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I-WEIGHTED LACUNARY STATISTICAL 7-CONVERGENCE IN
LOCALLY SOLID RIESZ SPACES

SUKRAN KONCA AND ERGIN GENC

ABSTRACT. An ideal I is a family of subsets of positive integers N which is
closed under taking finite unions and subsets of its elements. In this pa-
per, we introduce the notions of ideal versions of weighted lacunary statistical
T-convergence, statistical 7-Cauchy, weighted lacunary 7-boundedness of se-
quences in locally solid Riesz spaces endowed with the topology 7. We also
prove some topological results related to these concepts in locally solid Riesz
space.

1. INTRODUCTION

A Riesz space is an ordered vector space which is lattice at the same time. A
locally solid Riesz space is a Riesz space equipped with a linear topology that has
a base consisting of solid sets. The Riesz space was first introduced by F. Riesz in
1928, at the International Mathematical Congress in Bologna [1]. Soon after, in the
mid-thirties, H. Freudental [2] and L. V. Kantrovich [3] independently set up the
axiomatic foundation and derived a number of properties dealing with the lattice
structure of Riesz space. Riesz space have many applications in measure theory,
operator theory and optimization. They also have some applications in economics
[4]. For further results we may refer to [5, 6, 7].

The notion of statistical convergence was introduced by Fast [8] and Steinhaus [9]
independently in the same year 1951. Recently, a new concept has been introduced
by Bagarir and Konca [10] for sequences which is called weighted lacunary statistical
convergence (also for the concept weighted statistical convergence see [11, 12]).
Then they extended this concept to locally solid Riesz space in [13]. The concept
of I-convergence (I denotes the ideal of subsets of N) was initially introduced by
Kostyrko et al. [14] as a generalization of statistical convergence. More applications
of ideals can be seen in [15, 16, 17, 18].
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In this paper, we define I-weighted lacunary statistical 7-convergence, I-weighted
lacunary statistical 7-boundedness and examine some inclusion relations in locally
solid Riesz space.

2. DEFINITIONS AND PRELIMINARIES

Let X be a real vector space and ” < ” be a partial order on this space. Then
X is said to be an ordered vector space if it satisfies the following properties:

(1) Vo,y € X and y < z imply y + z < x + z for each z € X,
(2) Va,y € X and y < z imply ay < ax for each a > 0.

In addition, if X is a lattice with respect to the partial order, then X is said to be
a Riesz space (or a vector lattice) [7].

A subset S of a Riesz space X is said to be solid if y € S and |z| < |y| implies
x € X. A topological vector space (X, 7) is a vector space X which has a linear
topology 7 such that the algebraic operations of additions and scalar multiplication
in X are continuous. Every linear topology 7 on a vector space X has a base N
for the neighborhoods of zero satisfying the following properties:

(1) Each Y € N, is a balanced set, that is, az € Y holds for all z € Y and
every a € R with |o| < 1.

(2) Each Y € Ny is an absorbing set, that is, for every z € X there exists
a > 0 such that ax € Y.

(3) For each Y € Ny, there exists some W € Y with W + W C Y.

A linear topology 7 on a Riesz space X is said to be locally solid Riesz space if
7 has a base at zero consisting of solid sets. A locally solid Riesz space (X, 7) is a
Riesz space equipped with a locally solid topology 7 [7].

Throughout the paper, the symbol N, will denote any base at zero consisting
of solid sets and satisfying the above conditions (1), (2), (3) in a locally solid Riesz
topology 7. For our convenience, here and in where follows, we shall write a word
”"LSRS” instead of a locally solid Riesz space and we mean limy_, .z by lim z for
brevity.

Let E C N. Then the natural density of E is denoted by 6(F) and defined by

0(E)= lim {k<n:keE},
Tr—r0o0
where the vertical bars denote the cardinality of the respective set [19].

Let (X, 7) be a locally solid Riesz space. A sequence z = (z) in X is said to be
S(7)-convergent to an element z( in X if for each 7- neighborhood V' of zero

d({keN:z,—20¢V}H=0

1
lim —{k<n:zp—z0¢ V} =0.

n—o00 N

(1)

S(T
In this case, we write S (7)-limz = zg or (z) — o [20].

By a lacunary sequence we mean an increasing sequence of integers 0 = (k)
such that kg = 0 and h, = k., — k,—_1 — 00 as 7 — oo. Throughout the paper, the
intervals determined by 6 will be denoted by I,. := (k,_1, k] and the ratio k,./k._1
will be abbreviated by g¢,.
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Let (pr) be a sequence of positive real numbers and P,, = p1+pa+...+p, forn €
N. Then the Riesz transformation of = (xy) is defined as t,, = 1/P, Z;;L:l PLTk-
If the transformation sequence (t,) has a finite limit xo then the sequence x = (zy)
is said to be Riesz convergent to xo. Let us note that if P, — oo as n — oo then
Riesz mean is a regular summability method. Throughout the paper, let P, — oo
as n — oo and P, = po = 0 [11].

Let 0 be a lacunary sequence of positive real numbers such that H, := > rer, Pks

Py,
Py, = Zke(o,kr] Pk Pr,_, = Zke(o,kr,l] P> Qr = pk.k

determined by 6 and py are denoted by I; = (Pkrfl, Pkr}. It is easy to see that
H, = P, — Py, ,. If we take p, = 1 for all k € N, then H,, P, , Pk, ,,Qr and

I; reduce to h., k., k-_1,q- and I, respectively. Throughout the paper we assume
that P, — oo as n — oo such that H, — co as n — oo [10].

, Po = 0 and the intervals
r—1

A family of sets I C P(N) (power sets of N) is said to be an ideal if;

(1) 0 e,
(2) AUB €, for each A,B €1,
(3) Ac T and BC Aimply B € I.

A non-empty family of sets F' C P(N) is a filter on N if and only if:

(1) 0¢F,
(2) ANBe F, foreach A,B € F,
(3) A€ Fand BD Aimply B€ F.

I is called non-trivial if I # () and N ¢ I. It is called admissible ideal when it con-
tains all singletons {{n} : n € N} [14]. We assume that I is non-trivial admissible
ideal of N throughout the paper.

If we take I = Iy = {A C N : A is finite subset}. Then Iy is a non-trivial
admissible ideal of N and the corresponding convergence coincide with the usual
convergence.

A sequence x = (z1) in a topological space X is said to be I-convergent to
o € X if for every neighborhood V' of xq

{keN:x, ¢V} el

I
In this case, we write I — limx = xg or xp — x¢ and I denotes the set of all ideal
convergent sequences [16].

Let (X, 7) be a locally solid Riesz space. A sequence z = (z) in X is said to be
I(7)-convergent to an element z( in X if for each 7-neighborhood V of zero

{keN:izgy—zo¢V}el
ie.

{keN:zp—20€V}eF.

I(T
In this case, we write I(7)-lima = xo or z © xo [15].
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3. MAIN RESULTS

Definition 3.1. Let (X,7) be a LSRS and 6 be a lacunary sequence. We say
that * = (x) in X is said to be SEN 0) (7)-convergent to zo € X if for every

neighborhood V' of zero and § > 0,

(3.1) {reN:;T{kefppkuk—x@¢vﬁ‘>5}ef

that is;

1 /
{TEN.HT {ke[r.pk(a:k—xo)géVH<6}€F(I).
SE’—Q)(T)

In this case, we write S(N 0) (r)or zp ~ — .

Remark 3.2. (1) If we take py = 1 for all k € N in (3.1) then we obtain the def-
inition of I-lacunary statistical 7-convergence which can be given as follows:

Let (X,7) be a LSRS and 0 = (k,) a lacunary sequence. Then a se-
quence = () in X is said to be S (7)-convergent to x if for every
7T-neighborhood V' of zero and for any § > 0,

1
{rEN:h{xEIT:xk—xo¢V}|25}€I

. . I . Sa ()
In this case, we write Sy (7) — limy_y00 = g OF Tk 0.
(2) For I = Iy, and pp = 1 for all k € N, S{N 0) (7)-convergence reduces to
Se (T
o) 2o i 21].

Now, we give the definition of I-weighted statistical 7-convergence in LSRS.
Definition 3.3. Let (X, 7) be a LSRS and 6 be a lacunary sequence. We say that
z = (z) in X is said to be S& (7)-convergent to zp € X if for every neighborhood
V' of zero and § > 0, {TEN: Pi|{k§Pn'pk(xk—x0)¢V}|25} € 1. In this

S&()
case, we write S]I\7 (1) = limg 0o = x0 OF Tk 5 2.

Definition 3.4. Let (X, 7) be a LSRS. We say that z = (x) in X is said to be
S(IA7 0) (7)-bounded if for every neighborhood V' of zero and there exists a > 0 such
that, for any § > 0,

{rEN:hlfr {ke];:apkxk¢V}‘25}€I

Theorem 3.5. Let (X,7) be a Hausdorff LSRS and z = (z1), y = (yx) be two
sequences in X. Then the followings hold:

(1) IfS(I )( 7) — limz = xy and S(N
(2) IfS{ )( 7) —limz = xg, then S (
(3) If SéNﬂ)( 7) —lima = x9 and S (

limz +y = 29 + yo.

0) (1) —limz = yo, then z¢ = yo.
o) (1) — lim ax = axg, for every a € R,

)(T) limy = yo, then S(IN 0>( T) —



26 SUKRAN KONCA AND ERGIN GENC

Proof. (1) Suppose that Séﬁ 0) (7)—limz = o and S(IN 0)

V be any T-neighborhood of zero. Then there exists a Y € N, such that

Y C V. Choose W &€ Ny such that W+W C Y. Since S(IN 0) (r)—limz =

(1)—limz = yo. Let

zo and SEN ) (1) — limx = yo, we can write for § > 0,

1
Al—{TGNIHF

{kef;:pk(xrxo)gzv}\ <5} e F(I),
and

1
AQZ{TGN:H

r

{kef;;pk(xk—y0)¢v}'<5}eF(I).

Since Sélvﬂ) (1) —limz = z9 and Sé}\’/,a) (1) = limz = yo, we get A1, Ag €
F(I) and for every r € Ay and As

{ke];:pk(xkf:co)¢W}’<

)

IS

H,
similarly
o {kel; s ok (Tk — Yo) §§W}‘ <
Now, let A; N As = A. Then we have
P (o — yo) = Pk (To — Tk + Tk — Yo) = pr (T — To)+pk (6 —Yo) EWHW CY C V.
Thus

{ke];:pk(:vk—aco)¢VVH§Hi

r

N | <,

{ke[;:pk(xk—xo)géWH<g+g:5.

H,
Consequently, we obtain

{reN;;T {kef;;pk(xk—yo)gzv}‘<5}eF(I).

Finally, for every 7-neighborhood V' of zero, we get px(xo — yo) € V. Since
(pr) is a sequence of positive real numbers and (X, 7) is Hausdorff, the
intersection of all 7-neighborhood V' of zero is the singleton set {6}. Thus
we get ©g — yg = 0, i.e., zg = yo.
(2) We assume that SéN 0) (1)—limz = xg and let V be an arbitrary 7—neighbourhood

of zero. Then there exists Y € N, such that Y C V. Since S (1) —

(%.0)

limx = xg, we can write for any J > 0

B:{reN:; {ke[;:pk(xk—xo)§éY}‘<5}€F(I).

T

Since Y is balanced, py (xx — x¢) € Y implies that apy (zx — 29) € Y for
every a € R with |a| < 1. Therefore

{ke[;:pk(mk—xo)EY}g{ke];:apk(zk—xo)eY}
Q{ke];:apk(mk—xo)eV}.

Thus we obtain

1

{ke[;:apk(xkx0)¢VH<5}EF(I)
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for each 7-neighborhood V' of zero.

Now let || > 1 and [«] be the smallest integer greater than or equal to |«|.
Then there exists W € Ny, such that [o] W C Y. Since Sé]\_[ 0) (r)—limx =

o, we have

1
B = N: —
{TG H

T

{kef;;pk(xrxo) ng}‘ <5} e F(I).
We also have,
lapk (zr — o)l = | [pr (zx — z0)| < [a] [pk (xk — o) € [a] W CY C V.

Since Y is solid, we have apy (x — o) € Y this implies that apy, (zr — xo) €
V. Consequently,

1
N:—
{7’6 .

for each T-neighborhood V' of zero. Hence Sé ) (1) — lim ax = axg, for

{kef;:apk(xk—xo)gzv}‘<5}eF(I),

every o € R.

(3) Let V be an arbitrary 7—neighbourhood of zero. Then there exists Y € N,
such that Y C V. We choose W € N, such that W +W C Y. Since
551\7,0) (1) = limz = x¢ and S(N,o) (1) = limy = yo, we have

Clz{TENZ

Hir {kEI;Zpk($k—$0)¢V}‘ <Z}EF(I%
and

1
02_{T€N:Hr

{rerimm-wevl|<glerm.
Let C4y N Cy = C. Hence we have also,
pr ((zr +yk) — (To + y0)) = pr (zk — o) + Pk (Y —Y0) EW+W CY CV,
for r € C1y N Cy we get
H%{kef;:pk<<xk+yk>—<xo+yo>>¢W}(sH%t{keI;:pk(xk—xo wi|
+H%Hk61;1pk(yk—yo)¢WH< +5=0

Consequently,

{reN:H%{kef-pk((xwyk) (0 +u0) ¢ V| < 5}
Q{TEN:% kEI pr (Yk — o) ¢VH g}
U{TEN:HL keIT:pk(ﬂck—xo)§éV}‘ g}

Since SEN,Q) (1)=limz = zo and Séﬁ,e) (7)—limy = yo, it is obviously seen
that the left side belongs to F'(I). This shows that S(IN 0) (1) —limz+y=

o + Yo-
O
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Theorem 3.6. Let (X, 7) be a LSRS and 6 = (k) be a lacunary sequence. If a
sequence ¢ = (xy) is S(I ) (7)-convergent and (py) is bounded, then z = (xy) is

7)
N6
S(IN’Q) (7)-bounded.

Proof. Suppose that © = (zy) is S(IJ\7 ) (1) —limz = =z¢ and (pg) is bounded

sequence. Let V be an arbitrary 7-neighborhood of zero. Then there exists Y € N
such that Y C V. We choose another element W € N,,; such that W+ W C Y.
Since Sél\_[ 0) (1) —limx = xo, we have;

1
D= N:—
{’I“E H

T

{k;e[;:pk(xk—xo)géW}‘Sé}e].

Since W is absorbing, there exists a > 0 such that azg € W. Let b <1 and b < a.
Since (pg) is bounded then there exists a M = ¢ > 0 such that py, < M for all k € N.
Then we can write bpy < a for all k € N. Since W is balanced pg(zp — zg) € W
implies that bpp(zr —x9) € W. Then we have bprxr = bpr(xr — 20) + bprzo €
W+ W CY CV for each k € N\D. Thus,

1
{neN:|{k§n:bxk¢V}|2§}€I.
n

This shows that z = (z3) is S?(7)-bounded. O

Theorem 3.7. Let (X,7) be a LSRS, 6 = (k) be a lacunary sequence and let
(zk), (Yr), (1) be the sequences in X such that;
(1) 2x < yg < zg, for each k € N,
(2) Séﬁ,e) (1) —limz =29 = SEIV,O) (1) = lim z = xg, then SEN’@ (1) —limy =
Zo-

Proof. Let V be an arbitrary 7—neighbourhood of zero. Then there exists Y € Ny
such that Y C V. Choose W € Ny, such that W 4+ W C Y. From the condition
(2), we have Dy, Dy € F(I) where

Elz{reNzl {k:e[;_:pk(:ck—xo)¢W}‘<5}€F(I),

H,

and
EQ:{TGN:;T {kef;;pk(zk—zo)gzw}‘ <5} e F(I).
We also get E = E1 N Ey € F(I) and from (i), we have
pi(@k — 20) < pr(Yk — Yo) < pr(2k — 20)
for all k¥ € N. This implies that for all £ € K; N K»,
= [yr — Yol < |ox — 20| + |2k — 20| EWHW CY CV.
Since Y is solid we have pg(yx —yo) € Y C V. Thus

{TEN:}} {k:e[;:pk(yk—xo)géWH<(5}€F(I).

T

Hence Séﬁ 0) (1) —limy = xy. This completes the proof of the theorem. O

Theorem 3.8. Let (X,7) be a LSRS and 6§ = (k) be a lacunary sequence. If

liminf,.Q, > 1 then Sé w (< Sf w.) (7
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Proof. Suppose that liminf,.Q, > 1, then there exists A > 0 such that Qr Z 1+ A

for sufficiently large values of r which implies that ;I r=1-— Pf’“r = 1— = A

Let Sél\_/) (1) —lima = zp and V be an arbitrary T-neighbourhood of zero. Since

Qr — 1+)\
817 7)—limx =2« , wWe have
(N)( ) 0

1
{T€N3Pk{kEPkT5pk(1'k_1'O)§éV}|<5}-

Then for all r > ry we have

T\{kePkW, cpk () — 20) € VY
> ﬁerr—l <k <k :pg(zpr—z0) ¢V}

— fe (| {re et £ V)

r

2 (H%erlé t i () — @0) gév}D

v

i.e., for any § > 0

o1
{TEN')\—‘,-IH*T

{kel;. :pk (g — x0) ¢V}’ <5}

C{reN: g (k< P ipi (an —w0) ¢ VI < 8.
Since S(IN) (1) —limx = z, then the left side of inequality belongs to F'(I). Con-
sequently ng\’/,e) (1) —limx = xo. Hence S(IN) (r) C S(IN,Q) (7). O

Theorem 3.9. Let (X,7) be a LSRS and a sequence x = (z) in X. For any
lacunary sequence 6 = (k,.), the following statements are true:

(1) If pp, < 1 for all k € N then S’(Ie) (1) C Séﬁ,e) (1) and S(Ie) (1) —limz =

S(x.0)

(2) If 1 < py for all k € N and g; is upper bounded then S(IN,H) (1) C S’(Ie) ()

(1) —limx = x.

and S(IN,Q) (1) —limz = S(IG) (1) —limz = xo.

Proof. (1) If pr <1 forall k € N then H, < h, for all » € N. So there exists M

constant such that 0 < M < = <1 for all r € N. Let a sequence z = ()

in a LSRS (X, 7) and assume that S ) (1) — limz = z(. For an arbitrary
7T-neighborhood V' of zero, then we have

H%erﬁ L pr (2 — 20) ¢VH

vy <k < Py, :pg(xr—x0) € VY
Sﬁi\{kr_l <k <k :(zxp—m) €V}

Dz —x0) € V-

{ke] pk(xk—x0)¢VH %%\{kel}:(mk—mo)¢V}|.

™
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For any 6 > 0

{TGN:i’{ke];:pk(xk—xo)¢VH25}
Q{TGN:ﬁh%|{kelr:(xk—xo)¢‘/}|25}.

Since S(Ie) (1) — limz = xo, on the right side of inequality belongs to I.
In this case, on the left side of inequality belongs I. This shows that
Sél\_fﬂ) (1) — lima = zp.

(2) f 1 < pg for all k € N, then h, < H, for all r € N. Since IZ—: is upper
bounded, there exists N constant such that 1 < Ih{T < N for all r € N.

Assume that SEN ) (1) —limz = z(. For an arbitrary 7-neighborhood V'

of zero we have
hir |{k el : ({Ek —xo) ¢ V}‘

= %|{k7"—1 <k <k (zn—20) ¢V}

IN

7 [{Pry <k < Pi :pr(ax—x0) € VY

1
H,

2|~

b

{ke];:pk(xk—xo)géV}

that is,
11
N H,

hir|{k€IT:(a:kfxo)¢V}|§ {ke];,:pk(xk—xo)¢VH.

Consequently, for any 6§ > 0
{reN;h%erIT;(xk—x0)¢V}|za
Q{TEN:%HLT {ke[;:pk(ack—a:o)¢V ‘26}.
Since SEN 0) (1) — limx = xg, then the left side of inequality belongs to I.
This shows that S(Ia) (1) —limz = xo.
O
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