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EFFECTIVE MASS KLEIN-GORDON EQUATION WITH

POSITION DEPENDENT MAGNETIC FIELD
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Abstract. Recently, exact solutions of the classical and relativistic wave

equations for the existance of an external potential have been widely studied
in view of the position-dependent mass formalism. Such efforts have impor-

tant applications in technology, especially in material science such as electronic

properties of the semi-conductors and quantum dots. In the present study, we
aim to obtain exact solutions of the Klein-Gordon equation in the presence of

an exponential magnetic field via effective mass formalism. Energy eigenvalues

are derived by using wave functions. The studied magnetic field and effective

mass have the form ~B = B0e−κxk̂ and m(x) = (m0 + m1e−κx).

1. Introduction

The investigation of a non-relativistic or relativistic quantum mechanical system
under the sway of the external fields has got great attention over the past decades.
For this purpose Schrödinger, Klein-Gordon and Dirac wave equations are solved
in the existance of the external fields [1]-[5].

Of these equations, the Schrödinger equation is the most natural way of start-
ing point of the quantum mechanical description of subatomic particles. It is the
fundamental equation for the description of the non-relativistic phenomena.

The Klein-Godon equation is the precursor equation to start the relativistic
phenomena of subatomic particles. But, similar to Schrödinger equation, it does
not address the spin.

The Dirac equation is the primary equation that includes both relativistic effects
and spin. It’s theoretical predictions agree very well with experimental results with
very high sensitivity. In nuclear, high energy and condensed matter physics, etc.,
the Klein-Gordon and Dirac equations are solved exactly in order to evaluate the
relativistic effects. In many cases of these equations, the solutions are obtained for
constant or time-dependent mass. To our knowledge, presently the effective mass
solutions are less obtained for these equations.

Solving the Schrödinger equation for the position-dependent mass is rather more
common and so far it has been solved for many different cases of scalar and vec-
tor potentials. In these problems, in order to solve the problem analytically the
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position-dependent mass form has been taken similar to the form of potential [6]-
[11]. Such efforts have been presented also for the Klein-Gordon equation. Approx-
imate and exact analytic solutions have been obtained for several potential types
with position-dependent mass [12]-[16].

In the present study, we aim to obtain exact analytic solutions of the Klein-
Gordon equation for a position-dependent exponentially decaying magnetic field
with a position-dependent mass in the similar mathematical form. Eigenfunctions
and energy spectrum are obtained for the considered case. Such kind of decaying
magnetic field has been studied for the Dirac electron in graphene and a single 2D
electron Pauli equation.

The paper is organized as follows: in section 2 we obtain the exact solutions of
the Klein-Gordon equation, in section 3 the dependence of the energy spectrum
on the varying mass and magnetic field is investigated. Section 4 is dedicated to
discussion.

2. Exact Solution of the Problem

The Klein-Gordon equation for relativistic spinless particles in the presence of ex-
ternal fields with mass m is given by [2]:

(2.1) [(~P − e ~A)2 +m2(x)]ϕ = (P0 − eA0)2ϕ

where Aµ is the electromagnetic four-vector potential, e is the charge of the particle,
Pµ is four-vector momentum and m(x) is the position-dependent mass of particle.

If we work for the vector potential with the gauge

(2.2) Aµ = (0, 0, Ay, 0) = Ay(x) = − 1

κ
B0e

−κx

the magnetic field will be as ~B = B0e
−κxk̂. For the mass m(x) = (m0 +m1e

−κx),
the Klein-Gordon equation reads
(2.3)

[
d2

dx2
− (

e2B2
0

κ2
+m2

1)e−2κx− (
2ekyB0

κ
+2m0m1)e−κx+ε2− (m2

0 +k2y +k2z)]ψ(x) = 0

where the ansatz for the wave function is ϕ = ei(yky+zkz−εt)ψ(x).

By making change of variable u = e−κx and defining ψ(u) = u
−1
2 F (u), Eq. (2.3)

returns
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Defining a new variable, ρ = 2(

√
e2B2

0
κ2

+m2
1

κ )u, this equation reduces into the
following form:
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F (ρ) = 0
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Definition 2.1. The Whittaker equation is given by [17]

(2.6)
d2F (ρ)

dρ2
+ [−1

4
+
λ

ρ
+

1
4 − µ

2

ρ2
]F (ρ) = 0

The general solution of this differential equation is given in terms of the Whit-
taker functions by

(2.7) F (ρ) = N1Mλ,µ(ρ) +N2Wλ,µ(ρ)

where N1 and N2 are arbitrary constants.
Then, solutions of equation (2.5) are given by equation (2.7) with λ and µ are

defined as follows: µ = i
κ

√
ε2 − (m2

0 + k2y + k2z) and λ =
(
2ekyB0

κ +m0m1)√
e2B2

0+m
2
1κ

2
.

For the requirement that the Whittaker functions must be bounded for the vari-
able we have the expression [17]

(2.8)
1

2
+ µ− λ = −n

where n is a positive integer. By using the explicit values of µ and λ in this
expression, we obtain energy spectrum equation as
(2.9)

ε2 = (m2
0 + k2y + k2z) +κ2(2n+ 1)

[
ekyB0

κ +m0m1]√
e2B2

0 +m2
1κ

2
− [(κn+κ)2 +

(
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1κ
2

]

3. Effect of Varying Mass and Field on Energy Spectrum

3.1. Case I (B0 = 0).

(3.1) ε2 = (m2
0 + k2y + k2z) + κ(2n+ 1)m0 − [(κn+ κ)2 +

m2
0

κ2
]

As it is seen the result does not depend on the m1 factor of varying mass explicitly,
but effects coming from the varying mass manifest in the spectrum with κ term.

3.2. Case II (m1 = 0). For this case the energy spectrum reads

(3.2) ε2 = (m2
0 + k2y + k2z) + κ(2n+ 1)ky − [(κn+ κ)2 +

k2y
κ2

]

We see an intresting point here compared to the Case I; in the second and third
terms of energy spectrum the constant mass exchanged with ky.

4. Conclusion

In the present study, we obtain exact solutions of the effective mass Klein-Gordon
equation with exponentially decaying magnetic field. Energy spectrum of the rel-
ativistic particles is derived by using the wave functions. There are fewer studies
in the literature with variable masses compared to constant mass. Besides, our
problem is important since the magnetic field we considered here occurs inside
the London penetration depth of a superconductor of first kind [18] for a better
realization for materials such as graphene.
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