Quasi-Subordinations for Certain Subclasses of Bi-univalent

Functions

Şahsene Altınkaya**1 ${ }^{*}$ Sibel Yalçın* ${ }^{2}$
${ }^{1,2}$ Bursa Uludag University, Faculty of Arts and Sciences, Department of Mathematics, Bursa-Turkey

Keywords

Analytic functions Bi-univalent functions

Abstract: In this present investigation, a new class of bi-univalent functions associated with quasi-subordination is defined and the bounds on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions belonging to this class are derived. Furthermore, several related classes of functions are also indicated.

1. Introduction

Let A be the class of functions f of the form:

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \tag{1}
\end{equation*}
$$

which are analytic in the open unit disc $\Lambda=\{z \in C|z|<1\}$ normalized by

$$
\begin{aligned}
& f(0)=0, \\
& f^{\prime}(0)=1 .
\end{aligned}
$$

Further, by S we shall denote the class of all functions in A which are univalent in Λ. Let $h(z)$ bean analytic function in $\Lambda|h(z)| \leq 1$, such that

$$
\begin{equation*}
h(z)=h_{0}+h_{1} z+h_{2} z^{2}+\cdots, \tag{2}
\end{equation*}
$$

where all coefficients are real. Also, let the function ϕ be an analytic and univalent function with
positive real part in Λ with $\phi(0)=1, \phi^{\prime}(0)>0$ and ϕ maps the unit disc Λ onto a region starlike with
respect to $\phi(0)=1$ and symmetric with respect to the real axis. Taylor's series expansion for such a
function is of the form

$$
\begin{equation*}
\phi(z)=1+B_{1} z+B_{2} z^{2}+\cdots, \tag{3}
\end{equation*}
$$

where all coefficients are real and $B_{1}>0$.
For two analytic functions, f and g, such that $f(0)=g(0)$, we say that f is subordinate to g in Λ and write $f(z) \prec g(z), z \in \Lambda$, if there exists a Schwarz function $w(z)$ with $w(0)=0$
and $|w(z)| \leq|z|, z \in \Lambda$ such that $f(z)=g(w(z)), z \in \Lambda$. Furthermore, if the function g is univalent in Λ, then we have the following equivalence;
${ }^{* 1}$ the corresponding author: sahsenealtinkaya@gmail.com
${ }^{* 2}$ syalcin@uludag.edu.tr

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \text { and } f(\Lambda) \subset g(\Lambda)
$$

The definition can be found in (Nehari 1952).

In the year 1970, Robertson [18] introduced the concept of quasi-subordination. For two analytic
functions f and g, the function f is said to be quasi-subordinate to g in Λ and written as

$$
f(z) \prec_{q} g(z) \quad(z \in \Lambda)
$$

if there exists an analytic function $|h(z)| \leq 1, z \in \Lambda$ such that $\frac{f(z)}{h(z)}$ analytic in Λ and

$$
\frac{f(z)}{h(z)} \prec g(z), \quad z \in \Lambda
$$

that is, there exists a Schwarz function $w(z)$ with $w(0)=0$ and $|w(z)| \leq|z|$ such that

$$
f(z)=h(z) g(w(z)), z \in \Lambda
$$

Observe that if $h(z)=1$, then $f(z)=g(w(z))$, so that $f(z) \prec g(z)$ in Λ. Also notice that if $w(z)=z$, then $f(z)=h(z) g(z)$, and it is said that f is majorized by g and written $f(z) \ll g(z)$ in Λ. Hence it is obvious that quasi-subordination is a generalization of subordination as well as majorization (see, e.g. [1], [8], [11], [15], [17], [18] for works related to quasi-subordination and subordination).

The Koebe-one quarter theorem [10] ensures that the image of Λ under every univalent function $f \in A$ contains a disc of radius $1 / 4$. Thus every univalent function f has an inverse f^{-1} satisfying $f^{-1}(f(z))=z, z \in \Lambda$ and $f\left(f^{-1}(w)\right)=w,\left(|w|<r_{0}(f), r_{0}(f) \geq 1 / 4\right)$. Indeed, the inverse function f^{-1} is given by

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{3}+\cdots . \tag{4}
\end{equation*}
$$

A function $f \in A$ is said to be bi-univalent in Λ if both f and f^{-1} are univalent in Λ. Let Σ denote the class of bi-univalent functions defined in Λ.

Many researchers have recently introduced and investigated several interesting subclasses of bi-univalent function class \sum and they have found non-sharp estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ ([3], [4], [7], [9], [20], [21], [22], [24]). However, there are only a few works determining the general coefficient bounds $\left|a_{n}\right|$ for the analytic bi-
univalent functions in the literature ([5], [6], [13], [14]). The coefficient estimate problem for each of

$$
\left|a_{n}\right|, n \in N-\{1,2,3\}(N=\{1,2,3, \ldots\})
$$

is still an open problem.

Ma and Minda [14] defined a class of starlike functions by using the method of subordination, and studied a class $S^{*}(\phi)$ which is defined by

$$
S^{*}(\phi)=\left\{f \in A: \frac{z f^{\prime}(z)}{f(z)} \prec \phi(z), \quad z \in \Lambda\right\} .
$$

A function f is bi-starlike of Ma-Minda type if both f and f^{-1} are respectively Ma-Minda starlike. This class is denoted by $S_{\Sigma}^{*}(\phi)$ (see [2]).

We now define the following:
Definition 1.1. A function $f \in \sum$ given by (1) is said to belong to the class

$$
S_{q}(\alpha, \phi) \quad(0<\alpha \leq 1, z, w \in \Lambda)
$$

if the following quasi-subordination holds:

$$
\left[\frac{1}{2}\left(\frac{z f^{\prime}(z)}{f(z)}+\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\frac{1}{\alpha}}\right)-1\right] \prec_{q}(\phi(z)-1)
$$

and

$$
\left[\frac{1}{2}\left(\frac{w g^{\prime}(w)}{g(w)}+\left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\frac{1}{\alpha}}\right)-1\right] \prec_{q}(\phi(w)-1)
$$

where the function g is the extension of f^{-1} to Λ.
We note that for $h(z)=1$ and $\alpha=1$, we get the class $S_{\Sigma}^{*}(\phi)$ introduced by Ali et al. [2].

Further, for $h(z)=1$, we have the class $S_{q}(\alpha, \phi)=S(\alpha, \phi)$ as defined below.
Definition 1.2. A function $f \in \sum$ given by (1) is said to belong to the class

$$
S(\alpha, \phi) \quad(0<\alpha \leq 1, z, w \in \Lambda)
$$

if the following subordination holds:

$$
\frac{1}{2}\left(\frac{z f^{\prime}(z)}{f(z)}+\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\frac{1}{\alpha}}\right) \prec \phi(z)
$$

and

$$
\frac{1}{2}\left(\frac{w g^{\prime}(w)}{g(w)}+\left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\frac{1}{\alpha}}\right) \prec \phi(w)
$$

where the function g is the extension of f^{-1} to Λ.
Putting $\alpha=1$, we have the class $S_{q}(\alpha, \phi)=S_{q}(\phi)$ as defined below.
Definition 1.3. [23] A function $f \in \sum$ given by (1) is said to belong to the class

$$
S_{q}(\phi) \quad(0<\alpha \leq 1, z, w \in \Lambda)
$$

if the following quasi-subordination holds:

$$
\left(\frac{z f^{\prime}(z)}{f(z)}-1\right) \prec_{q}(\phi(z)-1)
$$

and

$$
\left(\frac{w g^{\prime}(w)}{g(w)}-1\right) \prec_{q}(\phi(w)-1)
$$

where the function g is the extension of f^{-1} to Λ.
Motivated by the earlier works in Sharma and Raina [19] and Goyal et al. [12], we define and study a new class of functions by the method of quasi-subordination. The coefficient bounds of $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the class $S_{q}(\alpha, \phi)$ are obtained. Some interesting results are also pointed out.

2. Coefficient Bounds for $S_{q}(\alpha, \phi)$

In this section, we derive the resulting estimates for the initial coefficients a_{2} and a_{3} of functions $f \in S_{q}(\alpha, \phi)$ given by the Taylor-Maclaurin series expansion (1).

Firstly, we state the following theorem.
Theorem 1. Let $0<\alpha \leq 1$. If $f \in A$ of the form (1) belongs to the class $S_{q}(\alpha, \phi)$, then

$$
\left|a_{2}\right| \leq \frac{2 \alpha\left|h_{0}\right| B_{1} \sqrt{B_{1}}}{\sqrt{\left|h_{0} B_{1}^{2}\left(2 \alpha^{2}+\alpha+1\right)-\left(B_{2}-B_{1}\right)(\alpha+1)^{2}\right|}}
$$

and

$$
\left|a_{3}\right| \leq \frac{\alpha\left|h_{1}\right| B_{1}}{\alpha+1}+\frac{\alpha\left|h_{0}\right| B_{1}}{\alpha+1}+\left(\frac{2 \alpha\left|h_{0}\right| B_{1}}{\alpha+1}\right)^{2} .
$$

Proof. Let $f \in S_{q}(\alpha, \phi)$. In view of the definition 1.1, there are analytic functions $\eta, \mu: \Lambda \rightarrow \Lambda$ with $\eta(0)=0=\mu(0)$, satisfying

$$
\begin{equation*}
\left[\frac{1}{2}\left(\frac{z f^{\prime}(z)}{f(z)}+\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\frac{1}{\alpha}}\right)-1\right] \prec h(z)[\phi(\eta(z))-1] \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\frac{1}{2}\left(\frac{w g^{\prime}(w)}{g(w)}+\left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\frac{1}{\alpha}}\right)-1\right] \prec h(w)[\phi(\mu(w))-1] . \tag{6}
\end{equation*}
$$

Define the functions

$$
m(z)=\frac{1+\eta(z)}{1-\eta(z)}=1+\eta_{1} z+\eta_{2} z^{2}+\cdots
$$

and

$$
n(w)=\frac{1+\mu(w)}{1-\mu(w)}=1+\mu_{1} w+\mu_{2} w^{2}+\cdots
$$

or, equivalently,

$$
\eta(z)=\frac{m(z)-1}{m(z)+1}=\frac{1}{2}\left[\eta_{1} z+\left(\eta_{2}-\frac{\eta_{1}^{2}}{2}\right) z^{2}+\cdots\right]
$$

and

$$
\mu(w)=\frac{n(w)-1}{n(w)+1}=\frac{1}{2}\left[\mu_{1} w+\left(\mu_{2}-\frac{\mu_{1}^{2}}{2}\right) w^{2}+\cdots\right] .
$$

Then, $m(z)$ and $n(w)$ analytic in Λ with $m(0)=1=n(0)$. Since the functions $m(z)$ and $n(w)$ have a positive real part in $\Lambda,\left|\eta_{i}\right| \leq 2$ and $\left|\mu_{i}\right| \leq 2$. Now,
$h(z)[\phi(\eta(z))-1]=\frac{1}{2} h_{0} B_{1} \eta_{1} z+\left[\frac{1}{2} h_{1} B_{1} \eta_{1}+\frac{1}{2} h_{0} B_{1}\left(\eta_{2}-\frac{1}{2} \eta_{1}^{2}\right)+\frac{1}{4} h_{0} B_{2} \eta_{1}^{2}\right] z^{2}+\ldots$
and
$h(w)[\phi(\mu(w))-1]=\frac{1}{2} h_{0} B_{1} \mu_{1} w+\left[\frac{1}{2} h_{1} B_{1} \mu_{1}+\frac{1}{2} h_{0} B_{1}\left(\mu_{2}-\frac{1}{2} \mu_{1}^{2}\right)+\frac{1}{4} h_{0} B_{2} \mu_{1}^{2}\right] w^{2}+\ldots$.
In the light of (5), (6) and (7), (8), we obtain

$$
\begin{gather*}
\frac{\alpha+1}{2 \alpha} a_{2}=\frac{1}{2} h_{0} B_{1} \eta_{1} \\
\frac{\alpha+1}{2 \alpha}\left(2 a_{3}-a_{2}^{2}\right)+\frac{1-\alpha}{4 \alpha^{2}} a_{2}^{2}=\frac{1}{2} h_{1} B_{1} \eta_{1}+\frac{1}{2} h_{0} B_{1}\left(\eta_{2}-\frac{1}{2} \eta_{1}^{2}\right)+\frac{1}{4} h_{0} B_{2} \eta_{1}^{2} \tag{10}
\end{gather*}
$$

and

$$
\begin{gather*}
-\frac{\alpha+1}{2 \alpha} a_{2}=\frac{1}{2} h_{0} B_{1} \mu_{1} \tag{11}\\
\frac{\alpha+1}{2 \alpha}\left(3 a_{2}^{2}-2 a_{3}\right)+\frac{1-\alpha}{4 \alpha^{2}} a_{2}^{2}=\frac{1}{2} h_{1} B_{1} \mu_{1}+\frac{1}{2} h_{0} B_{1}\left(\mu_{2}-\frac{1}{2} \mu_{1}^{2}\right)+\frac{1}{4} h_{0} B_{2} \mu_{1}^{2} . \tag{12}
\end{gather*}
$$

From (9) and (11), it follows that

$$
\begin{equation*}
\eta_{1}=-\mu_{1} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2(\alpha+1)^{2}}{\alpha^{2}} a_{2}^{2}=h_{0}^{2} B_{1}^{2}\left(\eta_{1}^{2}+\mu_{1}^{2}\right) . \tag{14}
\end{equation*}
$$

Now, by adding (10) and (12), we obtain

$$
\begin{equation*}
\left(\frac{\alpha+1}{\alpha}+\frac{1-\alpha}{2 \alpha^{2}}\right) a_{2}^{2}=\frac{1}{2} h_{0} B_{1}\left(\eta_{2}+\mu_{2}\right)+\frac{1}{4} h_{0}\left(B_{2}-B_{1}\right)\left(\eta_{1}^{2}+\mu_{1}^{2}\right) . \tag{15}
\end{equation*}
$$

Using (14) in (15), we get

$$
\begin{equation*}
a_{2}^{2}=\frac{\alpha^{2} h_{0}^{2} B_{1}^{3}\left(\eta_{2}+\mu_{2}\right)}{h_{0} B_{1}^{2}\left(2 \alpha^{2}+\alpha+1\right)-\left(B_{2}-B_{1}\right)(\alpha+1)^{2}} . \tag{16}
\end{equation*}
$$

Applying $\left|\eta_{i}\right| \leq 2$ and $\left|\mu_{i}\right| \leq 2$ for the coefficients η_{2} and μ_{2}, we immediately have

$$
\left|a_{2}\right|^{2} \leq \frac{4 \alpha^{2}\left|h_{0}\right|^{2} B_{1}^{3}}{\left|h_{0} B_{1}^{2}\left(2 \alpha^{2}+\alpha+1\right)-\left(B_{2}-B_{1}\right)(\alpha+1)^{2}\right|} .
$$

This gives the bound on $\left|a_{2}\right|$ as asserted in Theorem 1.
Additionaly, in order to calculate the bound on $\left|a_{3}\right|$, by subtracting (12) from (10), we obtain

$$
\begin{equation*}
\frac{2(\alpha+1)}{\alpha}\left(a_{3}-a_{2}^{2}\right)=\frac{1}{2} h_{1} B_{1}\left(\eta_{1}-\mu_{1}\right)+\frac{1}{2} h_{0} B_{1}\left(\eta_{2}-\mu_{2}\right)+\frac{1}{4} h_{0}\left(B_{2}-B_{1}\right)\left(\eta_{1}^{2}-\mu_{1}^{2}\right) . \tag{17}
\end{equation*}
$$

Using (13) and (14) in (17), we get

$$
a_{3}=\frac{\alpha h_{1} B_{1}\left(\eta_{1}-\mu_{1}\right)}{4(\alpha+1)}+\frac{\alpha h_{0} B_{1}\left(\eta_{2}-\mu_{2}\right)}{4(\alpha+1)}+\frac{\alpha^{2} h_{0}^{2} B_{1}^{2}\left(\eta_{1}^{2}+\mu_{1}^{2}\right)}{2(\alpha+1)^{2}} .
$$

Applying $\left|\eta_{i}\right| \leq 2$ and $\left|\mu_{i}\right| \leq 2$ once again for the coefficients η_{2} and μ_{2}, we readily get the bound on $\left|a_{3}\right|$ as asserted in Theorem 1.

3. Concluding Corollaries

For the function ϕ is given by

$$
\phi(z)=\left(\frac{1+z}{1-z}\right)^{\xi}=1+2 \xi z+2 \xi^{2} z^{2}+\cdots \quad(0<\xi \leq 1)
$$

which gives

$$
B_{1}=2 \xi \text { and } B_{2}=2 \xi^{2}
$$

Theorem 1 reduces to:
Corollary 1. Let $f \in S_{q}\left[\alpha,\left(\frac{1+z}{1-z}\right)^{\xi}\right]$. Then

$$
\left|a_{2}\right| \leq \frac{4 \alpha\left|h_{0}\right| \xi}{\sqrt{\left|\xi\left[\left(4 h_{0}-1\right) \alpha^{2}+2\left(h_{0}-1\right) \alpha+2 h_{0}-1\right]+(\alpha+1)^{2}\right|}}
$$

and

$$
\left|a_{3}\right| \leq \frac{2 \alpha\left|h_{1}\right| \xi}{\alpha+1}+\frac{2 \alpha\left|h_{0}\right| \xi}{\alpha+1}+\left(\frac{4 \alpha\left|h_{0}\right| \xi}{\alpha+1}\right)^{2}
$$

For $\alpha=1$ and $-1 \leq B \leq A<1$ if we take

$$
\phi(z)=\frac{1+A z}{1+B z}=1+(A-B) z-B(A-B) z^{2}+\cdots
$$

Then we have

$$
B_{1}=A-B \text { and } B_{2}=-B(A-B) .
$$

Hence, we get the following corollary.
Corollary 2. Let $f \in S_{q}\left(\alpha, \frac{1+A z}{1+B z}\right)$. Then

$$
\left|a_{2}\right| \leq \frac{2 \alpha\left|h_{0}\right|(A-B)}{\sqrt{\left|h_{0}(A-B)\left(2 \alpha^{2}+\alpha+1\right)+(1+B)(\alpha+1)^{2}\right|}}
$$

and

$$
\left|a_{3}\right| \leq \frac{\alpha\left|h_{1}\right|(A-B)}{\alpha+1}+\frac{\alpha\left|h_{0}\right|(A-B)}{\alpha+1}+\left(\frac{2 \alpha\left|h_{0}\right|(A-B)}{\alpha+1}\right)^{2}
$$

Further, by taking $\alpha=1$ and

$$
\phi(z)=\frac{1+(1-2 \beta) z}{1-z}=1+2(1-\beta) z+2(1-\beta) z^{2}+\cdots(0 \leq \beta<1)
$$

we get

$$
B_{1}=B_{2}=2(1-\beta) .
$$

Hence, we get the following corollary.
Corollary 3. Let $f \in S_{q}\left(\alpha, \frac{1+(1-2 \beta) z}{1-z}\right)$. Then

$$
\left|a_{2}\right| \leq \frac{2 \alpha \sqrt{2\left|h_{0}\right|(1-\beta)}}{\sqrt{2 \alpha^{2}+\alpha+1}}
$$

and

$$
\left|a_{3}\right| \leq \frac{2 \alpha\left|h_{1}\right|(1-\beta)}{\alpha+1}+\frac{2 \alpha\left|h_{0}\right|(1-\beta)}{\alpha+1}+\left(\frac{4 \alpha\left|h_{0}\right|(1-\beta)}{\alpha+1}\right)^{2}
$$

Finally, by taking $\alpha=1$ and

$$
\phi(z)=\frac{1+z}{1-z}=1+2 z+2 z^{2}+\cdots
$$

we get

$$
B_{1}=B_{2}=2 .
$$

Hence, we get the following corollary.

Corollary 4. Let $f \in S_{q}\left(\alpha, \frac{1+z}{1-z}\right)$. Then

$$
\left|a_{2}\right| \leq \frac{2 \alpha \sqrt{2\left|h_{0}\right|}}{\sqrt{2 \alpha^{2}+\alpha+1}}
$$

and

$$
\left|a_{3}\right| \leq \frac{2 \alpha\left|h_{1}\right|}{\alpha+1}+\frac{2 \alpha\left|h_{0}\right|}{\alpha+1}+\left(\frac{4 \alpha\left|h_{0}\right|}{\alpha+1}\right)^{2}
$$

References

[1] A.Akgül, On second-order differential subordinations for a class of analytic functions defined by convolution. Journal of Nonlinear Science and Applications. 2017 (10): 954-963.
[2] R.M. Ali, S.K. Lee,V. Ravichandran, S. Supramaniam, Coefficient estimates for biunivalent Ma-Minda starlike and convex functions. Applied Mathematics Letters. 2012 (25): 344-351.
[3] Ş. Altınkaya, S. Yalçın, Initial coefficient bounds for a comprehensive subclass of Sakaguchi type functions. Acta Universitatis Matthiae Belii, series Mathematics. 2015 (23): 27-33.
[4] Ş. Altınkaya, S. Yalçın, On a new subclass of bi-univalent functions satisfying subordinate conditions. Acta Universitatis Sapientiae, Mathematica. 2015 (7): 5-14.
[5] Ş. Altınkaya, S. Yalçın, Faber polynomial coefficient bounds for a subclass of bi-univalent functions. C. R. Acad. Sci. Paris, Ser. I. 2015 (353): 1075-1080.
[6] Ş. Altınkaya, S. Yalçın, Coefficient bounds for a subclass of bi-univalent functions.TWMS Journal of Pure and Applied Mathematics. 2015 (6): 180-185.
[7] Ş. Altınkaya, S. Yalçın, Coefficient estimates for a certain subclass of bi-univalent functions. Le Matematiche. 2016 (71): 53--61.
[8] O. Altıntaş,S. Owa, Majorizations and quasi-subordinations for certain analytic functions. Proc. Japan Acad. Ser. A Math. Sci. 1992(68): 181-185.
[9] D. A Brannan, T. S.Taha, On some classes of bi-univalent functions. Studia Universitatis Babeş-Bolyai Mathematica. 1986 (31): 70-77.
[10] P.L. Duren, Univalent Functions. Grundlehren der Mathematischen Wissenschaften, Bd. 259, 1983, Springer-Verlag, Berlin, Heidelberg, New York and Tokyo.
[11] R. El-Ashwah,S. Kanas, Fekete-Szegö inequalities for quasi-subordination functions classes of complex order. Kyungpook Mathematical Journal. 2015 (55): 679-688.
[12] S.P. Goyal, O. Singh, R. Mukherjee, Certain results on a subclass of analytic and biunivalent functions associated with coefficient estimates and quasi-subordination. Palestine Journal of Mathematics. 2016 (5): 79-85.
[13] S.G. Hamidi,J.M. Jahangiri, Faber polynomial coefficient estimates for analytic bi-close-to-convex functions. C. R. Acad. Sci. Paris, Ser. I. 2014 (352): 17-20.
[14] W. Ma, D. Minda, A unified treatment of some special classes of univalent functions. in: Proceedings of the Conference on Complex Analysis, Tianjin, 1992, 157-169, Conf. Proc. Lecture Notes Anal. I, 1994, Int. Press, Cambridge, MA.
[15] T.H. Macgregor, Majorization by univalent functions. Duke Math. J. 1967 (34): 95-102.
[16] Z. Nehari, Conformal Mappings.1952, McGraw-Hill, New York.
[17] F. Ren, S. Owa, S. Fukui, Some inequalities on quasi-subordinate functions. Bull. Aust. Math. Soc. 1991 (43): 317-324.
[18] M.S. Robertson, Quasi-subordination and coefficients conjectures. Bull. Amer. Math. Soc. 1970 (76): 1-9.
[19] P. Sharma, R.K. Raina, On Sakaguchi type class of analytic functions associated with quasi-subordination. Commentarii Mathematici Universitatis Sancti Pauli. 2015 (64): 59-70.
[20] S. Sivasubramanian, R. Sivakumar,S. Kanas, S.-A. Kim, Verification of Brannan and Clunie's conjecture for certain subclasses of bi-univalent functions.Ann. Polonici Mathematici. 2015 (113): 295-304.
[21] H.M. Srivastava, A.K. Mishra, P.Gochhayat.Certain subclasses of analytic and biunivalent functions. Appl. Math. Lett. 2010 (23): 1188-1192.
[22] H.M. Srivastava, S. Sümer Eker, R.M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions. Filomat. 2015 (29): 1839-1845.
[23] P.P. Vyas, S. Kant, Certain subclasses of bi-univalent functions associated with quasisubordination. J. Rajasthan Acad. Phys. Sci. 2015 (15): 315-325.
[24] Q.-H. Xu, Y.-C. Gu, H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Appl. Math. Lett. 2012 (25): 990-994.

