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Abstract: The aim of this paper is to provide some results and applications of continued fractions with matrix arguments. First, we
recall some properties of matrix functions with real coefficients. Afterwards, we give a matrix continued fraction expansion of the
Bessel function.
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1 Introduction and motivation

The theory of continued fractions has been a topic of great interest over the last two hundred years. The basic idea of this

theory over real numbers is to give an approximation of various real numbers by the rational ones. One of the main

reasons why continued fraction are so useful in computationis that they often provide representation for transcendental

function that are much more generally valid than the classical representation by, say, the power series. Further; in the

convergent case, the continued fractions expansions have the advantage that they converge more rapidly than other

numerical algorithms. In Banach spaces, generalizations of some results of real cases are published by Haydan [5] and

Negoescu [9].

Recently, the extension of continued fractions theory fromreal numbers to the matrix case has seen several developments

and interesting applications (see [2],[4],[7],[9]). The real case is relatively well studied in the literature. However, in

contrast to the theoretical importance, one can find in mathematical literature only a few results on the continued

fractions with matrix arguments. There have been some reasons why all this attention has been devoted to what is, in

essence, a very humble idea. Since calculations involving matrix valued functions with matrix arguments are feasible

with large computers, it will be an interesting attempt to develop such matrix theory. The main difficulty arises from the

fact that the algebra of square matrices is not commutative.

For simplicity and clearness, we restrict ourselves to positive definite matrices, but our results can be, without special

difficulties, projected to the case of positive definite operators from an infinite dimensional Hilbert space into itself.

Bessel functions occupy a very important place in the problems solutions with cylindrical symmetry. We can say that

they are important in the hierarchy of functions which are necessaries to tabulate. Bessel functions come immediately

after the trigonometric functions, logarithm and exponential function but it is customary to fit them in the class of

so-called special functions. There are many books deal withremarkable properties of these functions.
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This article is organized as follows: The section 2 containssome basic notions and results about matrix continued

fractions that are needed later. In Section 3, we give a continued fractions expansion of the Bessel functionJn(A), for

n≥ 1 of a positive definite matrix A.

2 Preliminary and notations

The functions of matrix arguments play a widespreased role in science and engineering, with applications areas ranging

from nuclear magnetic resonance [1]. So for any scalar polynomial p(z) = ∑k
i=0ci i iz gives rise to a matrix polynomial with

scalar coefficients by simply substitutingAi for zi :

P(A) =
k

∑
i=0

ciA
i .

More generally, for a functionf with a series representation on an open disk containing the eigenvalues ofA, we are able

to define the matrix functionf (A) via the Taylor series forf [8].

Alternatively, given a functionf that is analytic inside a closed contourΓ which encloses the eigenvalues ofA, f (A) can

be defined, by analogy with Cauchy’s integral theorem by

f (A) =
1

2π i

∫

Γ
f (z)(zI−A)−1dz.

The definition is known as the matrix version of Cauchy’s integral theorem. LetMm be the algebra of real square matrices,

we now mention an important result of matrix functions.

Lemma 1.Let f be an analytic function in a domain D.

(i) If two matrices A∈ Mm and B∈ Mm are similar, with A= ZBZ−1, and sp(A) ⊂ D, then the matrices f(A) and

f (B) are also similar, with f(A) = Z f(B)Z−1.

(ii) ) If A ∈ Mm is a block diagonal matrix A= diag(A1,A2, ...,Ar) then f(A) = diag( f (A1), f (A2), ..., f (Ar)).

Proof.

(i) For A= ZBZ−1 we haveAk = ZBkZ−1. Hence for every polynomialp(Z) it follows that

p(A) = Z p(B) Z−1.

Therefore if either one ofp(A) or p(B) equals zero then so does the other, implying thatA andB share the same

minimal polynomial. From definition there exists an interpolating polynomialr(Z) such that

f (A) = r(A), f (B) = r(B)

and since for every polynomial we havep(A) = Z p(B)Z−1, the result follows.

(ii) We deduce it from (i).

Let A∈ Mm, A is said to be positive semidefinite (resp. positive definite)if A is symmetric and

∀x∈ R
m, < Ax,x>≥ 0 ( resp. ∀x∈R

m, x 6= 0 < Ax,x>> 0)
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where< ., . > denotes the standard scalar product ofRm.

We observe that positive semidefiniteness induces a partialordering on the space of symmetric matrices: ifA andB are

two symmetric matrices, then we writeA≤ B if B−A is positive semidefinite.

Henceforth, whenever we say thatA ∈ Mm is positive semidefinite (or positive definite), it will be assumed thatA is

symmetric.

For any matricesA,B ∈ Mm with B invertible, we writeA/B = B−1A, in particular, if A=I, the matrix identity, then

I/B= B−1. It is easy to verify that for any invertible matrix X we have

A
B
=

XA
XB

6=
AX
BX

.

Definition 1. Let{An}n≥0 and{Bn}n≥1 be two sequences of matrices inMm. We denote the continued fraction expansion

by

A0+
B1

A1+
B2

A2+ ...

:=

[
A0;

B1

A1
, ...,

Bn

An

]
.

Sometimes, we denote this continued fraction by

[
A0;

Bn

An

]+∞

n=1
or A0+K (Bn/An).

The fractions
Bn

An
and

Pn

Qn
:=

[
A0;

Bi

Ai

]n

i=1
are called, respectively, thenth partial quotient and thenth convergent of the

continued fractionA0+K (Bn/An).

We note that the evaluation ofnth convergent according to the above definitions is not practical because we have to

repeatedly inverse matrices. The following proposition gives an adequate method to calculateA0+K (Bn/An).

Proposition 1. [10]. For the continued fraction A0+K (Bn/An), define

{
P−1 = I , P0 = A0

Q−1 = 0, Q0 = I
and

{
Pn = An Pn−1+BnPn−2

Qn = An Qn−1+BnQn−2
n≥ 1.

Then Q−1
n Pn is the nth convergent of the continued fraction A0+K (Bn/An).

The proof of the next proposition is elementary and we left itto the reader.

Proposition 2.For any two matrices C and D with C invertible, we have

C

[
A0;

Bk

Ak

]n

k=1
D =

[
CA0D;

B1D
A1C−1 ,

B2C−1

A2
,
Bk

Ak

]n

k=3
.

Definition 2. Let {An},{Bn} {Cn} and {Dn} be four sequences of matrices. We say that the continued fractions A0 +

K(Bn/An) and C0+K(Dn/Cn) are equivalent if we have Fn = Gn for all n ≥ 1, where Fn and Gn are the nth convergents

of A0+K(Bn/An) and C0+K(Dn/Cn), respectively.
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In order to simplify the statements on some partial quotients of continued fractions with matrix arguments, we need the

following proposition which is an example of equivalent continued fractions.

Proposition 3.Let

[
A0;

Bk

Ak

]+∞

k=1
be a given continued fraction. Then

Pn

Qn
:=

[
A0;

Bk

Ak

]n

k=1
=

[
A0;

XkBkX
−1
k−2

XkAkX
−1
k−1

]n

k=1

,

where X−1 = X0 = I and X1,X2, ...,Xn are arbitrary invertible matrices.

Proof.Let Pn
Qn

and P̃n

Q̃n
, be thenth convergents of the continued fractions

[
A0; Bk

Ak

]+∞

k=1
and

[
A0;

XkBkX−1
k−2

XkAkX−1
k−1

]+∞

k=1
, respectively.

By proposition 2, for alln≥ 1, we can write

P̃n = XnAnX−1
n−1P̃n−1+XnBnX−1

n−2P̃n−2,

which is equivalent to

X−1
n P̃n = An(X

−1
n−1P̃n−1)+Bn(X

−1
n−2P̃n−2).

This last result joined to the initial conditions prove thatfor all n≥ 1, X−1
n P̃n = Pn.

A similar result can be obtained forQn. Consequently, both continued fractions have the same convergents and the proof

of proposition 3 follows. We also recall the following proposition in real case.

Proposition 4.[6]. Let(rn) be a non-zero sequence of real numbers. We prove easily that the following continued fractions

[
a0;

b1

a1
,
b2

a2
, ...,

bn

an
, ...

]
and

[
a0;

r1b1

r1a1
,
r2r1b2

r2a2
, ..,

rn−1rnbn

rnan
, ...

]

are equivalent.

3 Main results

Our aim in this section is to give the continued fraction expansions of the Bessel functionJn(A) for all n∈ N, where A is

a positive definite matrix.

3.1 Continued fractions expansion of Jn(x).

For simplicity, we start with the real case and we begin by recalling some properties. The following differential equation

x2 d2F
dx2 (x)+ x

dF
dx

(x)+
(
x2− v2)F(x) = 0

is called Bessel differential equation of orderv wherev is a real number. The solutions (see [2]) of this equation canbe

written by

F (x) =C1Jv (x)+C2Yv(x)
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where Jv and Yv are Bessel functions of orderv of the first and second kinds respectively which are given by:

Jv (x) =
(x

2

)v ∞

∑
k=0

(−1)k( x
2

)2k

k!Γ (v+ k+1)
, |argx|< π , v∈ C

whereΓ is gamma function and

Yv (x) =
Jv(x)cos(πv)− J−v(x)

sin(πv)
, |argx|< π , v∈ C\Z.

Let n∈ N, we define the Bessel functionJn of indexn and the power series ofJn(x) is

Jn (x) =
(x

2

)n +∞

∑
k=0

(−1)k

k! (n+ k)!

(x
2

)2k

Theorem 1.Let n∈ N, the continued fraction expansion of Jn (x) is given by

Jn (x) =


 xn

2nn!
;

−xn+2

2n+1(n+1)!

1
,

x2

23(n+2)− x2 ,
(−1)k xn+k−2

α(n,k)(4k(n+ k)− x2)



+∞

k=3

,

where α(n,k) = 2n+2k−4(k−2)!(n+ k−2)!.

To prove the this theorem. We need the next lemma. In the following lemma, from the development of a function given

by the Taylor series, we give the development in continued fractions of the series that was established by Euler.

Lemma 2. [6]. Let f be a function with the Taylor serie development is f(x) =∑+∞
k=0ckxk in D⊂R. Then, the development

in continued fraction of f(x) is

f (x) =
+∞

∑
k=0

ckx
k =

[
c0;

c1x
1

,
−c2x

c1+ c2x
,
−c1c3x
c2+ c3x

, ...,
−ck−2ckx
ck−1+ ckx

, ..

]
.

Proof. (Proof of Theorem (1)). We use Lemma(3.2) for the function:

Jn(x) =
∞

∑
k=0

(−1)k
(

x
2

)n+2k

k!(n+ k)!
=

∞

∑
k=0

(−1)k (x)n+k

2n+2kk!(n+ k)!
xk

by putting

Ck =
(−1)k xn+k

k!(n+ k)!2n+2k .

Fork≥ 3, we get:

Ck−2Ck =
x2n+2k−2

4n+2k−2k! (k−2)!(n+ k)!(n+ k−2)!
.
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Furthermore, we have

Ck−1+Ckx=
(−1)k−1 xn+k−1

(
4k(n+ k)− x2

)

2n+2kk!(n+ k)!

As a result,

Ck−2Ck

Ck−1+Ckx
=

(−1)k−1xn+k−1

2n+2k−4(k−2)!(n+ k−2)! (4k(n+ k)− x2)
.

In particular, we have

C0 =
xn

2nn!
, C1 =

−xn+1

2n+2(n+1)!
, C2 =

xn+2

2n+5(n+2)!
,

C2x
C1+C2x

=
−x2

23(n+2)− x2 .

Therefore, the development of continued fraction ofJn(x) is

Jn(x) =


 xn

2nn!
;

−xn+2

2n+1(n+1)!

1
,

x2

23(n+2)− x2 ,
(−1)k xn+k−1

α(n,k)(4k(n+ k)− x2)



+∞

k=3

.

3.2 Continued fraction expansion of Jn(A).

The next theorem is a matrix version of the previous theorem 1.

Theorem 2.. Let A be a positive definite matrix ofMm. A continued fraction expansion of Jn(A) is given by,

Jn(A) =


 An

2nn!
;

−An+2

2n+1(n+1)!

1
,

A2

23(n+2)−A2,
(−1)k An+k−1

α(n,k)(4k(n+ k)−A2)



+∞

k=3

.

Proof. (Proof of Theorem (2)). Let A ∈ Mm be a positive definite matrix. Then there exists an invertible matrixX such

thatA= XDX−1, whereD = diag(λ1,λ2, ...,λm) andλi > 0.

As the functionz→ Jn(z) is analytic in the open halfplane{z∈ C, Re(z)> 0}, then

Jn(A) = X Jn(D) X−1 = X diag(Jn(λ1),Jn(λ2), ..,Jn(λm)) X−1.

Let us define the sequences{Pn} and{Qn} by :





P−1 = I ,P0 =
Dn

2nn! ,P1 =
Dn

2n+1(n+1)!
,

Q−1 = 0,Q0 = I ,Q1 = I ,





P2 =
(n+2)

2n(n+1)! D
n(1−D2)

(
(n+1)+D2

)
,

Q2 =
1

2n+1(n+1)!

(
2n+2(n+2)!I −2n+1(n+1)!D2−Dn+2

)
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and fork≥ 3, 



Pk = α(n,k)
(
4k(n+ k)I −D2

)
Pk−1+(−1)kDn+k−1Pk−2,

Qk = α(n,k)
(
4k(n+ k)I −D2

)
Qk−1+(−1)kDn+k−1Qk−2.

We see thatPk andQk are diagonal matrices. By settingpk = diag(p1
k, p

2
k, ..., p

m
k ) andqk = diag(q1

k,q
2
k, ...,q

m
k ), we obtain

for each i where 1≤ i ≤ m, 



pi
−1 = 1, pi

0 =
λ n

2nn! , p
i
1 =

λ n
i

2n+1(n+1)!
,

qi
−1 = O,qi

0 = 1,qi
1 = 1,





pi
2 =

(n+2)
2n(n+1)! λ

n
i (1−λ 2

i )
(
(n+1)+λ 2

i

)
,

qi
2 =

1
2n+1(n+1)!

(
2n+2(n+2)! −2n+1(n+1)!λ 2

i −λ n+2
i

)

and fork≥ 3,





pi
k = α(n,k)

(
4k(n+ k)−λ 2

i

)
pi

n−1+(−1)kλ n+k−1pi
k−2,

qi
k = α(n,k)

(
4k(n+ k)−λ 2

i

)
qi

k−1+(−1)kλ n+k−1qi
k−2.

By theorem 2, the convergent(pi
n/qi

n) converges toJn(λi). It follows thatPn/Qn converges to the matrixJn(D), so that

Jn(D) =


 Dn

2nn!
;

−Dn+2

2n+1(n+1)!

I
,

D2

23(n+2)I −D2 ,
(−1)k Dn+k−1

α(n,k)(4k(n+ k)I −D2)



+∞

k=3

.

By proposition 2, we get

Jn(A) = X


 Dn

2nn!
;

−Dn+2

2n+1(n+1)!

I
,

D2

23(n+2)I −D2 ,
(−1)k Dn+k−1

α(n,k)(4k(n+ k)I −D2)



+∞

k=3

X−1

=


X

Dn

2nn!
X−1;

−Dn+2X−1

2n+1(n+1)!

X−1 ,
Dn+2X−1

23(n+2)I −D2 ,
(−1)k Dn+k−1

α(n,k)(4k(n+ k)I −D2)



+∞

k=3

.

Let us define the sequence(Xn)k≥−1 by {
X−1 = X0 = I ,

Xk = X for all k≥ 1.

Then 



X1B1X−1
−1

X1A1X−1
0

=

−XDn+2X−1

2n+1(n+1)!

XX−1 =

−An+2

2n+1(n+1)!

I
,

X2B2X−1
0

X2A2X−1
1

=
XD2X−1

X (23(n+2)I −D2)X−1 =
A2

2(n+2)I −A2 .
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Fork≥ 3, we have
XkBkX

−1
k−2

XkAX−1
k−1

=
(−1)kAn+k−1

2n+2k−4(k−2)!(n+ k−1)! (4k(n+ k)I −A2)
.

By applying the result of proposition 4 to the sequence(Xn)n≥−1, we finish the proof of theorem 2.
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