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Abstract: In this paper we will study the main properties of the set solutions of the paratingent equation (type differential inclusion)
with delayed argument of the form:(Ptx)(t)⊂ F([x]t) for t ≥ 0 with the initial condition:x(t) = ζ (t) for t ≤ 0. We will be interested
particularly in the topological properties of emission andzone of emission.
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1 Introduction

It is our purpose to study a topological structure of the solution set to the paratingent equation with delayed argument.In

[3] we have established the existence of solutions to the paratingent equation with delayed argument of the form:

(Ptx)(t) ⊂ F([x]t) for t ≥ 0 with the initial condition:x(t) = ζ (t) for t ≤ 0, under weak assumptions. In [4] we have

established some properties of the set solution, this paperis a continuation of [4]. In this work, we investigate the

fundamental properties of emission and zone of emission of the above paratingent equation under the same weak

assumptions than in [3]. The study of these properties is justified by the fact that the main topic considered while dealing

with differential inclusions is the topological properties of the set solutions. This set, which is consisted of the union of

the graphs of all trajectories of the differential inclusions, is called zone of emission or reachable or attainable setof

differential inclusions. Wasewski [30], has pointed out that the main properties of trajectories and set solutions of control

system are equivalent to the properties of trajectories andset solutions of a certain differential inclusions . Many proofs

of existence in optimal control theory depend upon showing that the set solutions is compact. The fact that the set

solutions is non-compact causes great difficulties. Wasewski in [28, 29] attempted to overcome this problem by

extending the notion of a solution. He introduced the concept of quasitrajectories which are limits of approximate

solutions or solutions of a relaxed differential inclusion. This concept is very important in the control theory and its

applications. For example, it is well-known that the limit functions of some sequence of trajectories with ”bang bang”

control are quasitrajectories. Such functions are well-known in automatics as ”sliding regimes”. The existence of sliding

regimes can be established as a result of Turowicz [27] or as asolution to a certain relaxed differential inclusion, Sontag

[24, 25], using Filippov theorems, Fronkowska [9].

The first works on paratingent and contingent differential inclusions with delay were published by Myshkis [19].

Moreover, the existence of solution and the main propertiesof set solution of paratingent and contingent differential

inclusions with delay have been studied by a number of authors, for instance, Campu [5,6], Deimling [8], Haddad [10,

11, 12, 13], Kamenskii et all. [15], Kryzowa [17, 18] and Zygmunt [31, 32]. Recent results for differential inclusions

with a finite delay in spaces of Banach were obtained by Syam [26] and Castaing-Ibrahim [7]. Recently, Raczynski has
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successfully applied differential inclusions to simulation and modelling theory [20, 21, 22].

For more details on differential inclusions see the books ofAubin and Cellina [1], K. Deimling [8], M. Kamenskii [15] ,

G. V. Smirnov [23], and M. Kisielewicz [16].

2 Preliminaries

Let (E,ρ) and(E′,ρ ′) two metric spaces. ByCompE, we denotes the set of all the nonempty and compact subsets ofE.

If, moreover,E is a vector space, thenConvEdenotes the set of all the convex elements ofCompE.

A set-valued map,F : E →CompE
′
, is called upper semi-continuous inE, and denoted by u.s.c , if for any pointa∈ E

and all ε > 0, there exists δ > 0 such that : x ∈ B(a)δ ⇒ F(x) ∈ B(F(a))ε when

B(a)δ = B(a,δ ) = {x∈ E / ρ(a,x)< δ}andB(F(a))ε = B(F(a),ε) = {y∈ E
′
such asz∈ F(a) and ρ ′

(y,z) < ε}. (see

[2]).

We have, on the upper semi-continuity of a set-valued map, the following lemma (see [14]).

Lemma 1. let (E,ρ) and (E′,ρ ′) two metric spaces. A set-valued map, F: E → CompE
′
, is u.s.c if and only if, for all

sequences{xi} ∈ E and{yi} ∈ E
′
such that{xi}→ x0 and{yi} ∈ F(xi), there exists a subsequence{yik} of {yi} which is

convergent to y0 ∈ F(x0).

Let C the space of all continuous functionsx : R→ Rn with the topology defined by an almost uniform convergence

(i.e. a uniform convergence on each compact interval ofR). It is well know that the almost uniform convergence inC is

equivalent to the convergence by the metricρ defined as follows.

ρ(x,y) =
∞

∑
i=1

1
2i min{(1,sup|x(t)− y(t)|),−i ≤ t ≤ i} for x,y∈C.

thenC is a metric locally convex linear topological space. Letβ < 0 be a fixed real number and letI = [0,∞[⊂ R. If

x ∈ C, the symbol [x]t will be denote the restriction ofx on the interval [β , t] when t ∈ I and

||x||t = max{|x(s)|,β ≤ s≤ t} with |x|= max{|x1|, |x2|, ..., |xn|} for x= (x1,x2, ...,xn) ∈ Rn.

Let G denote the metric space whose elements are functions[x]t , [y]u ,... , wheret ∈ I , u ∈ I , the distance between two

functions[x]t , [y]u , being understood as a distance of their graphs inRx Rn in the Hausdorff sense.

2.1 Paratingent of a function

Having a functionx∈C andt ∈ I , the set of limit points

lim
x(ui)− x(si)

ui − si
= α

whereui ∈ I , si ∈ I , ui 6= si (i = 1,2, . . .), andlimui = limsi = t, is called the paratingent ofx at the pointt and denoted

by (Ptx)(t). It is easy to see thatPtxmaps the intervalI into the family of the nonempty and closed subsets ofRn.
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2.2 Paratingent equation with a delayed argument

Let a set-valued mapF: G →CompRn, a relation of the form:

(Pt x)(t)⊂ F([x]t) where t ∈ I and x∈C. (1)

is called paratingent equation with a delayed argument where t ∈ I and x∈C. Every functionx∈C satisfying (1) will

be called the solution of the equation (1).

The generalized problem of Cauchy for the equation (1) consists in the search for a solution of the equation (1) which

will satisfy the initial condition:

x(t) = ξ (t) for t ∈ [β ,0] (2)

where the functionξ ∈C , called the initial function is given in advance ( i.e. the solution of the equation (1) must contain

a certain curve given in advance).

2.3 Existence solutions

Assume the following hypothesis.

(H1): The set-valued mappingF : G → ConvRn is upper semi-continuous and satisfies the condition.

F([x]t) ⊂ B(0,w(t, ||x||t)), for t ≥ 0 whereB(0, r) denote the closed ball of center 0 ofRn and radiusr, w(t,y) is a

continuous function fromI × I to I , increasing iny and such that the ordinary differential equation:y′= w(t,y), with the

initial conditiony(0) = A (A an arbitrary real positive number) has a maximal solution, denotedM(t), on all intervalsI

and for allA.

Let D a compact subset ofC and Φ the class of all the functionsx ∈ C satisfying the inequality|x(t)| ≤ M(T) for

t ∈ [0,T], T a real positive number arbitrarily fixed. In [3] we have established the following theorem:

Theorem 1. Under the hypothesis (H1), in the classΦ and for anyξ ∈ D, there is at least a solution of the problem

(1)-(2).

From proof of the theorem, it follows.

Corollary 1. If y ∈ Φ and(Pt y)(t) ⊂ B(0,w(t, ||x||t)),we have:|y(t)− y(t ′)| ≤ ΩT |t − t ′| for t, t ′ ∈ [0,T], whereΩT =

max{w(s,M(T)) : s∈ [0,T]}.

3 Properties of the set solutions

Definition 1. A function x is called a trajectory of F([y]t), if (Pt x)(t) ⊂ F([x]t) for t ≥ 0. We call emission of the

functionζ , the set of all trajectories x of F([y]t) such that x∈ Φ and x(t) = ζ (t) for all t ∈ [β ,0]. We denote this set by

EΦ(F,ζ ). And, we call emission of the set D, the union of emissions of all functionsζ ∈ D, it is denoted by EΦ(F,D),

i.e.EΦ(F,D) = {∪EΦ(F,ζ ) / ζ ∈ D}.

We call zone of emission of functionζ ∈ D, and we denote by eΦ (F,ζ ), the union of the graphs of the functions

belonging to EΦ(F,ζ ), i.e. : eΦ (F,ζ ) = {(t,y) ∈ R x Rn / t ∈ [β ,T], y = ζ (t) and y∈ EΦ(F,ζ )}.We call zone of

emission of the set D, and we denote by eΦ (F,D), the union of all the zones of emissions of functionsζ ∈ D ,

i.e.eΦ(F,D) = {eΦ(F,ζ ) / ζ ∈ D}.
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Let Γ a fixed real number. We denote by eΦ (F,ζ ,Γ ) the section of the zone of emission of the functionζ by the plan

t = Γ , i.e. : eΦ(F,ζ ,Γ ) = eΦ (F,ζ )∩ {(t,x) ∈ R x Rn / t = Γ and x∈ Rn} and by eΦ(F,D,Γ ) the union of sections

eΦ(F,ζ ,Γ ) whereζ ∈ D , i.e. eΦ(F,D,Γ ) = {∪eΦ(F,ζ ,Γ ) / ζ ∈ D}.

We recall the following theorems from [4].

Theorem 2.[4] If the application F: G→ConvRn verifies the assumption H1, then the emission EΦ(F,ζ ) of the function

ζ is a nonempty and compact set of C.

Proof.In view of theorem 1, it following that the setEΦ(F,ζ ) is nonempty. Letx∈ EΦ(F,ζ ) then we have:||x||t ≤ M(T)

for t ∈ [0,T], x(t) = ζ (t) for t ∈ [β ,0] and|x(t)− x(t ′)| ≤ ΩT |t − t ′| for t, t ′ ∈ [0,T],whereΩT = max{w(s,M(T)) : s∈

[0,T]}. The functions belonging toEΦ(F,ζ ) are uniformly bonded and equicontinuous. Therefore,EΦ(F,ζ ) is a compact

subset of spaceC, according to the theorem of Arzela.

Theorem 3.[4] Consider the set-valued application E: D →CompC defined by: E(ζ ) = EΦ(F,ζ ) whereζ ∈ D. If the

application F verifies the assumption H1, then the application E is upper semi-continuous in D.

Proof.Let {ζi}, i = 1,2, ..., a sequence of functions ofD convergent to a functionζ ∈ D and{xi}, i = 1,2, ..., a sequence

of functions ofΦ such thatxi ∈ E(ζi) for i = 1,2, ....

We havexi ∈ EΦ(F,ζi) from where :|xi(t)| ≤ M(T) for t ∈ [0,T] andxi(t) = ζi(t) for t ∈ [β ,0]. From corollary 1 we

have :|xi(t)− xi(t ′)| ≤ ΩT |t − t ′| for t, t ′ ∈ [0,T],whereΩT = max{w(s,M(T)) : s∈ [0,T]}. By theorem 2EΦ(F,ζ ) is

compact, then we can extract a subsequence{xi j } of {xi} which converges to a certain functionx . It is obvious that the

functionx satisfies the following conditions:|x(t)| ≤ M(T) for t ∈ [0,T] andx(t) = ζ (t) for t ∈ [β ,0]. Otherwise we

have :(Pt xi j )(t)⊂ F([xi ]t) for t ≥0, it follows, according to lemma 3.7 in [3] (lemma 4 in [31]) that:

(Pt x)(t) ⊂ F([x]t ), for t ≥ 0,and thusx ∈ E(ζ ). Finally, we show the upper semi-continuity of the application E by

using lemma 1.

Theorem 4.[4] The emission EΦ(F,ζ ) of the set D is an nonempty and compact subset of C.

Proof. By definition: EΦ(F,D) = {∪E(F,ζ ) / ζ ∈ D}. EΦ(F,D) is a nonempty set according to the theorem 2. Let

E : D →CompCthe application defined in the theorem 3: we have:E(D) = EΦ(F,D). The applicationE is upper semi-

continuous , in view of theorem 3.D being compact by assumption, thereforeE(D) is a compact set.

3.1 Main results

Now we prove the results about the section of the zone of emission of the functionζ by the plant = Γ .

Theorem 5.Let Γ a fixed positive real number, then the section eΦ(F,ζ ,Γ ) is a nonempty and compact subset of RxRn.

Proof.Let {ti ,xi}, i = 1,2, ..., a sequence of elements ofeΦ (F,ζ ,Γ ). By definition ofeΦ (F,ζ ,Γ ), there exist functixons

yi ∈ EΦ(F,ζ ) such as;xi(ti) = yi , i = 1,2, .... The setEΦ (F,ζ ) is compact, then there exists a subsequence of{yi} which

converges to a certain functiony0 ∈EΦ(F,ζ ). The sequence{ti}, i = 1,2, ..., is bonded, we can extract a subsequence from

{ti} which converges to somet0 ∈ [0,T]. Let{i j} a sequence of indices such asti j → t0 andyi j → y0. We have:(ti j ,yi j ) =

(ti j ,xi j (ti j )) → (t0,x0(t0)) with (t0,x0(t0)) ∈ eΦ(F,ζ ,Γ ), from where we have the compactness of the seteΦ(F,ζ ,Γ ) in

RxRn.

Theorem 6.LetΓ a fixed positive real number, then the application: eΓ :D →CompRn+1 defined by : eΓ (ζ ) = eΦ(F,ζ ,Γ )

whereζ ∈ D, is upper semi-continuous in D.
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Proof. Let {ζi}, i = 1,2, .., a sequence of elements ofD such as;ζi → ζ ∈ D and (ti ,yi) ∈ eΓ (ζi), i = 1,2, ... The set

EΦ(F,D) is compact, there exists a sequence of functions{xi} of EΦ(F,D) which converges to a certain functionx ∈

EΦ(F,D). The sequence{ti} is bounded, there exists a subsequence of{ti} which converges to a certaint ∈ [0,T]. Let

{i j} a sequence of indices such that:{ti j } → t and{xi j} → x. then(ti j ,yi j ) = (ti j ,xi j (ti j )) → (t,x(t)) and at the same

time we have:(Ptxi j )(t) ⊂ F([xi j ]t) for t ∈ [0,T], andxi j (t) = ζi j for t ∈ [β ,0]. Obviously we havex(t) = ζ (t) for t

≤0 and according to the lemma 3.7 in [3] (lemma 4 in [31]) we have: (Ptx)(t) ⊂ F([x]t) for t ≥0, which shows that

x ∈ EΦ(F,D) and consequently(t,y) = (t,x(t)) ∈ eΦ(F,ζ ,Γ ) = eΓ (ζ ). Finally, according to the lemma 1, we have the

upper semi-continuity of the applicationeΓ in D.

Theorem 7.Let Γ a fixed positive real number, then the set eΦ(F,D,Γ ) is a nonempty and compact subset of Rn+1.

Proof. The seteΦ(F,D,Γ ) = {∪eΦ(F,ζ ,Γ ) / ζ ∈ D} = eΓ (D) whereeΓ : D → CompRn+1 is the application defined

in theorem 6. According to theorem 5, the seteΦ(F,ζ ,Γ ) is nonempty, thereforeeΦ(F,D,Γ ) is nonempty. In view of

theorem 6, the applicationeΓ : D →CompRn+1 is upper semi-continuous and the setD is compact by assumption, then

we have compactness of the seteΓ (D).

Acknowledgement.The authors would like to thank an anonymous referee for his/her helpful suggestions for improving

the original manuscript.

References

[1] J. P. Aubin, A. Cellina;Differential inclusions, Springer-Verlag, 1984.

[2] C. Berge;Espaces topologiques, fonctions set-valueds, Dunod, Paris, 1966.

[3] L. Boudjenah;Existence of the solutions of the paratingent equation withdelayed argument.Electron. J. Diff. Eqns., Vol. 2005,

No.14, 1-8, 2005

[4] L Boudjenah;On the properties of the set solutions of a class of paratingent equation with delay. British Journal of Mathematics

& Computer Science 4 (14): 1999-2003, 2014.
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Astronom. Physi. 10 No. 1. Warszawa, 1962.
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