear modulus in the  2 3Ox x  plane) on 
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the values of the ERR for various values of s / t  and 

0 2/   are given for the case where 2uh h h /= = . 

It is seen that the values of the ERR significantly 
increase with decreasing of the ratio of 23 1G / E .  

As expected, this increase becomes more 
pronounced with crack length, i. e., with 0 2/  . 

Table 1. Effect of 23 1G E  and 0 2/   on the ERR for 

various s / t  at 2uh h h /= = . 

 

0 / 2   s / t  
G E23 1  

0.09 0.06 0.03 

0.25 

0 2.9810 5.1913 10.7757 
0.05 2.9339 5.1310 10.7416 
0.10 2.7930 4.9470 10.6249 
0.15 2.5588 4.6350 10.3799 
0.20 2.2345 4.1683 9.9269 
0.25 1.8280 3.5475 9.1470 
0.30 1.3587 2.7659 7.8826 
0.35 0.8653 1.8570 5.9731 
0.40 0.4142 0.9333 3.4287 

0.30 

0 3.2233 6.0063 14.2036 
0.05 3.1701 5.9272 14.1108 
0.10 3.0111 5.6882 13.8175 
0.15 2.7490 5.2846 13.2799 
0.20 2.3897 4.7108 12.4246 
0.25 1.9451 3.9640 11.1504 
0.30 1.4388 3.0550 9.3359 
0.35 0.9133 2.0314 6.8799 
0.40 0.4378 1.0175 3.8692 

 
 
Table 2 shows the influence of the crack’s location 
on ERR various values of  23 1G / E  . The parameter 

uh / shows the thickness of the part of the prism 

at the top of the crack. As seen, the values of the 
ERR increase with the crack moving closer to the 
upper face plane of the prism. This result agrees 

with the well-known mechanical considerations. 
Moreover, it also follows from this table that this 
effect slightly increases with decreasing of the ratio 

23 1G / E .  

Consider now the influence of the parameter t  

on the ERR for various t , 23 1G / E  and s / t  at 

2uh h h /= =  and 0 2 0 25/ .=  ; where t  is the 
length of the prism along the 3Ox  axis. These 

results are given in Table 3. It is seen that the 
values of the ERR increase with an increase of the 
parameter t .  A decrease of the  ratio of the 

23 1G E  causes a decrease in the influence of the 

parameter t  on the ERR. 
Table 3. Effect of 23 1G E  and  t  on the ERR for 

various  s / t  at 0 2 0 25/ .=   and 2uh h h /= = . 

 
G E23 1  

 
s / t  

t   
0.75 1 

 
 
 
 

0.09 
 

0 2.9810 4.6663 
0.05 2.9339 4.6093 
0.10 2.7930 4.4361 
0.15 2.5588 4.1410 
0.20 2.2345 3.7158 
0.25 1.8280 3.1535 
0.30 1.3587 2.4566 
0.35 0.8653 1.6563 
0.40 0.4142 0.8463 

 
 
 

0.06 

0 5.1913 6.4221 
0.05 5.1310 6.3786 
0.10 4.9470 6.2414 
0.15 4.6350 5.9902 
0.20 4.1683 5.5905 
0.25 3.5475 4.9947 
0.30 2.7659 4.1477 
0.35 1.8570 3.0144 
0.40 0.9333 1.6651 

 

Table 2. The effect of uh   and 23 1G / E  on the ERR for various values of s / t  at 0 2 0 25/ .=  . 

 
s / t  

G E23 1  
0.09 0.03 
uh /   uh /   

0.4375 0.30625 0.2625 0.175 0.4375 0.30625 0.2625 0.175 
0 2.9810 3.4845 3.9792 6.2703 10.7757 11.6841 12.4756 15.4977 

0.05 2.9339 3.4307 3.9188 6.1787 10.7416 11.6535 12.4488 15.4881 
0.10 2.7930 3.2698 3.7381 5.9045 10.6249 11.5452 12.3502 15.4346 
0.15 2.5588 3.0029 3.4360 5.4500 10.3799 11.3078 12.1234 15.2612 
0.20 2.2345 2.6334 3.0267 4.8216 9.9269 10.8515 11.6692 14.8338 
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0.25 1.8280 2.1702 2.5038 4.0336 9.1470 10.0438 10.8426 13.9560 
0.30 1.3587 1.6324 1.8986 3.1133 7.8826 8.7142 9.4588 12.3777 
0.35 0.8653 1.0582 1.2468 2.1097 5.9731 6.6928 7.3366 9.8543 
0.40 0.4142 0.5177 0.6211 1.1091 3.4287 3.9526 4.4238 6.2664 

As seen from the tables, the effect of the problem 
parameters on the ERR is more considerable at the 
center of the crack 0=(s )  than at the points that 
are close to the free face planes. 
 
 
5. Conclusions 
 
Thus, in the present paper we deal with 
rectangular orthotropic prism under the action of 
the uniformly distributed normal forces on the 
upper and lower face planes with a band crack.  
The investigation is focused on the effect shear 
modulus in a plane which is perpendicular to the 
crack’s edge-planes and parallel to the crack’s front 
(i. e. the modulus 23G ) and geometrical 
parameters on the ERR. By employing the three-
dimensional FEM modeling, the corresponding 
boundary-value problem is solved. The 
mathematical formulation of the corresponding 
boundary value problems is presented within the 
scope of the three-dimensional linear theory of 
elasticity for anisotropic bodies. Based on these 
analyses, the following concrete conclusions can be 
drawn:  

 
- The values of the ERR significantly increase 
with decreasing of the shear modulus in a plane 
which is perpendicular to the crack’s edge-
planes and parallel to the crack’s front (i. e. the 
modulus 23G ). This increase is more influenced 
with crack length; 
 
- The values of the ERR increase as the crack 
approaches the free upper face of the prism. 
This increase is larger with decreasing 23G  ; 
 
-The effect of the problem parameters to the 
ERR at the center of the crack, i.e. at 0s / t = is 
more notable than at the points that are close 
to the free face surface of the prism; and 
 
- The values of the ERR increase with increasing 
of the length of the prism along the 3Ox  axis.  
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