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Abstract: In this paper we will study the main properties of the set tohs of the paratingent equation (type differential irsdtun)
with delayed argument of the forniPtx)(t) C F([x]¢) for t > 0 with the initial conditionx(t) = {(t) for t < 0. We will be interested
particularly in the topological properties of emission aode of emission.
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1 Introduction

It is our purpose to study a topological structure of the Bofuset to the paratingent equation with delayed arguntent.
[3] we have established the existence of solutions to thatjpgent equation with delayed argument of the form:
(Ptx)(t) C F([x]t) for t > 0 with the initial condition:x(t) = {(t) for t < 0, under weak assumptions. In [4] we have
established some properties of the set solution, this p@aparcontinuation of [4]. In this work, we investigate the
fundamental properties of emission and zone of emissiorhefabove paratingent equation under the same weak
assumptions than in [3]. The study of these properties iffips by the fact that the main topic considered while deglin
with differential inclusions is the topological propegief the set solutions. This set, which is consisted of themnf

the graphs of all trajectories of the differential inclusiois called zone of emission or reachable or attainablefset
differential inclusions. Wasewski [30], has pointed owttthe main properties of trajectories and set solution®ofrol
system are equivalent to the properties of trajectoriessemgolutions of a certain differential inclusions . Manpqifis

of existence in optimal control theory depend upon showhmg the set solutions is compact. The fact that the set
solutions is non-compact causes great difficulties. Walsiewns [28, 29] attempted to overcome this problem by
extending the notion of a solution. He introduced the cohadpyuasitrajectories which are limits of approximate
solutions or solutions of a relaxed differential inclusidrnis concept is very important in the control theory and its
applications. For example, it is well-known that the limihttions of some sequence of trajectories with "bang bang”
control are quasitrajectories. Such functions are wetivkmin automatics as "sliding regimes”. The existence afist
regimes can be established as a result of Turowicz [27] orsadution to a certain relaxed differential inclusion, Samt
[24, 25], using Filippov theorems, Fronkowska [9].

The first works on paratingent and contingent differentradliisions with delay were published by Myshkis [19].
Moreover, the existence of solution and the main properfeset solution of paratingent and contingent differential
inclusions with delay have been studied by a number of asftior instance, Campu [5,6], Deimling [8], Haddad [10,
11, 12, 13], Kamenskii et all. [15], Kryzowa [17, 18] and Zygnt [31, 32]. Recent results for differential inclusions
with a finite delay in spaces of Banach were obtained by Sy&hd@d Castaing-lbrahim [7]. Recently, Raczynski has

(© 2016 BISKA Bilisim Technology * Corresponding author e-maititfi6O@yahoo.fr


 http://dx.doi.org/10.20852/ntmsci.2016217827

(_/
175 BISK A L. Boudjenah: On the structure of the set solutions of a @agaratingent equation with delayed...

successfully applied differential inclusions to simusatand modelling theory [20, 21, 22].

For more details on differential inclusions see the book&udjin and Cellina [1], K. Deimling [8], M. Kamenskii [15] ,
G. V. Smirnov [23], and M. Kisielewicz [16].

2 Preliminaries

Let (E,p) and(E’, p’) two metric spaces. BEompE we denotes the set of all the nonempty and compact subsEts of
If, moreoverE is a vector space, th&@onvEdenotes the set of all the convex element€ofnpE

A set-valued mapk : E — CompE, is called upper semi-continuoushi) and denoted by u.s.c , if for any poiat E
and all ¢ > 0, there exists 8 > 0 such that : x € B(as = F(XX) € B(F(a)s when
B(a)s = B(a,8) = {xe E / p(a,x) < 5}andB(F (a)): = B(F(a),&) = {y € E' such asze F(a) andp'(y,2) < £}. (see
(2]

We have, on the upper semi-continuity of a set-valued mapfatowing lemma (see [14]).

Lemma 1.let (E,p) and (E’, p) two metric spaces. A set-valued map; E — Compk, is u.s.c if and only if, for all
sequence$x } € E and{y;} € E such that{x} — xo and{y;} € F(x), there exists a subsequen{og, } of {yi} which is
convergenttoye F(xo).

Let C the space of all continuous functiors R — R with the topology defined by an almost uniform convergence
(i.e. a uniform convergence on each compact interv&)oft is well know that the almost uniform convergencedris
equivalent to the convergence by the meridefined as follows.

[ee]

p(xy) = ZL% min{ (1,supx(t) —y(t)|),—i <t <i} forx,y € C.

thenC is a metric locally convex linear topological space. Bek 0 be a fixed real number and let= [0,0[C R. If

x € C, the symbol [x] will be denote the restriction ok on the interval [3,t] when t €| and
[IX||t = maX{ |x(s)|, B < s<t} with |x] =max{|xa|,|Xa|,...,|Xn|} forx= (X1,%2,...,%n) € R".
Let G denote the metric space whose elements are functd@ingy|, ,... , wheret € 1, u €1, the distance between two

functions[XJt, [y]u , being understood as a distance of their grapi®xrR" in the Hausdorff sense.

2.1 Paratingent of a function

Having a functiork € C andt < | , the set of limit points

lim X(u) =X(s) =a
U—S
whereuiel,sel,u#s (i=1,2,...),andlimuy; = lims =1, is called the paratingent ofat the point and denoted
by (Ptx)(t). It is easy to see th&tx maps the intervdl into the family of the nonempty and closed subsetRbf
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2.2 Paratingent equation with a delayed argument

Let a set-valued map: G — CompR, a relation of the form:

(Ptx)(t) C F([Xt) where tel and xeC. 1)

is called paratingent equation with a delayed argumentater and x € C. Every functionx € C satisfying (1) will
be called the solution of the equation (1).

The generalized problem of Cauchy for the equation (1) st& & the search for a solution of the equation (1) which
will satisfy the initial condition:

x(t)=&(t) for te[B,0] 2

where the functiorf € C, called the initial function is given in advance (i.e. théusion of the equation (1) must contain
a certain curve given in advance).

2.3 Existence solutions

Assume the following hypothesis.

(H1): The set-valued mapping= : G — ConvR is upper semi-continuous and satisfies the condition.
F([xt) C B(O,w(t,|[x||;)), fort > O whereB(0,r) denote the closed ball of center 0 Rf and radius, w(t,y) is a
continuous function fronh x | to, increasing iry and such that the ordinary differential equatign= w(t,y), with the
initial conditiony(0) = A (A an arbitrary real positive number) has a maximal soluti@madedM(t), on all intervalsl

and for allA.

Let D a compact subset @& and @ the class of all the functions € C satisfying the inequalityx(t)| < M(T) for
t € [0, T], T areal positive number arbitrarily fixed. In [3] we have etitdied the following theorem:

Theorem 1. Under the hypothesis (H1), in the clagsand for anyé € D, there is at least a solution of the problem

1)-().
From proof of the theorem, it follows.

Corollary 1. If y € @ and (Pt y)(t) C B(O,w(t,||x||:)),we havely(t) —y(t')| < Qr|t —t/| fort,t’ € [0, T], whereQr =
maxw(s,M(T)) :s€ [0, T]}.

3 Properties of the set solutions

Definition 1. A function x is called a trajectory of {y]:), if (Pt x)(t) C F([x;) for t > 0. We call emission of the
function , the set of all trajectories x of ffy]t) such that xc @ and xt) = {(t) for all t € [3,0]. We denote this set by
Eo(F,{). And, we call emission of the set D, the union of emissions | éfiattions{ € D, it is denoted by &(F,D),
i.e.Ep(F,D) = {UE(F,{) / { € D}.

We call zone of emission of functidhe D, and we denote byqdF, ), the union of the graphs of the functions
belonging to B(F,{), i.e. : ep(F,{) = {(t,y) e Rx R /t € [B,T], y={(t) and ye€ Eo(F,{)}.We call zone of
emission of the set Dand we denote bysF,D), the union of all the zones of emissions of functigns D ,
i.e.ep(F,D) = {en(F,{) / { €D}
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Let I a fixed real number. We denote by (€, {,I") the section of the zone of emission of the funcfidoy the plan
t="r,ie. eF{, N =e(F,)N{{t,x) eRxR /t=T and xe R"} and by &(F,D,I") the union of sections
eo(F,{,)where{ €D, i.e. e(F,D,[") ={Uey(F,{,I") / { € D}.

We recall the following theorems from [4].

Theorem 2.[4] If the application F: G — ConvR verifies the assumption H1, then the emissigffE{) of the function
{ is a nonempty and compact set of C

Proof.In view of theorem 1, it following that the s&i» (F, {) is nonempty. Lek € E(F, {) then we havel|x||t < M(T)
fort € [0,T], x(t) = (t) fort € [8,0] and|x(t) —x(t")| < Qr|t —t'| for t,t’ € [0, T|,whereQr = maxw(s,M(T)) :se
[0,T]}. The functions belonging tBe (F, {) are uniformly bonded and equicontinuous. Therefgeg(F, {) is a compact
subset of spadg, according to the theorem of Arzela.

Theorem 3.[4] Consider the set-valued application:l® — CompC defined by: &) = Eo(F,{) where{ € D. If the
application F verifies the assumption H1, then the applarat is upper semi-continuous in D.

Proof.Let{¢},i=1,2,..., a sequence of functions dd convergentto a functiod € D and{x },i = 1,2,..., a sequence
of functions of® such thatg € E(¢;) fori=1,2,....

We havex; € Eo(F, ) from where :|xi(t)| < M(T) fort € [0, T] andxi(t) = {i(t) for t € [3,0]. From corollary 1 we
have :|x(t) — x(t')] < Qt|t —t/| for t,t’ € [0,T|,whereQr = maxw(s,M(T)) : s€ [0,T]}. By theorem 2E4(F,{) is
compact, then we can extract a subsequgmgg of {x;} which converges to a certain functian It is obvious that the
function x satisfies the following conditionsgx(t)| < M(T) fort € [0,T] andx(t) = {(t) for t € [3,0]. Otherwise we
have :(Pt x;)(t) C F([x]t) fort >0, it follows, according to lemma 3.7 in [3] (lemma 4 in [31fgt:

(Pt x)(t) C F([X]t), for t > 0,and thusx € E({). Finally, we show the upper semi-continuity of the applmatt by
using lemma 1.

Theorem 4.[4] The emission &(F, {) of the set D is an nonempty and compact subset of C.

Proof. By definition: Eo(F,D) = {UE(F,{) / { € D}. Eo(F,D) is a honempty set according to the theorem 2. Let
E : D — CompCthe application defined in the theorem 3: we hdw€D) = E¢(F,D). The applicatiorE is upper semi-
continuous , in view of theorem B being compact by assumption, theref&f@®) is a compact set.

3.1 Main results

Now we prove the results about the section of the zone of énisd the function{ by the plant =T
Theorem 5.Let I" a fixed positive real number, then the sectigrile ¢, ) is a nonempty and compact subset of RxR

Proof. Let {ti,x}, i = 1,2, ..., a sequence of elements&}(F, {, ). By definition ofes (F,{,I"), there exist functixons

Vi € Eo(F,{) suchasx(ti)) =vyi, i =1,2,.... The setEqe (F, ) is compact, then there exists a subsequendg;dfwhich
converges to a certain functigne€ Eo(F, {). The sequencfi},i=1,2,...,is bonded, we can extract a subsequence from
{ti} which converges to somge [0, T]. Let{ij } a sequence of indices suchtas— to andy;; — yo. We have(t;j,yij) =
(tij,%ij (tij)) — (to,Xo(to)) With (to,Xo(to)) € €a(F,{,I"), from where we have the compactness of theeggF,{,I") in
RxR".

Theorem 6.LetI™ afixed positive real number, then the application:B® — CompR*! defined by : g({) =eq(F,,I")
where € D, is upper semi-continuous in D.
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Proof. Let {¢i}, i = 1,2,.., a sequence of elements Dfsuch as;(i — { € D and(ti,yi) € er({), i =1,2,... The set
Eo(F,D) is compact, there exists a sequence of functipab of Eq(F,D) which converges to a certain functierne
Eo(F,D). The sequencét; } is bounded, there exists a subsequenc;¢fwhich converges to a certaire [0, T]. Let
{ij} a sequence of indices such thétij} —t and{x; } — x. then(tjj,yij) = (tij, % (tj)) — (t,X(t)) and at the same
time we have(Ptx;)(t) C F([xjlt) for t € [0,T], andx;j(t) = ¢j; for t € [3,0]. Obviously we have(t) = {(t) for t

<0 and according to the lemma 3.7 in [3] (lemma 4 in [31]) we ha®ex)(t) C F([x]:) for t >0, which shows that
x € Ep(F,D) and consequentlft,y) = (t,x(t)) € ex(F,{,I") = er ({). Finally, according to the lemma 1, we have the
upper semi-continuity of the applicati@n in D.

Theorem 7.Let I a fixed positive real number, then the sg(E, D, ") is a nonempty and compact subset 6f R

Proof. The seteq(F,D,I") = {Uee(F,{,I") / { € D} = er (D) whereer: D — CompR*!is the application defined
in theorem 6. According to theorem 5, the sgl(F,{,") is nonempty, thereforee(F,D,I") is nonempty. In view of
theorem 6, the applicatiogr : D — CompR*! is upper semi-continuous and the Bets compact by assumption, then
we have compactness of the setD).
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