JOURNAL OF UNIVERSAL MATHEMATICS
Vor.2 No.1 pp.8-15 (2019)
ISSN-2618-5660

GENERALIZATION MITTAG-LEFFLER FUNCTION
ASSOCIATED WITH OF THE HADAMARD AND FEJER
HADAMARD INEQUALITIES FOR (h—m)—-STRONGLY CONVEX
FUNCTIONS VIA FRACTIONAL INTEGRALS

SEDA KILING, ABDULLAH AKKURT, AND HUSEYIN YILDIRIM

ABSTRACT. The aim of this paper, Hadamard and Fejer Hadamard equali-
ties for (h — m) —strongly convex functions via generalizeed fractional integral
operators involving the generalized Mittag-Leffler function are established. In
particular several knows results are mentioned.

1. INTRODUCTION AND PRELIMINARES

The relationship between theory of convex functions and theory of inequalities
has occured as a result of many researches investigation of these theories. A very
intersting result in this regard is due to Hermite and Hadamard independently
that is Hermite-Hadamard’s inequality. This remarkable result of Hermite and
Hadamard can be viewed as necessary and sufficient condition for a function to be
convex. The f: I C R — R be a convex function defined on an interval I of real
numbers a,b € I and a < b, we have,

() ) < e J) f (o) < KO HE

Both inequalities hold in the reversed direction if f is concave. The classical
Hermite-Hadamard inequalities have attracted many researchers since 1893 see
[2,4,5,7,9 — 13,15 — 21] . Researchers investigated Hermite-Hadamard inequalities
involving fractional integrals according to the associated fractional integral equal-
ities and different types of convex functions. Also, its extensions and generaliza-
tions have been considered in various directions using novel and innovaative tech-
niques. For example (h — m) strongly convexity is the generalization of convexity,
(h — m) convexity, m-convexity, s- convexity defined on the right half of real line
including zero ([1]).

Definition 1.1. Let J C R be an interval containing (0,1) and let h: J — R is a
(h —m) convex function, also f is non-negative, if

flax+m(l—a)y) <h(a)f(z)+mh(l-a)f(y)
for all z,y € [0,b], m € [0,1] and « € (0,1).
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Definition 1.2. Let J C R be an interval containing (0,1) and let h: J — R is a
(h — m) strongly convex function, also f is non-negative ¢ > 0, if

f(az +m(1—a)y) < h(a) f (2) +mh (1 —a) fy) - ch (@) h (1 - a) (ma — )
for all z,y € [0,b], m € [0,1] and a € (0,1).
For suitable choice of h and m , class of (h —m) strongly convex functions
is reduces to the different knows classes of convex functions defined on [0, b].
Fractional calculus is a field of mathematical study that grows out of the traditional
definitions of the calculus integral and derivative exponents is an outgrowth of

exponents with integer value. The Mittag- Leffer function is an important function
that finds widespread use in the world of fractioanl calculus.

Definition 1.3. Let «, 3, k,l,v be positive real numbers and w € R. Then the
generalized fractional integral operators containing Mittag leffer function for a real
valued continuous function f is defined by

(%t o f) @)
= Ju (=T B (w (e = 0)7) £ (1) e
and
(25hus ) @)
= [ (=) T L o (6= ) £ (1) d.
it is also common to represent the Mittag-Leffer function as
S T
where (a), =a(a+1)(a+2)...(a+n—1), (a), = 1. This is the more general-

ized form of Mittag-Leffer function.If § = [ = 1, then integral operators eg";’kk w.a+ Teduces
to an integral operator eli‘;,kk,w’ﬁ containing generalized Mittag-Leffler Function

EW’I”; introduced by Srivastava and Tomovski. [6].

Definition 1.4. Let f € Li[a,b]. Then Riemann-Liouville integrals J*, f and
Jf_f of order £k > 0, a < b, a > 0 with are defined by

(12) Sef @) =i [ @0 f 0 o>
and

b
(1.3) JE () = F(la)/ (t—2)" ' f@)dt, =<b.

These integrals are called right-sided Riemann-Liouville fractional integral and left-
sided Riemann-Liouville fractional integral respectively. Where

(1.4) I'(a)= /000 e tx*

is the well known Gamma function.
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2. MAIN RESULTS

In this section, we obtain our main results.

Theorem 2.1. Let f : [0,00) = R be an integrable and (h — m) —strongly convex
function with m € (0,1], ¢ > 0. Then the following inequality for generalized
fractional integral holds

7 (bm2+a) € (Z’%ﬁ,wo,ﬁ 1) (mb)
< h(3) [morre (l’%’l woi 1) (&) + e (5 o f) (mb)]
—ach? (3) (a = mb)? [4e (5 e ae 1) (mb) = € (154 1 o0 1) ()

+e€ (Ws”C ) (mb)}

a,B+2,l,we,at
<h(1)[ 2f(m2)+mf }ftﬁ 1E“/6k( ) h (1 —t) dt
+h(3) [m f fo LETSE (i) b (1) de
—2¢(a — fo 1 —2t)* LB (wi) h () h (1 — t) dt
where w® = ¢

_w
bm—a)* "

Proof. Using that f is (b — m) —strongly convex function, we have

F(#5) < h(z) (mf (@) + f (9) = h® (3) (ma —y)°
By setting = (1 —t) 2 +tb and y = m (1 —1)b + ta, then integrating over
[0,1] after multiply with tﬁ’lEljg’s (wt*) , we have
F(Br5e) Jo 177N EL G (wi) dt
n(3) ot 1E'y7‘;’§ (wt)mf (1 —1t) 2 +1tb) dt

+ [ T LELSE (wit) f (m (1~ 1) b+ ta) dt}

—ch? (1) (a—mb)® [y (1 -2 P BTSN (wt) dt

By subsitituting w = (1 —t) = +tb, and z = m (1 —t) b + ta one can have,
) I, (z::z’;)ﬁ* B3k (w (1))
)0 () et (o (222) ) 0
# 0 () Bt (u (28)) 7 ) 22

%

(

(

67
2 ra —mb &,k
) (a—=mb)” [, (Z—m) Eyg
B
2 ra —mb 0,k —mb d
3) (a—mb)? fo, (=) BL (w (=2 ) 22
1
2

B+1 e
2 ra y—mb v,0,k y—mb dy
) (a’ - mb) fm,b (afmb) Ea,ﬂ,l (U} (afmb) a—mb
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namely

£ (o) e (155 e i) (D)

<h(3) {mlﬂl (”Z‘Zf“k,wo,bf f) (%) e (Z/,(;a’fck,w“’»a*f) (mb)]
ot () (0 mb (75, 1) ()

+4ch? (3) (a — mb)” e l:(;il,z,w°,a+1 (mb)

—4ch? (3) (a — mb)” € l:%izz,w%ﬁl (mb).

This completes the proof of first inequality in above . For second inequality
(h — m) —strongly convexity of f also gives

Fm@—t)b+ta) —ch (L) (a—mb)? (1 - 2t)?
<m*h(1—1) f (%) + mh(t) f (b) + mh (1 —1t) f (b)
—2ch (t) h (1 —t) (a — mb)* (1 — 2t)%,

Multiplying both sides of above inequality with h (%) tﬁflEg’g’lj (wt®), and inter-
ating over [0, 1] ,we have

,0, \5,
mﬂ+1 <3 ﬁkk wo,b— f) (%) te (Z,B,kk,wo,a*f) (mb):|
—mb)’e (l’%57w07a+ 1) (mb)

(a
) (a—mb)? e Z:‘;’il)l’wo’wl (mb)
)

(a —mb)’ e %%imw,wl (mb)
2 (%)vme ®)] fy tPTELE (wt) (1~ t) dt
+ £ (@) fy P EYSE (wte) b (t) dt

Z(a—mb)Qfl (1= 2t)2 P LS (wte) b (t) b (1 — t) dt

combininig it with (2.3) we get (2.1) which was required to prove. O

Several known results are special cases of the above generalized fractional Hadamard
inequality comprise in the following remark. i) If we take h(t) = ¢, ¢ = 0 and
m = 1 in above theorem, then we get [18] ii) If we take h(t) = ¢, ¢ = 0 in above
theorem, then we get [10] iii) If we take h(t) = ¢, ¢ = 0 and w = 0 in above theorem,
then we get [11] iv) If we take h(t) = ¢, c=0,w =0 and m = 1 in above theorem,
then we get [19] v) If we take h(t) =¢, ¢=0, S =1, w=0 and m = 1 in above
theorem, then we get Hadamard inequality. vi) If we take ¢ = 0, then we get [21].

Theorem 2.2. Let f : [0,00) — R be an integrable and (h — m) —strongly convex
function with m € (0,1]. Then the following inequality for generalized fractional
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integral holds

7 () € (15 e i 1) (D)

<0 [e(085 gy ) e (055 ey 7) ()
~2ch? (3) (mb— a)® [3e (15 e 1) (m0) = € (55 e 0 1) ()
+e (Zy%iz Lwe o+ 1) (mb)}

<n(3){(m 2f<m2>+mf ) Jy b (250 0BT (o) dt

[+mf (5)+ £ (@)] Jy b (§) 47 1E32’§<wta>dt}

o h(5) (=12 tP 1 EDE (wte) dt.

22D a apd y= £a+7n(2;t)b in 2.2 where t € [0,1], we

Proof. By putting x = %b+ ( R 5

have

f(P5) < h(3) (mf (@) + f (y) = ch? (3) (mz — y)?

POy () (mf (504 2508) 41 (100 miZ520)
—ch? (3) (t = 1)* (mb — a)®

Multiplying both sides of above inequality with tﬁ_lEg:g’ﬁ (wt®), and interating
over [0, 1] ,we have

32) Jo 177 E2G) (wi) dt
%) o mf (40 + 252 2) 81 B2 (wte) dt
01 7 (fa+mE300) 1B (wie) at

(3) (mb—a)* fy (¢ = 1)* 7 EL5 (i) dt

By change of variables one can have,

,0,k
f (bm2+a) € Z!,B,l,wo,a‘*' 1) (mb)
<

) [ 90 (15 ) )
ot (3) mb— e (135,1,1) ()
+2ch? (3) (mb—a)®e (Z:%il,l,wO,a+ 1) (mb)
—ch? (1) (mb—a)?e (Z:%izz,w%ﬁ 1) (mb)

Now by using the (h — m) —strongly convexity of f we have,

7 (fa+mE520) +mf (4p+ (_)%)—ch(l)( 1) (mb — a)’
< )f(a)+mh(ggf( +mh (3) £ (0) +m*h (35°) f (5z)
: a)’

h (s
“2ch (352 h (8) (£~ 1) (mb—
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Multiplying both sides of above inequality with & (3) tﬁ’lEgzg’f (wt®), and inter-
ating over [0, 1] ,we have

,0,k 5.k
<V,ﬁ,l7w07(a+bm)+f> (mb) + m6+16 (17ﬂ7l,w°,(a;b"")f> ('rCrEL):|
§
(mb —a 2 (’Y,ﬁli w®,at ) ( )
2 8,k
)(mb_a) 6(lﬁ+1lw°a+)( )

+2ch? (

—ch? (5) (mb =) € (158, e 0 1) (D)

<h(3){(m 2f<m2>+mf ) Jy b (354) P BT (we) at
+ [mf (b) + £ ()] [y h ()tﬁ’lEMk(wto‘)dt}

—2ch (27) (mb —a) fo ( ) t—1) tﬂ_lEzigﬁ (wt®) dt.

combining it with (2.5),(2.4) we get which was the required inequality. O

Corollary 2.3. if we take h(t) =t, and m = 1, ¢ = 0 in above theorem, then we
get the following inequality analogue to hadamard inequality [18, Theorem 2.1] for
convex functions via generalized fractional integrals

f (bT) € (Z (235@0,(#1) (b) < 3 |e <Z;k£wo(ab)+f> (b) + € (712’; wo (;rb)f> (a)]
<A@+ O (T3 000 1) (@)

Theorem 2.4. Let f : [a,b] — R be an integrable and (h —m) —strongly convex
function with 0 < a < b, and f € Ly [a,b]. Also let f : [a,b] = R, be a function with
which is non-negative, integrable and symmetric about %mb. If f(mb+a—mz) =
f(z). Then the following inequality for generalized fractional integrals hold

F(tmey e (10 e 9) ()

<h(3)(m+1)e (z;‘;;’; v 9f) (2)

—4ch® (3) (a — mb)* [ (Zy(;]iwo b~ 9) () _G(Z%ium b= 9) ()
Te (166% Lwe b- 9) (o )}

<h () {(m*f (%) +mf )

+ [mf (b) + f ()] [y 97 h (1) g (tb+ (1 — 1) £) BTSN (wt®) dt}
~2¢(mb—a)® [ h(1—t)h(t) (1 —20)* P~ B2 5 (wte) dt

JytP TR (1 —t) g (th+ (1 —t) &) BN (wt) dt

Proof. Using that f is (h — m) —strongly convex function, therefore z = (1 — t)
tb and y = m (1 —t) b+ ta, we have

+

o
m

f(bm%)g (3) (mf (10 55+ 5) + (m (1= )b+ ta)
—1)2 (mb — a)?
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Then integrating over [0, 1] after multiply with tﬁflEg:g’ﬁ (wt*) g (tb+ (1 — 1) %),
we have

£ (e [ 9 EDOR (wt) g (80 + (1 —t) &) dt

h(3) [fo tIEy,; 65’? (wt*)ymg (tb+ (1 —t) ;) f (1 —1) 2 +1b) dt
+ [ PEYSE (i) g (th+ (1= ) %) f (m (1 — )b+ ta) dt]
—ch® (1) (a—mb)® [ (1 —2t)> g (th+ (1 — 1) &) tﬁ‘lEZjZ’,’? (wt®) dt

If we set © = tb+(1 — t) %, and use the given condition f (mb +a —mzx) = f(x), we
have

£y e (050 e 9) (2)

<h(E) m+ e (U5 0 ,o0f) (2)
—ch? (3) (a—mb)* e (15 e y9) ()
+4ch? (%) (a—mb)Q Zfﬂ’f—llw b9 (;:L)
—4ch? (%) (a—mb)2 Zéﬁizzwo v-9 (7?1)

This completes the proof of first inequality (26.=*) .For the second inequlity using
(h — m) —strongly convex function of f we have,

mf((lft)%+tb) f(m (1—t)b+ta)fch(%)(a7mb) (1—2t)
<m*h(l—1t)f (7 )+mh()f(b)+mh(1—t)f() h(t) f (a)
—2ch (t) h (1 —t) (1 — 2¢)* (mb — a)*

Multiplying both sides of above inequality with h (3) t7~1g (tb+ (1 — t) Z) E ?3 (wt®), and
interating over [0, 1] ,we have

h(E) o+ 1) e (U550, 0f) (2)

_mnaw—mwe@%Wb@<w

+4ch? (%) (a— mb)2 €la ﬂ+1 Lwe,b—9 (SL)

—4ch? (%) (a—mb)2 l%izzwb g (7(2)

<h(3){(m Qf(m2)+mf ) Jo P (1= t) g (th+ (1 — ) &) LY (wte) dt
[ (8)+ f (@)] fy 97 R (8) g (tb+ (1= 1) ) ELEG (wie)dt |

—2¢ (mb — a) folh(lft)h(t) (1—20)* /L BT (wte) dt

combining it with (2.7),(2.6) we get which was the required inequality.
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