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Abstract: The aim of this paper is to provide some results and apptinatof continued fractions with matrix arguments. First, we
recall some properties of matrix functions with real coédfits. Afterwards, we give a matrix continued fraction engian of the
Bessel function.

Keywords: Continued fraction expansion, positive definite matrixtiimecontinued fraction, development of series, Bessetfiom.

1 Introduction and motivation

The theory of continued fractions has been a topic of greatest over the last two hundred years. The basic idea of this
theory over real numbers is to give an approximation of wegiceal numbers by the rational ones. One of the main
reasons why continued fraction are so useful in computagitimat they often provide representation for transceradent
function that are much more generally valid than the clasigpresentation by, say, the power series. Further; in the
convergent case, the continued fractions expansions levadvantage that they converge more rapidly than other
numerical algorithms. In Banach spaces, generalizatibssme results of real cases are published by Haydan [5] and
Negoescu [9].

Recently, the extension of continued fractions theory freal numbers to the matrix case has seen several development
and interesting applications (see [2],[4],[7],[9]). Theal case is relatively well studied in the literature. Hoarg\n
contrast to the theoretical importance, one can find in nmastieal literature only a few results on the continued
fractions with matrix arguments. There have been some nsasby all this attention has been devoted to what is, in
essence, a very humble idea. Since calculations involviagimvalued functions with matrix arguments are feasible
with large computers, it will be an interesting attempt tealep such matrix theory. The main difficulty arises from the
fact that the algebra of square matrices is not commutative.

For simplicity and clearness, we restrict ourselves totpasdefinite matrices, but our results can be, without sgeci
difficulties, projected to the case of positive definite @pers from an infinite dimensional Hilbert space into itself

Bessel functions occupy a very important place in the prableolutions with cylindrical symmetry. We can say that
they are important in the hierarchy of functions which areassaries to tabulate. Bessel functions come immediately
after the trigonometric functions, logarithm and exporarfunction but it is customary to fit them in the class of
so-called special functions. There are many books dealreittarkable properties of these functions.
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This article is organized as follows: The section 2 contaame basic notions and results about matrix continued
fractions that are needed later. In Section 3, we give a icoet fractions expansion of the Bessel functig(A), for
n > 1 of a positive definite matrix A.

2 Preliminary and notations

The functions of matrix arguments play a widespreased roeience and engineering, with applications areas ranging
from nuclear magnetic resonance [1]. So for any scalar pohjal p(z) = Z!‘:o cii, gives rise to a matrix polynomial with
scalar coefficients by simply substitutidéjfor 7 :

k

P(A) = _;ciA‘.

More generally, for a functiofi with a series representation on an open disk containingigiemealues ofA, we are able
to define the matrix functiof(A) via the Taylor series fof [8].

Alternatively, given a functiorf that is analytic inside a closed contdumwhich encloses the eigenvaluesfff (A) can
be defined, by analogy with Cauchy'’s integral theorem by

f(A):%/I_ £(2)(z1 - A)tdz

The definition is known as the matrix version of Cauchy’sgnéttheorem. Let#, be the algebra of real square matrices,
we now mention an important result of matrix functions.

Lemma 1.Let f be an analytic function in a domain D.

(i) If two matrices Ac .#my and B¢ .y, are similar, with A= ZBZ™, and sgA) C D, then the matrices (A) and
f(B) are also similar, with fA) = Zf(B)z~1.

(i) ) If A e .#nis ablock diagonal matrix A= diag(Aq, A2, ..., Ar) then f(A) = diag(f (A1), F(A2),..., T (A)).
Proof.

() ForA=2ZzBZ ! we haveAk = ZBZ~1. Hence for every polynomial(Z) it follows that
P(A)=ZpB)Z "

Therefore if either one op(A) or p(B) equals zero then so does the other, implying thandB share the same
minimal polynomial. From definition there exists an intdgimg polynomialr (Z) such that

and since for every polynomial we hapeA) = Z p(B) Z~1, the result follows.
(i) We deduce it from (i).

Let A € .#m, Ais said to be positive semidefinite (resp. positive defirité)is symmetric and

VXER™ < Axx>>0 (resp VXe R™, x#0 <Axx>>0)
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where< .,. > denotes the standard scalar produdRf

We observe that positive semidefiniteness induces a partiaking on the space of symmetric matricesA iindB are
two symmetric matrices, then we wrife< B if B— Ais positive semidefinite.

Henceforth, whenever we say thate .#y, is positive semidefinite (or positive definite), it will besagned thatA is
symmetric.

For any matriced\B € .#n, with B invertible, we writeA/B = B~A, in particular, if A=I, the matrix identity, then
I/B=B"1. Itis easy to verify that for any invertible matrix X we have

A XA AX

B XB’ BX

Definition 1. Let {An}n>0 and{Bn}n>1 be two sequences of matrices #4,. We denote the continued fraction expansion
by

B L By Bn
A
: : : : Bn]™
Sometimes, we denote this continued fraction By; — or Ag+ K (Bn/An).
Bn P B Pt
The fractionsxn and Q—n = {Ao; K'] are called, respectively, thé" partial quotient and the™™ convergent of the
n i=1

continued fractiorg + K (Bn/An).
We note that the evaluation of" convergent according to the above definitions is not prakbecause we have to

repeatedly inverse matrices. The following propositioregian adequate method to calculager K (Bn/An).

Proposition 1.[10]. For the continued fraction & K (B, /An), define

> 1.

n
Qn = An Qn—l + BnQn—Z -

Pai=I1,Rh=~A and Prh=An Po1+BnPr-2
Q1=0 Q=!I

Then Q 'R, is the A" convergent of the continued fractiog A K (Bn/An).

The proof of the next proposition is elementary and we lgfi the reader.

Proposition 2. For any two matrices C and D with C invertible, we have

 Bx
A

BiD BxC! B "

n
D=|C D: ) ) .
] |: AO Alcil A2 Ak k=3

C {Ao
k=1

Definition 2. Let {An},{Bn} {Cn} and {Dn} be four sequences of matrices. We say that the continuetioinac’y +

K(Bn/An) and G + K (Dn/Cy) are equivalent if we have,= Gy, for all n > 1, where F and G, are the i convergents

of Ap+ K(Bn/An) and G + K(Dn/Cy), respectively.
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In order to simplify the statements on some partial quatiefitcontinued fractions with matrix arguments, we need the
following proposition which is an example of equivalent tioned fractions.

iy Bk]™” : : :
Proposition 3. Let [Ao; Ek] be a given continued fraction. Then

k=1
il .: %]n — .Xkkak:12 "
Qn [AO'AK k=1 lAO'XkAkall k:17

where X1 = Xg =1 and X, Xz, ..., X, are arbitrary invertible matrices.

—+oo

Proof.Let B2 and 2, be thent! convergents of the continued fractio[ﬁo' ﬁrm and | Ag; XBi respectively.
' Qn Qn’ " Ak 1 ' XkAkaill k:17 .

By proposition 2, for alh > 1, we can write

Ph = XaAnX, 1 Pro1+ XaBnX P2,
which is equivalent to
X 1P = An(X, 1Pao1) 4 Bn(X, 5Ph-2)-
This last result joined to the initial conditions prove thatall n > 1, X,;1F~>n =P

A similar result can be obtained f@},. Consequently, both continued fractions have the same ogents and the proof
of proposition 3 follows. We also recall the following pragition in real case.

Proposition 4.[6]. Let(r,) be a non-zero sequence of real numbers. We prove easilyhthfiltowing continued fractions

goee

** ] b) 9%
ria;  rpap Man

;ﬁ,@“ E,] and {aorl—bl faliby | Tn-afnbn
a a an

are equivalent.

3 Main results

Our aim in this section is to give the continued fraction exgians of the Bessel functiala(A) for all n € N, where A is
a positive definite matrix.

3.1 Continued fractions expansion @fX).
For simplicity, we start with the real case and we begin bwallaxg some properties. The following differential equati

d?F
2
X W(x)+x

dr

dx(x)+ (® -V F(x)=0

is called Bessel differential equation of ordewherev is a real number. The solutions (see [2]) of this equationbzan
written by

F(X) =Cid (X) +CoYy (X)

(© 2016 BISKA Bilisim Technology
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where J, andY, are Bessel functions of order of the first and second kinds respectively which are given by:

P k 2k
J(x)= (X) |('(,_+(k211) largx| <m, veC

wherel” is gamma function and

Yy (X) = ull )CO;nTZ\;T)v_ v ), largx| < 1T, veC\Z.

Letn € N, we define the Bessel functidp of indexn and the power series df(x) is

9= (3)' 3 e 3

Theorem 1.Let n€ N, the continued fraction expansion f(X) is given by

2 K +

3 (X) B XN (eI X2 (_1) y+k=2
V21 7 23(n4-2) — x27 a(n k) (4k(n+ k) — x2) ’
k=3

where a(n,k) = 224k —2)I(n4+k—2)!.

To prove the this theorem. We need the next lemma. In theviolip lemma, from the development of a function given
by the Taylor series, we give the development in continuactions of the series that was established by Euler.

Lemma 2. [6]. Let f be a function with the Taylor serie developmentis £ 5, cX¥in D ¢ R. Then, the development
in continued fraction of (x) is

= 6o — [ c: X CIX —CpX  —C1C3X —Ci_2CKX
KX = ; . R
Z 1 7'cr4+cx cp4Cax' 7 o1+ CeX’

Proof. (Proof of Theorem1)). We use Lemma3.2) for the function:

n+2k o
« (57 (D ™"
Kl (n+k)! Z)znﬁkk!(mL k)!

zMs

by putting o
_ (71) Xn+
G= Kl (n+ k)12n+2k”

Fork > 3, we get:

¥2n+2k—2

Ce2Ce= A ki m T RN k—2)1"
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Furthermore, we have

(=1 XL (4k(n+ k) — )
202K (n 4 K)!

Ck-1+Cx=

As a result,

Ci_2Cx B (71)k*lxn+k—l
Ck 1 +Cex 2024k — )1 (n+k—2)! (4k(n+Kk) —x2)

In particular, we have

XN 7Xn+l Xn+2 Cox 7X2
2l TP n2(ng )l 2T 205(n+2)l” Ci+Cx B(n+2)— %2

Co

Therefore, the development of continued fractiodofx) is

2 K +00

3 (X) B XN I (D) X2 (_1) k=1
T2 1 23(n+2) —x2 a(n,k) (4k(n+ k) —x2) '
k=3

3.2 Continued fraction expansion gf(3\).

The next theorem is a matrix version of the previous theorem 1

Theorem 2. Let A be a positive definite matrix o#m. A continued fraction expansion of(d\) is given by,

_ A2 K +00
YT 2 1 28(n+2) — A2 a(n,k) (4k(n+ k) — A2)
k=3

Proof. (Proof of TheoremZ2)). Let A € .#, be a positive definite matrix. Then there exists an invertibhtrix X such
thatA = XDX~1, whereD = diag(A1, A2, ...,Am) andA; > 0.

As the functiorz — Jy(2) is analytic in the open halfplane € C, Rgz) > 0}, then
Jn(A) = X (D) X~ = X diag(Jn(A1),dn(A2), ... In(Am)) X L.
Let us define the sequencf’,} and{Qn} by :

_ _ Dn _ Dn
P—l—|,PO—m7Pl—m7

Q1=0,Q=1,Q=1,

2
P, — —Zn(?njl))! D"(1-D?) ((n+1) +D?),

Q2 = srrprgy (274(n+ 21 — 2" (n+1)ID? — D)
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and fork > 3,
A= a(n,k) (4k(n+Kk)l — D?) B_q + (—1)kD"1R _,,

Q= a(n,k) (4k(n+ k)l — D?) Q_1 + (—1)*D"*1Qy .

We see thaB andQ are diagonal matrices. By settimg = diag(pg, pZ, .., pI") anda = diag(qg, g2, ..., d"), we obtain

An

for each i where Ki <m,
pli=1py= n—m7p'1=m,

quzoaqlozlaqllzla

(n+2)

_ AN

P> = s A (1 =A%) (n+1) +A7)

O = gty (272N +2)L =2 (n+ 1IAZ - A2
and fork > 3,

Pl = a(n,k) (4k(n+k) —A?) pl_; + (~D)kAMH1pl

A= a(n,k) (4k(n+Kk) = A?) d_y + (—1)Amkig

By theorem 2, the convergef),/d\,) converges tdy(A;). It follows thatP,/Q, converges to the matrik (D), so that

_pn+2 K +0
T2t 1 7 28(n+2)1 — D2’ a(n,k) (4k(n+ k)l —D2)
k=3
By proposition 2, we get
_pn+2 K 00
3 (A) _x D" R T D2 (_1) pn+k-1 Xfl
VT2 1 2 23(n+2)1 — D2 a(n,k) (4k(n+ k)l —D?2)
_ph+2y—1 B +o0
B D" . % D2y -1 (71)k Dn+k-1
2! " X1 723(n+2)l — D2 a(n,k) (4k(n+ k)l — D?) '
k=3
Let us define the sequenfé,)x>_1 by
X,]_ = XO =1 )
X=X forallk> 1.
Then +2 1 +2
_ —XDM2x— —AD
XiBIX“]  aminr | Finid)
= I ,

XAyt XX
AZ

XoBo Xyt XD?X ! 3
S 2(n+2)l - A

XoPoX 1 X(23(n+2)l —D?)X1
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Fork > 3, we have
kakxkilz B (_1)kAn+kfl
XAXL 2 EA(k—2)l(n+ k— 1)l (4k(n+ K)l — A?)’

By applying the result of proposition 4 to the seque(X@n>_1, we finish the proof of theorem 2.
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