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Abstract: Firstly, the axis of a slant helix is found. Secondly, the theorem which characterizes a slant helix is proved in detail. The
importance of this theorem is stemed from that it has been led to doing many papers about slant helices.
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1 Introduction

Slant helices are special space curves like Salkowski, Bertrand and Mannheim curves, or general helices. Slant helix
concept was first introduced by Izumiya and Takeuchi [1] and then studied by so many authors.

Izumiya and Takeuchi [1] defined slant helices which are generalizations of the notion of general helices. Kula and Yayh
[2] investigated the spherical indicatrices of slant helices and showed that the tangent and binormal indicatrices of them
are spherical helices. Also, Kula et al. [3] gave some characterizations for slant helices in Euclidean 3-space. Ali and
Turgut [4] extended the notion of slant helix from Euclidean 3-space to Euclidean n-space. They introduced type-2
harmonic curvatures of a regular curve and gave necessary and sufficient conditions for a curve to be a slant helix in
Euclidean n-space.

Recently, Ali and Turgut [5] researched the position vector of a timelike slant helix in Minkowski 3-space E3. They
determined the parametric representation of the position vector Y from intrinsic equations in IE? for the timelike slant
helix. Besides, Ali and Lopez [6] looked into slant helices in Minkowski 3-space. They gave characterizations for
spacelike, timelike and lightlike slant helices and also investigated tangent indicatrix, binormal indicatrix and involutes
of a non-null curve.

More recently, Dogan [7], and Dogan and Yayli [8,9] studied isophote curves on surfaces in Euclidean 3-space and
Minkowski 3-space. An isophote curve on a surface can be regarded as a nice consequence of Lambert’s cosine law in
the optics. Lambert’s law states that the intensity of illumination on a diffuse surface is proportional to the cosine of the
angle generated between the surface normal vector N and the light vector d. According to this law the intensity is
irrespective of the actual viewpoint; hence the illumination is the same when viewed from any direction. In other words,
isophotes of a surface are curves with the property that their points have the same light intensity from a given source
(curves of constant illumination intensity).

When the source light is at infinity, we may consider that the light flow consists of parallel lines. They [7,8,9] showed
that the there is a close relation between isophote curves and slant helices, i.e., a curve which is both a geodesic and a
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slant helix is an isophote curve.

This paper is organized as follows. Section 2 presents basic concepts concerning curve and surface theory in E3. Firstly,
the axis of a slant helix is found and secondly, the theorem which characterizes a slant helix is proved in section 3.

2 Preliminaries

In this section, we give some basic notions about curves and surfaces. The differential geometry of curves starts with a
smooth map of s; let us call it & : ] C R — [E3 that parametrizes a spatial curve and it will be denoted again with c. The
curve ¢ is parametrized by arc-length if Ha/ (s)|| = 1 (unit-speed), where o (s) is the first derivative of a with respect to

s.Let a: 1 C R — E3 be a regular curve with an arc-length parameter s and K(s) = H(XH (s)||, where K is the curvature

of o, and o’ is the second derivative of a. For k > 0, the Frenet frame {T, N, B} is well-defined along the curve o and

as follows.
T(s) = o (s), (1)
oo a// (s)
N( ) Ha//(s)| b

where T', N and B are the tangent, the principal normal, and the binormal of ¢, respectively. The derivative of the Frenet
frame (Frenet equations) are given by

T'(s) = K(s)N(s), )
N'(s) = —k(s)T(s) + 7(s)B(s),
B (s) = —7(s)N(s),
(a(s)xa(s),0"(s))

()

where 7(s) = is the torsion of a; ”(,)” is the standart inner product, and ”x” is the cross product
on R3.

Let M be a regular surface and ¢ : I C R — M be a unit-speed curve. Then the Darboux frame {7, Y =U x T, U} is
well-defined along the curve o, where T is the tangent of & and U is the unit normal of M. If we rotate the Darboux frame
{T,Y =U xT, U} by ¢ about T, we obtain the Frenet frame {7, N, B}.

T 1 0 0 T
N| =10 cos¢ sing¢ Y
B 0 —sin¢ cos¢ U

T=T, 3)
N =cos¢Y +singU,
B = —sin¢Y +cos¢U.
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The derivative formulas for the Darboux frame are given by

T = kY + kU, )
Y = kT +1,U,
U = —k,T — 1,7,
where 7’ 7 denotes the derivative of T, B, and N with respect to s along the curve U3b1; k,, kg, and 7, are the normal

curvature, the geodesic curvature, and the geodesic torsion of «, respectively. With the above notations, let ¢ denote the
angle between the surface normal U and the binormal B. Using equations (2), (3) and (4) we obtain

K> =k +k, (5)
kg = KCOs @,
k, = Ksing,
Tg=T— q)/.

Let a : I C R — E3 be aregular curve with an arc-length parameter s and k > 0. Since ||N|| = I,the curve f: 1 C R — S?,
B(s) = N(s) lies on the unit sphere S?. It is called the principal normal indicatrix of a.

3 A Slant helix and its axis

In this section, we find the fixed vector (axis) of a slant helix. By means of this axis, we prove the theorem which
characterizes a slant helix in detail. A space curve whose its principal normal vectors make a constant angle with a fixed
vector is called a slant helix. Let & : I C R — E? be a unit-speed slant helix with x(s) # 0. By the definition of slant
helix

(N,d) =cos0, 6)

where N is the principal normal, d is the fixed vector of ¢, and 8 is the constant angle between N and d, respectively. If
we differentiate Eq.(6) with respect to s along the curve & and then use the Frenet equations, we obtain

<N’,d> -0 )
(—xT +1B,d) =0
k(T,d) = t(B,d)

(T,d)=—(B,d).

T
K
If we take (B,d) = ¢, we get

d = —cT +c0s 6N + cB.

Since ||d|| = 1, it follows that

T 2 2 2
—5¢"+cos O+c" =1
K

v 2_ 2
(E—H)C =sin“ 0

K
¢=F———=sinb.

VK?+12
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Therefore, the vector d can be written as

T K
d=F——=5in0T 4+ cosON F ———5sinOB. 8
o T ®)

Here, d is actually a constant vector. By differentiating Eq.(7) with respect to s along the curve ¢, we obtain

<N//,d> —0

<K‘/T—|—(K'2+T2)N—T,B,$ sin@T +cos ON F sin9B> =0

T K
V2412 V2412
KT—TK
jF(,<2+Tz)3/2
(K2+72)3/2
T’xk—x't
Kz T
S anlo)
(k2 + 1232

tan0+1=0

tanf = F

cotf =F 9

From Eq.(8) and the Frenet equations, the derivative of d becomes

d =7 {sjne( ),T+sin6 (K‘N):| +cos0 (—kT +1B)

T
(rN)]

T
VK +12

F {sin@( )’B+Sin0L
V2412

)1 T+ [r¢tan9(

K
V2412

T K '
= |—KkFtan0(——— — B
{ ’ (x/rc2+rz vx2+rz)}

If we substitute Eq.(9) in the last equality above, we get

d=|-Kk+

Tk—«x't (k2 +12)3/2

(K2 +12)3/? <K'(K2+T2) — x(kK +7:1:')>] B

(k%4 1%)3/2 <1’(K2+12) —1(xK +ﬂ")>] r

+lT+

Tk—K'1 (k2 +12)3/2

By a direct calculation, it can be seen that the coefficients of 7' and B are zero. Then d = 0, in other words, d is a constant
vector.

Theorem 1. A unit-speed curve o : I C R — E3 with k(s) # 0 is a slant helix if and only if
2

o) = () ) O

is a constant function [1].

Proof. The vectors that make a constant angle with a fixed vector construct a cone. Then the unit vectors in E3, which make
a constant angle with a fixed vector construct a circular cone whose the base curve lies on the unit sphere S?. Therefore, o
is the unit-speed slant helix if and only if its principal normal indicatrix is a circle on the unit sphere S?. In other words, if
we compute the normal indicatrix B : I C R — S?, B(s) = N(s) along the curve «, the geodesic curvature of B becomes
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o (s) as obtained below.

N = —xT + 7B,
N'=—k'T— (K2 +1*)N+1B,

’ " T
N xN :‘L'(K‘2+‘L'2)T+K’2(E)N+K‘(K2+T2)B,
HN’xN”
Kp = 3
V]
2 L 22\3 20 T\2
(K + 7+ (K(5) )
N (k2 +12)3 ’

where kg is the curvature of 3. Let k; and k, be the geodesic curvature and normal curvature of § on S?, respectively.
Since the normal curvature k, = 1 on S?, if we substitute k, and kg in the following equation, we get the geodesic curvature
kg as follows.

kg 4k = (x5)%,

K.Z

(NG
ke(s) =o0(s) =cotf =F ((K2+’E2)3/2(K) > (s),
where 6 is the constant angle between the principal normal N and the axis d. Because of the fact that 0 is a constant, o (s)
is a constant. Then, a unit-speed curve & : I C R — E? is a slant helix if and only if the spherical image (indicatrix) of
its principal normal 8 : I C R — S? is a circle.
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