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Abstract: In the present study we define a new kind of product surfaces namely mixed product which are product of plane curve and
space curve in 3-dimensional Euclidean space. We give the original results of mixed product surface patches of flat or minimal type in
E

3. Further, we give some examples of these kind of surfaces andplot their graphics.
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1 Introduction

The problem of recovering the shape of objects from unstructured 3D data is important in many areas of computer

graphics and computer vision, including robotics, medicalimages and the automatic construction of virtual

environments. In last 30 years, much work has been done focusof finding suitable models for the recovery of objects

from 3D data. This work has largely proposed the use of some form of para- metric model, most commonly spherical

product of two 2D curves. Quadrics are the simple type of these surfaces. So, superquadrics can be also considered as the

spherical products of two 2D curves. In fact, superquadricsare solid models that can have fairly simple parametrization

of representing a large variety of standard geometric solids, as well as smooth shapes in between. Petland was first who

grasped the potential of the superquadratic models and parametric deformations for modelling natural shapes in the

context of computer vision [9]. He offered superquadrics in combination with deformations as a shape vocabulary for

this part-level representation.

The superquadrics, which are like phonemes in this description, language, can be deformed by stretching, bending,

tapering or twisting, and then combined using Boolean operations to built complex objects ([6], pp. 9). It can be

observed that superquadric recovery is being integrated, on the one hand, with segmentation ([10], [4], [7]) and on the

other hand, with decision making such as categorization [5]. Superquadrics are the special case of the supershapes,

provided by Gielis and et al. [3] that have the advantage of representing polygonal with various symmetries. Recently, in

[1] the authors present the original results of spherical product surface patches of flat or minimal type.

In the present study we define a new kind of product surfaces which are product of a plane curve with a space curve in

E
3 which is called spherical product. Mixed products can be considered as the generalization of spherical products. The

rest of the paper is organized as follows: In Section 2 we givenecessary definitions and theorems as basic concepts.

Section 3 presents the original results of mixed product surface patches of flat or minimal type. Section 4 provides some

visualizations of mixed product surface. Finally, section5 concludes the paper and discussed areas for future work.
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2 Basic concepts

Let M be a smooth surface inEn given with the patchX(u,v) : (u,v) ∈ D ⊂ E
2. The tangent space toM at an arbitrary

point p= X(u,v) of M is spanned by{Xu,Xv}. In the chart(u,v) the coefficients of the first fundamental form ofM are

given by

E = 〈Xu,Xu〉 ,F = 〈Xu,Xv〉 ,G= 〈Xv,Xv〉 , (1)

where〈,〉 is the Euclidean inner product. We assume thatW2 = EG−F2 6= 0, i.e. the surface patchX(u,v) is regular. For

eachp ∈ M, consider the decompositionTpE
n = TpM ⊕T⊥

p M whereT⊥
p M is the orthogonal component ofTpM in E

n.

Let
∼
∇ be the Riemannian connection ofE

n.

Let χ(M) andχ⊥(M) be the space of the smooth vector fields tangent toM and the space of the smooth vector fields

normal to M, respectively. Further, given any local vector fieldsXi and Xj tangent toM one can define the second

fundamental map ofM by h : χ(M)× χ(M)→ χ⊥(M);

h(Xi,Xj) = ∇̃Xi Xj −∇Xi Xj 1≤ i, j ≤ 2. (2)

where∇̃ is the induced connection. This map is well-defined, symmetric and bilinear.

For any arbitrary orthonormal normal frame field{N1,N2} of M, recall the shape operatorA : χ⊥(M)× χ(M)→ χ(M);

ANi Xi =−(∇̃Xi Ni)
T
, Xi ∈ χ(M). (3)

This operator is bilinear, self-adjoint and satisfies the following equation:

〈
ANkXi,Xj

〉
=
〈
h(Xi ,Xj),Nk

〉
= ck

i j , (4)

where 1≤ i, j ≤ 2 and 1≤ k≤ n−2.

The equation (2) is called Gaussian formula, and

h(Xi ,Xj) =
2

∑
k=1

ck
i j Nk, (5)

whereck
i j are the coefficients of the second fundamental form.

Further, theGaussian curvatureandmean curvature vectorof a regular patchX(u,v) are given by

K =
1

W2

2

∑
k=1

(ck
11c

k
22− (ck

12)
2), (6)

and

−→
H =

1
2W2

2

∑
k=1

(ck
11G+ ck

22E−2ck
12F)Nk. (7)

respectively.

Recall that a surfaceM is said to beminimal if its mean curvature vector vanishes identically [2].
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3 Mixed product surfaces inE3

Definition 1. Let α : I ⊂ R −→ E
2 be Euclidean plane curve andβ : J ⊂ R −→ E

3 a space curve respectively. Put

α(u) = ( f1(u), f2(u)) andβ (v) = (g1(v),g2(v),g3(v)). Then we define their mixed product patch by

X = α ⊠β : E2 −→ E
3; X(u,v) = ( f1(u)g1(v), f1(u)g2(v), f2(u)g3(v)); (8)

where u∈ I = (u0,u1) and v∈ J = (v0,v1).

In the following result we give the necessary and sufficient conditions forM to become a surface patch inE3.

Theorem 1.If α(u) andβ (v) are not straight lines passing through the origin then the surface patch X(u,v) is a regular

patch.

Proof.The tangent space ofM is spanned by the following partial derivatives

Xu(u,v) =
(

f1(v)g
′
1(u), f2(v)g

′
1(u), f3(v)g

′
2(u)

)
, (9)

Xv(u,v) =
(

f ′1(v)g1(u), f ′2(v)g1(u), f ′3(v)g2(u)
)
.

The surface patchX(u,v) is regular if the area elementW = ‖Xu×Xv‖ is a non-zero function.

Assume that the are elementW of M vanishes identically. Then from the wedge product

Xu×Xv =
(

f ′1 f2g2g′3− f1 f ′2g′2g3, f1 f ′2g′1g3− f ′1 f2g1g′3, f1 f ′1g1g′2− f1 f ′1g′1g2
)

we get

f ′1 f2g2g′3− f1 f ′2g′2g3 = 0,

f1 f ′2g′1g3− f ′1 f2g1g′3 = 0,

f1 f ′1g1g′2− f1 f ′1g′1g2 = 0.

A simple calculation gives that

f ′1
f1

=
f ′2
f2
, (10)

g′1
g1

=
g′2
g2

=
g′3
g3

.

So we deduce from the equation (10) that the curvesα(u) andβ (v) are both straight lines passing through the origin. This

contradicts with our hypothesis. So, the area elementW of M can not be zero provided that the surface patchX(u,v) is a

regular.

We give the following examples of mixed products;

Example 1.The mixed productα(u) = ( f1(u), f2(u)) with β (v) = (g1(v),g2(v),1) forms the surface patch

X(u,v) = ( f1(u)g1(v), f1(u)g2(v), f2(u)) , (11)

which is a spherical product patch [7]. For β (v) = (cosv,sinv,1) the surface patch

X(u,v) = ( f1(u)cosv, f1(u)sinv, f2(u)),
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becomes a surface of revolution [8].

Example 2.The mixed productα(u) = (u,1) with β (v) = (cos(v),sin(v),bv) forms the surface patch

X(u,v) = (ucos(v),usin(v),1) , (12)

becomes a helicoid which is a minimal surface inE
3 [8].

Example 3.The mixed productα(u) = (λ ,u) with β (v) = (g1(v),g2(v),g3(v)) forms the surface patch

X(u,v) = λ (g1(v),g2(v),0)+u(0,0,g3(v)) (13)

which is a ruled surface. Further, for the given vectorγ = (0,0,g3(v)) the cross productγ × γ ′ vanishes identically. So the

ruled surface given with the patch (13) is cylindrical.

We prove the following results;

Theorem 2.Let M be a mixed product surface given with the patch(8). Then the Gaussian curvature K of M becomes

K =
1

W4{
(
Ag1 f ′′1 +Bg2 f ′′1 +Cg3 f1 f ′1 f ′′2

)(
A f1g′′1 +B f1g′′2 +C f2 f1 f ′1g′′3

)

−
(
Ag′1 f ′1+Bg′2 f ′1+Cg′3 f1 f ′1 f ′2

)2
} (14)

where

A= g′3 f2 f ′1g2− f ′2g3g′2 f1,

B= g′1g3 f ′2 f1−g′3g1 f ′1 f2, (15)

C= g′2g1−g′1g2,

are real valued differentiable functions.

Proof.The tangent space ofM is spanned by the vector fields in (9)

∂X
∂u

=
(
g1 f ′1,g2 f ′1,g3 f ′2

)
,

∂X
∂u

=
(

f1g′1, f1g′2, f2g′3
)
.

Hence the coefficients of the first fundamental form of the surface are

E = 〈Xu,Xu〉= ( f ′1)
2((g1)

2+(g2)
2)+( f ′2)

2(g3)
2
,

F = 〈Xu,Xv〉= f1 f ′1
(
g1g′1+g2g′2

)
+ f2 f ′2g3g′3, (16)

G= 〈Xv,Xv〉= ( f1)
2((g′1)2+(g′2)

2)+( f2)
2(g′3)

2
,

where〈,〉 is the standard scalar product inE3
.

The second partial derivatives ofX(u,v) are expressed as follows

Xuu=
(

f ′′1 g1, f ′′1 g2, f ′′2 g3
)
,

Xuv =
(

f ′1g′1, f ′1g′2, f ′2g′3
)
, (17)

Xvv =
(

f1g′′1, f1g′′2, f2g′′3
)
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Further, the unit normal vector ofM is

N =
1√

A2+B2+( f1)2( f ′1)
2C2

(
A,B, f1 f ′1C

)
. (18)

Using (4), (17) and (18) we can calculate the coefficients of the second fundamentalform as follows:

e= 〈Xuu,N〉=
f ′′1 g1A+ f ′′1 g2B+ f ′′2 g3 f1 f ′1C√

A2+B2+( f1)2( f ′1)
2C2

,

f = 〈Xuv,N〉 =
f ′1g′1A+ f ′1g′2B+ f ′2g

′
3 f1 f ′1C√

A2+B2+( f1)2( f ′1)
2C2

, (19)

g= 〈Xvv,N〉=
f1g′′1A+ f1g′′2B+ f2g′′3 f1 f ′1C√

A2+B2+( f1)2( f ′1)
2C2

Further, substituting (16) and (19) into (6) we get (14).

Theorem 3.Let M a mixed surface given with the patch (8). Then the mean curvature of M becomes

H =
1

2W3{
(

f ′′1 g1A+ f ′′1 g2B+ f ′′2 g3 f1 f ′1C
)(

( f1)
2
(
(g′1)

2+(g′2)
2
)
+( f2)

2(g′3)
2
)

+
(

f1g′′1A+ f1g′′2B+ f2g′′3 f1 f ′1C
)(

( f ′1)
2
(
(g1)

2+(g2)
2
)
+( f ′2)

2(g3)
2
)

(20)

−2
(

f ′1g′1A+ f ′1g′2B+ f ′2g′3 f1 f ′1C
)(

f1 f ′1
(
g1g′1+g2g′2

)
+ f2 f ′2g3g′3

)
}.

where A, B and C are real valued differentiable functions defined in(15).

Proof.Using the equations (7), (16) and (19) we get the result.

As a consequence of Theorem 5 we obtain the following result.

Corollary 1. The mixed product of the straight lineα(u) : y(u) = x(u) with the space curveβ (v) = (g1(v),g2(v),g3(v))

forms the surface patch

X(u,v) = x(u)β (v) (21)

is a flat surface, which is a conical surface.

Definition 2. Let β : J ⊂ R−→ E
3 be a regular curve inE3

. If
〈

β ,−→B
〉
= 0 thenβ (v) is called osculating curve inE3

.

Proposition 1. Let M be a mixed product of the straight lineα(u) : y(u) = x(u) with the unit speed curve

β (v) = (g1(v),g2(v),g3(v)). If β (v) is an osculating space curve then M is a minimal surface.

Proof.The tangent space of the surface given with the patch (21) is spanned by the vector fields

Xu(u,v) = x′(u)β (v), Xv(u,v) = x(u)β ′(v).

Hence the coefficients of the first fundamental form of the surface are

E = 〈Xu,Xu〉= (x′2 ‖ β (v) ‖2
,

F = 〈Xu,Xv〉= x(u)x′(u)β (v)β ′(v),

G= 〈Xv,Xv〉= (x(u))2 ‖ β ′2
.
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The second partial derivatives ofX(u,v) are expressed as follows

Xuu = x′′(u)β (v),

Xuv = x′(u)β ′(v), (22)

Xvv = x(u)β ′′(v).

Further, the unit normal vector ofM is

N =
Xu×Xv

‖ Xu×Xv ‖
=

β (v)×β ′(v)
‖ β (v)×β ′(v) ‖

(23)

Using (4), (22) and (23) we can calculate the coefficients of the second fundamentalform as follows:

e= 〈Xuu,N〉=
x′′(u)

‖ β (v)×β ′(v) ‖

〈
β (v),β (v)×β ′(v)

〉
= 0,

f = 〈Xuv,N〉=
x′(u)

‖ β (v)×β ′(v) ‖

〈
β ′(v),β (v)×β ′(v)

〉
= 0, (24)

g= 〈Xvv,N〉=
x(u)

‖ β (v)×β ′(v) ‖

〈
β ′′(v),β (v)×β ′(v)

〉
.

Further, substituting (24) into (6) we get the mean curvature of this surface turns into

H =
κ
〈

β ,−→B
〉

2x‖β ×β ′‖
.

If β (v) is an osculating space curve, i.e.,
〈

β ,−→B
〉
= 0, then the mean curvatureH vanishes identically. This completes the

proof of the proposition.

4 Visualization

I) In the sequel we construct a some 3D geometric shape models byusing mixed products given parametrically in the

Equation (1). We used maple plotting commands to plot the surface shapes. First, we construct a geometric model of the

mixed product of a 2D curveα(u) = ( f1(u), f2(u)) with a 3D curveβ (v) = (g1(v),g2(v),1). Actually, these surface are

also known as spherical products of two 2D curves [1]. We consider the following special examples:

(a) (b)

Fig. 1: (a) α(u) = (cos0.1(u),sin0.1(u)) with β (v) = (cos0.1(v),sin0.1(v),1). (b) α(u) = (cos0.5(u),sin0.5(u)) with β (v) =
(cos0.5(v),sin0.5(v),1).
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(c) (d)

Fig. 2: (textbf c) α(u) = (cos3(u),sin3(u)) with β (v) = (cos(v),sin(v),1). (d) α(u) = (cos(u),sin(u)) with β (v) =
(cos3(v),sin3(v),1).

II) In the sequel we construct a some 3D geometric shape models byusing mixed products given parametrically in the

Equation (8):

(e) (f)

Fig. 3: (e) The mixed product ofα(u) = (cos(u),sin(u)) with β (v) = (cos(v),sin(v),v). (f) The mixed product ofα(u) =
(cos3(u),sin3(u)) with β (v) = (cos(v),sin(v),v).

III) In the sequel we construct a some 3D geometric shape models byusing mixed products given parametrically in the

Equation (21):

Fig. 4: The mixed product ofα(u) : y(u) = x(u) = cos(u) with β (v) = (cos(v),sin(v),v2).

c© 2016 BISKA Bilisim Technology
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5 Conclusion

In this paper, a method of mixed product surface of two a 2D curve with a 3D curve is investigated. Actually, mixed product

surfaces are the generalization of the spherical product surfaces. For demonstrating the performance of the proposed

method, parameters of superquadrics models were constructed from the spherical products of two super-ellipses. In fact,

superquadrics are solid models that can have fairly simple parametrization of representing a large variety of standard

geometric solids, as well as smooth shapes in between. This makes them much more convenient for representing rounded,

blob-like shape parts, typical for object formed by naturalprocess. By the use of main results of differential geometrywe

classify the mixed product surfaces of flat or minimal type. Moreover, this frame work can be used for the modelling of

some shapes which are more complex than spherical product surfaces. For future work it will be necessary to improve the

system to allow for the mixed product surface patch of a 3D curve with a 3D curve which will be a surface inE4.
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