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Abstract: In this paper, a rational Chebyshev (RC) collocation metisogresented to solve high-order linear Fredholm integro-
differential equations with variable coefficients undeg thixed conditions, in terms of RC functions by two proposeliesnes. The
proposed method converts the integral equation and itsitbomsl to matrix equations, by means of collocation poimstioe semi—
infinite interval, which corresponding to systems of linalyebraic equations in RC coefficients unknowns. Thus, lyrepthe matrix
equation, RC coefficients are obtained and hence the appatisolution is expressed in terms of RC functions. Nurakexamples
are given to illustrate the validity and applicability ofetimethod. The proposed method numerically compared withretxisting
methods as well as the exact solutions where it maintaireratcuracy.
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1 Introduction

In recent years, the studies of mixed integro-differentiguations are developed very rapidly and intensively.
Integro-differential equation is an equation that the wwkn function appears under the sign of integration and @ als
contains the derivatives and functional arguments of th&nawn function. It can be classified to Fredholm
integro-differential equations and \olterra integrofeiiéntial equations. In this paper we focus on Fredholm
integro-differential equations, but all algorithms in omork can be applied to Volterra integro-differential eqoas
with a little modification. Integro-differential equatisiare important, but they are hard to solve even numericallyhe
progress on how to solve them is slow. The concepts of intdifferential equations have motivated a huge size of
research work in recent years, several numerical methods uwaed such as wavelet-Galerkin method [1], Lagrange
interpolation method [2], Taylor polynomials [3] and [4],h€byshev polynomials [5], [6] and [7], Adomian
decomposition method [8] and [9], the differential tramsiation method [10] and [11], Legendre polynomial [12], CAS
Wavelet operational matrix [13], Reduced differentiahgsBorm method[14], Homotopy perturbation method [15]. um o
work, we apply rational Chebyshev (RC) collocation metht@][and [17] for solving high-order linear Fredholm
integro-differential equations and we will show that cagent rate of RC is more accelerate than other existing ndetho
The organization of this paper, in Section 2, preliminangoduced while in section 3, properties of the RC funcgion
are presented. In Section 4, we formulated the fundamertborelation based on collocation Points. In Section B, th
method of solution is presented. Section 6, contains nwalghiustrations and results that are compared with theexa
solution and other existed methods. Finally, section 7¢chkates this article with a brief summary.
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2 Preiminaries

Consider themth order linear Fredholm integro-differential equatiorthwiariable coefficients
m a
3 RO =900+ [ KxDydL0<xt < a <o, (1)
K=0 0
under the mixed conditions
m-1

Z) (ajy®™ (a) +by® (B) + iy (y) = pj, a <y<B, j=01,..m-1 )
k=

whereaj, bjx,cjkandy; are suitable constants aRglx),g(x), K(x,t)are function defined in interval @ x,t < a < «.We
assume that the solution of this system can be expressearia t a truncated RC functions as follows:

N
N0 = 3 R0 = 1.2, k0 x < 3)
n=

whereN is chosen any positive integer such ther manda, are unknown RC coefficients.

3 Properties of the rational Chebyshev functions

3.1 Rational Chebyshev functions

The well-known Chebyshev polynomials are orthogonal initiberval [-1, 1] with respect to the weight functien(x) =
1/+/1—x2and can be determined with the aid of the recurrence formulae

To(X) =1, To(X) = X, Tpp1(X) = 2XTa(X) — Th—1(X)n > 1 4)
The RC functions are defined by
x—1
= T _—
Ra(x) =T (x+ 1)

The recurrence relation is

X—1

-1
Ro() = LRi(¥) = 2. Rosa(0) = 2 (m

) Rn(X) = Ry-1(x),n>1 (5)

RC functions are orthogonal with respect to the weight fiamcw(x) = 1/((x+ 1)y/X) in the interval[0, ) with the
orthogonally property:

with

wherednis the Kronecker function.

(© 2016 BISKA Bilisim Technology
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Since the set of RC functions is orthogonal and complétedefined over the intervadd, «) can be expanded as:

where

3.2 Fundamental matrix derivative relation of RC by firstestie (RRC)[16]

The derivative of the vect®(x) = | Ry(x) Ry(X) ... Rn(X) | can be expressed by

~R(x)D" (6)

whereD is (N + 1) x (N + 1)operational matrix for the derivative.

Differentiating relation (4) we get:

4 x—1
— 2( == — > 1
Rer100 = o TR0+ (X+1)Rmo Ry 100, >
The derivative oRy () is (Xfl)z which can be expressed as follows:
2 3 1
Ri(X) = ———— = =Ro(X) — Ry(X) + > Ra(X),
10 = i = 40— Ral) + ZRe09

Form above, the elemends ,of the matrixD can be obtained from

wa>=o
R1(X) = 2Ro(X) — Ra(X) + $Ra(x), (7)
Rn1(X) = 2(Ry(X)-Ra(X))' — Rn-1(x),n > 1,

where

1
E[RernJr Rim-n|]

The general form of the matri® is a lower- Heisenberg matrix. The matfixcan be expressed@s= D1 + D, where
D1is a tridiagonal matrix which is obtained from

D, = diag. (;(i —1), —(i— 1),%0 - 1)) :

and thed;; elements of matri,are obtained frona,; = —1 and

DT k(i -1)ej<i-1

wherek = (— )it g =1 andc; = 2 for j > 2. ForN =5 we have

(© 2016 BISKA Bilisim Technology
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0 0 0 0 0 0 ]

3/4 -1 1/4 0 0 0

-2 7/2 -2 12 0 0
0

3 -6 21/4 -3 3/4
-4 8 -8 7 -4 1
5 10 10 -10 354 -5

Consequently, the" derivative of the matriR(x)defined in (5), can be obtained as

R¥ (x) ~ RO)(DT)¥ (®)

3.3 Fundamental matrix derivative relation of RC by secaritesne (IRC)[17]

It is clear that using (8) leads to a truncated last term @afti@h (7). Moreover in the higher derivatives the truncaim®
more than one term. For example using forth order derivative3, the truncated terms will vanish in the last four terms
in R4, Rs, Rs, Ry. This will lead to unsatisfied approximating using RRC schelherefore, we will try to improve the
definition of the derivative of RC functions. It is noted ta{16] the last term is truncated to get a square matrix so the

matrix product is possible.

Now, we will add a vector to (8) to keep the truncated term Wwhidll improve our approximation. This technique will
be called an improved regular RC functions and denoted by IRC

Thus, we can obtain general form as:

R(x) = =R(X)D" +B(x) ?
where
B(X)=100--- 0dnt1n+2RN+1(X) 1x(N+1)

To obtain the matrix®* (x) we can use the relation (9):

RO (x) = Rx)(D")°
RY(x) = RX)(DT)' +B9(x)
R?(x) = RY(x)DT +BY(x) = RX)(DT)?+BO(x)DT +BW (x)

R (x) = RO (x)(DT)2+BY(x)DT +B@ (x) = R(x)(DT)3+ B(x)(DT )2+ B (x)DT +B?(x)

Consequently, the" derivative of the matribR(x) defined as:

RO (x) = R(x),R¥ (x) = RX)(DT )X+ Z}B“)(x)(DT)k’i’lk >1 (10)

(© 2016 BISKA Bilisim Technology
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where

B (x) = [0 0---0 dN+1,N+2R|(\|k)+1(X) :

4 Fundamental matrix relation based on collocation points

In this section we will provide fundamental matrix relatioased on collocation points of the solution of (1) with (2) by
two schemes. First assume that the soluyifd) of (1) can be expressed in the form (3), which is a truncatezb@shev
series in terms of RC functions. Thg(x) and its derivativeg/l) (x) can be put in the matrix forms

and

Yy (x)]=RD(XA, j=0,1,..., m<N, (11)

where

Now, let us write (1) in the form

F(X) = g(x) +Al1(x), (12
where the differential part
FX) =Y Rx)y®(x), (13)
(X) k;) (Y™ (x)
and the Fredholm integral part .
109 = [“Keety(ot, (14)

Let us now form the matrix relation for Fredholm integraltpd®). The kernel functioiK(x, t) can be approximated by
the truncated RC series as follows

N N
K(X,t) = I;;klsRl (X)Rs(t)7
where

4
C|CsTT?

kls:

/ ) / "R (OR(t)K (O w(x)w(t)dxdt
0 JO

Then the matrix representationi§{x, f) can be given by

[K(xt)] = ROXOKR' (), (15)
where
koo kot ... Ko
kio kit ... Ky
K —
kno kn:  o.. ke

(© 2016 BISKA Bilisim Technology
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The matrix representation gtt) can be given by

[y(t)] = R(t)A (16)
Substituting (15), (16) into (14), we get
1(x)] = /O *ROOKRT (HR(D)Adt = RXKMA, (17)
where
M= [ RT(t)R(t)dt

4.1 Fundamental matrix relation by first scheme (RRC)

From relations (8) and (11), then (13), takes the form

F(x) = ZJPK(x)F«x)(DT)kA (18)
k=
Substituting (17) and (18) into (12), we get
m
ZOH((X)R(X)(DT)"A: g(x) + ARX)KMA (19)
k=
Now, let us define the collocation points as
s=0,1,..,N (20)
Upon substitss = s, ting points (20) into (19) we obtain
m
zoa(xg R(xs)(DT)*A = g(xs) + AR(x)KMA (21)
k=

The obtained system (21) can be written farther in the médrix

iPkR(DT)kA G+ ARKMA, (22)
k=
where
A(x) O 0 9(Xo
o 0 HR(x) 0 G g(x1) 7
0 0 :
0 0 P (Xn) g(xn)
R(%o) Ro(Xo) Ri(Xo) ... Rn(xo)
R R(x1) B Ro(x1) Ri(X1) ... Rn(x1)

R().(N) Ro(IXN) Rl(IXN) RN(.XN)

(© 2016 BISKA Bilisim Technology
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Then the fundamental matrix for solving of Fredholm integdifferential equation obtains as:

m
;PkR(DT)kf)\RKM A=G (23)
k=

Similarly, we form the matrix representations of the mixedditions.

Substituting the matricg®) (a), y®(B) and y¥(y) which depends on the RC coefficients matAxinto (2) and
simplifying the result we obtain

T {aiR(@)+bR(B) + cikR(y)} (DA =y (24)
k=0

4.2 Fundamental matrix relation by second scheme (IRC)

Similarly, the second scheme IRC gives us derivative RCtfans ofk" order as:
RO (x) = R(x),R¥ (x) = R(x) (DT )X+ Z}B ) (D1 k> 1.

From relations (10) and (11), then (13), takes the form

F(x) = § Pk<x>{R<x><DT>k+kzj BY(x)(DT)" 1A, (25)
k=0 i=

Substituting (17) and (25) into (12), we get

ZRK (X){R(x)(DT) +Z)B x)(DT)* " 1IA = g(x) + AR(X)KMA. (26)

Upon substituting points (20) into (26) we obtain
m k—1 .
Y A6 {R(xs) (DT )+ §B<‘><xs><DT>k*'*l}A= g(%) + AR(x)KMA, (27)
K=0 =

The obtained system (27) can be written farther in the méarix

m k—1
RO+ S BT 1A= G+ ARKMA, 28
k;Pk{( )Jri;j (") } + (28)
where
R() 0 ... O 9(%o)
o 0 H((Xl)-.-- 9 G- 9(>.<1> |
0 0 .o :
0 0 ... R g(xn)

(© 2016 BISKA Bilisim Technology


www.ntmsci.com

29 BISKA M. Ramadan, K. Raslan, A. Hadhoud and M. Nassar: Numeridatiso of high-order linear...

R(xo) Ro(Xo) Ri(Xo) --- Rn(Xo)

5 Rxa) | | Ro(xa) Ru(xa) ... Ru(xt)
R(xn) Ro(xn) Re(xn) - Ru(xn)
[B(x0) | [ Bo(x) Bi1(X) .- Bn(X0) |

B B(Xj_) B Bo(Xl) Bj_(Xl) BN(Xl)
_B().(N)_ _Bo(.XN) Bl(.XN) BN(.XN)_

Then the fundamental matrix for solving of Fredholm intedifferential equation takes the form:

m k-1 .
%PK{R(DT)k—i- Z}B(')(DT)k"’l} —ARKM |A=G (29)
K= =

Similarly, we form the matrix representations of the mixedditions.

Substituting the matri¥(a), y¥(B)andy® (y) which depends on the RC coefficients matfixinto the (5.2) and
simplifying the result we obtain

" {audR(@) (DT + 5 BO (@)D 1) by {R(B)(DT )+
0 =0 (30)

oB<i><ﬁ><DT>k*i*1}+c,-k{R<v><DT>k+E;B‘”(v)(DT)k*l}}A: K.

7‘~‘>-
Il

5 Method of solution

The fundamental matrix equations (23) and (29) for (1) spoad to a system oN+1) algebraic equations for thisl€1)
unknown coefficientsy,ay, ..., an. One writes equations (23) and (29) in short form as:

WA=G or |W; G| (31)

We can obtain the matrix form for the mixed conditions (2) hhgans of equations (24) and (30) briefly as

UiA = [A]] (32)

so thatw andU;for first scheme defined by:
m
W = [Wpg] = Z)PkR(DT)kf)\RKM, p,q=0,1,...,N
k=

and
m-1

U= ot .. un | = 3 {aiR(@) +bicR(B) +ciR(y) (DT
k=0

while, the definition oW andU; for second scheme obtained as:

W = [Wpg] = kipk{R(DT)kJr l-(ZjB(i)(DUkil}v

(© 2016 BISKA Bilisim Technology
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and

m-1 k=1 . .
Ui=[uo un . un | = 3 apfR@)(®)+ 5 BY (@) (D7)
—| 1=
k=1 ) k=1 . o
by {R(B)(PT)+ 5 BU(B)(DT) "} +cx{RM)(OT*+ 5 BU(»(ON) "}

1= =
Now, the solution of (1) under the conditions (2), can therb&ined by replacing the rows of matrices (32) by the last
m rows of the matrix (31), we get the required augmented matrix

Woo Wo1 ... Won ;  O(Xo)
Wig Wiz ... Wiy 5 g(x)
;G = WN-m0 WN-m1 --- WN-mN; O(XN—m) (33)
’ Uo  Up1 ... UoN ;Ao
Uio U11 NN ;AL
|Un-10 Un-11 --- Um-iN 5 Am-1 |

If rank W = rank|W; G] = N + 1,then we can write the matrix equation (31) as:
A= (W)"1G (34)

and therefore the coefficiergs ; n =0, 1,...,N are uniquely determined by (33).

6 Numerical examples

In this section, numerical examples are given to illustthteapplicability, accuracy and effectiveness of the pseplo
techniques. All examples are performed on the computegusjprogram written in MATHEMATICA 7.0. The obtained
numerical results are presented as shown in the illuserdtbles. The absolute errors, in tables, are given by theesal
of e(x) = |y(X) — yn(X)| evaluated at selected points.

Example 1. Let us first consider the linear Fredholm integro-diffei@rgquation

o=t o
X

y'(X) — y(t)dt, xe€10,10],

C14x  Jo 1+4x

with y(0) = 1,y(1) = 3. For this example we have,

-2 In[11] 1
m=2RP(x) = —,Pi(X) =0,P,(x) = 1,g(x) = KX ) = ——.
Po) = P00 = 0P = 100 = 9 Kkt = g
Then forN = 2, the collocation points are
Xo=0,x1 =5,x, =10
Where B, P1,P,, K, Mare matrices of order ¢33) defined by
-2 0 0 0O 0 O 1 0 O
Po=10 -1/180 ,P=1]0 0 0|,P,=|0 1 0},
0 O —2/121 0 0 0 0 0 1

(© 2016 BISKA Bilisim Technology
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/2 0 0 10 —2(—5+In[11]) 12— gIn[11]
K=|-1/20 0| ,M=|-2(-5+In[11) ¥¥-4In1y 22101y |,
0 0 0 10_8in1y 28P°-10In11 252919 161n11

The augmented matrix forms of the conditionsfor 2 are

[1 101 1},[10—1;1/2},

The fundamental matrix equation by IRC scheme (29) of probte

(P0R+ PL(RDT + B) + P,(R(DT)* +BDT +B') — A RKM) A=G

1 -1 1 0o 2 -2 0-2 33
St S i O Rl b A
1 = 0 z -2 0-7 %
0 0 -3 00 9
_ 11 _ 7
B=|0 O —?51 , BB=|00 %—gg
0 0 —%e 00 76m
Then, we obtain the augmented matrix (33) as
o 8 —2—2(—5+In[11] 32° - 8In[11] ; In[11]
W;G]= |1 -1 1 A R
1 0 -1 ;12

we then obtain the solution for WAG
A=[1/2-1/20],

Therefore, we find the solution

to be in the form

or in the form

which is exact solution of this problem.
The fundamental matrix equation (23) of problem by RRC sah&m
(POR+ P.RDT +P,R(DT)* — A RKM) A=G

for N = 2 we get badly approximate but fbr= 3 we will get the exact solution of this problem.

(© 2016 BISKA Bilisim Technology



NTMSCI 4, No. 3, 22-35 (2016) Www.ntmsci.com

Example 2. Let us first consider the integro-differential equation][103]

y(X)=1- %er/lety(t)dt, x€[0,1],

with y(0) = 0. The numerical solutions obtained from the IRC scheme &R@ Bcheme foN = 4. In table 1 the errors
given by the two proposed schemes compared with errors laggduby CAS Wavelet method [13] and differential
transformation method [10] in the inter{@J 1]. It is noted from table 1 that the present method by two sclseémbetter
than the differential transform method in [10]. On the othand, the results obtained by CAS Wavelet method [13] are
close to the results obtained by the present method.

Table 1: Comparison between absolute error obtained by presenbehetid other existed methods fdKx) of Exam. 2.

Differential

X W. Ce;IAe? 13 transformation RFEC I R(_:
avelet[13] method[10] N=4 N=4

0.1 | 2.17942375e-004 1.66666667e-003 4.44627459e-004 7.48179732 e-004
0.2 | 6.38548213e-004 6.09388620e-003 5.89430306e-004 1.63253385 e-003
0.3 | 7.91370487e-004 1.32017875e-002 2.40171141e-003 3.51161586 e-003
0.4 | 2.15586005e-002 2.29140636e-002 6.73535353e-003 7.27152372 e-003
0.5 | 4.99358429e-003 3.51578404e-002 1.40138093e-002 1.36200176 e-002
0.6 | 2.21728815e-002 6.69648304e-002 2.44620175e-002 2.30527344 e-002
0.7 | 1.05645449e-004 7.12430514€-002 3.81931054e-002 3.58782889 e-002
0.8 | 1.43233681e-003 8.63983845e-002 5.52463654e-002 5.22579230 e-002
0.9 | 2.07747461e-002 1.08103910e-001 7.56088331e-002 7.22435281 e-002

Example 3. Consider the following linear Fredholm integro —differi@hequation [10]

with y(0) = 0.

The numerical solutions obtained by the IRC schemeNor 4. In table 2 comparing the error obtained with CAS

1
Y (X) :xe?‘wLe"fx/O xy(t)dt xe[0,1],

wavelet method [13] and differential transformation metiit0].

Table 2: Comparison between absolute error obtained by presenbihatid other existed methods fgx)of Exam. 3.

X CASWavelet[13] DTM[10] IRCN =4

0.1 1.34917637e-003 | 1.00118319e-002 | 2.33899689e-002
0.2 1.15960044e-003 | 2.78651355e-002 | 4.32236340e-002
0.3 5.67152531e-003 | 5.08730892e-002 | 4.19865348e-002
0.4 5.031056456-002 |  7.55356316€-002 | 2.88393798e-002
0.5 1.32330751e-002 | 9.71888592e-002 | 1.16259014e-002
0.6 4.39287720e-002 | 1.09551714e-001 | 8.45940052e-003
0.7 1.41201624e-002 | 1.04133232e-001 | 3.62299942e-002
0.8 1.34514117e-002 | 6.94512700e-002 | 8.08146109e-002
0.9 1.32045209e-002 |  1.00034260e-002 | 1.54221606e-001
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Example 4. Consider the third order linear intgro-differential eqoat
1
Y (X) +Xxy(X) +xy(x) =e *—e+1+ e/o y(t)dt,
with y(0) = 1, y'(0) = —1, y'(0) = 1.

The exact solution of this problemyix) = e *. The solution obtained by IRC scheme. In table 3 the errdmutzted
with differentN, clearly indicates that when we increase the truncatioit Npwe have good accuracy.

Table 3: Comparison between absolute error functions obtained Bydéheme foy(x) of Example 4 folN = 8,10,12
and 16

X EN=8 EN=10 EN=12 EN=16

0.1 2.29514 e-007 8.41043 e-008 2.45139 e-008 2.21017e-008
0.2 1.54099 e-006 5.06277 e-007 1.35645 e-007 1.83008e-008
0.3 4.08800 e-006 1.29587 e-006 3.39746 e-007 1.00211e-008
0.4 7.89477 e-006 2.46579 e-006 6.40228 e-007 2.9693e-009
0.5 1.30008 e-005 4.02634 e-006 1.03977 e-006 1.77792e-008
0.6 1.94259 e-005 5.98439 e-006 1.54011 e-006 3.25369e-008
0.7 2.71767 e-005 8.34151 e-006 2.14169 e-006 4.64512¢-008
0.8 3.62373 e-005 1.10928 e-005 2.84334 e-006 5.93424e-008
0.9 4.65865 e-005 1.42107 e-005 3.64141 e-006 7.13077e-008
1.0 5.82724 e-005 1.75925 e-005 452514 e-006 8.25347e-008

Example 5.Consider the following linear Fredholm integro —differi@hequation

xy (x) = y(x)

With y(0) = 0. The exact solution ig(x) = x.

The errors given for variou in interval [0, 3] using IRC scheme, see table 4 clearly iatés that when we increase the

N, we have less error.

_ 3+Ln[1g P
14X

3 t
.Ax+n+u4

y(t)dt xe€]0,3],

Table 4: Comparison between absolute error obtained by IRC schenygdpExample 5. foN = 4,7 and 10

X EN=24 EN=7 EN=10

0.3 9.84227e-002 7.99667e-003 3.10157e-003
0.6 5.5861e-003 2.51914e-003 9.65748e-005
0.9 1.57062e-002 2.35197e-004 3.30361 e-004
1.2 5.07752e-003 8.6475e-004 4.2555e-004

15 7.13778e-004 1.04015e-003 5.34414e-004
1.8 3.9221e-003 1.20405e-003 6.40535e-004
2.1 9.06935e-003 1.45553e-003 7.47712e-004
2.4 1.02842e-002 1.62365e-003 8.54097e-004
2.7 3.17202e-003 1.82889e-003 9.61814e-004
3.0 150938e-002 2.61861e-003 1.05492e-004
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Example 6.Consider the following linear Fredholm integro —differi@hequation
l1-e 1
Y (X) +y(x) = sech(x) (1 — tanh(x)) — 2arcta 1re) / y(t)dt,
Jo
with y(0) = 1, and the exact solutionyi&) = sedh(x).

We obtain the approximate solution by RC collocation methaicthe problem foN= 8. In table 5 the numerical results
obtained by RRC and IRC schemes 8, are compared with the exact solution of this problemoAlse absolute
errors forN=8 by the two schemes is given. The values of the solugief) x € [0, 1] plotted with its error in figure 1.
From figure 1 one can see that the numerical results given Gysttheme is better than RRC scheme.

Table 5: Comparison between RRC scheme and IRC schemgxfpiof Example 5.6 foN = 8

Xi Exact solution RRC scheme IRC scheme
N=28 eRRG—g N=28 elRGy—g

0.1 0.9950207489 0.9950207489 | 7.29723e-006 | 0.9949980631| 2.26858e-005
0.2 0.9803279976 0.9803279976 | 7.33906e-005| 0.9803094963| 1.85014e-005
0.3 0.9566279119 0.9566279119 | 1.75493e-005| 0.9566124111| 1.55007e-005
0.4 0.9250074519 0.9250935827 | 8.61309e-005| 0.9249942557| 1.31962e-005
0.5 0.8868188839 0.8868188839 | 1.17001e-003| 0.8868188839| 1.07932e-005
0.6 0.8435506876 0.8436099949 | 5.93073e-003 | 0.8435506876| 8.82769e-006
0.7 0.7967054599 0.7966634642 | 4.19957e-003 | 0.7967054599| 6.90692 e-006
0.8 0.7476999182 0.7475634972 | 1.36421e-003 | 0.7476999182| 5.25349 e-006
0.9 0.6977946411 0.6976034887 | 1.91152e-003| 0.6977946411| 3.85176 e-006
1.0 0.6480542737 0.6478641197 | 1.90154e-003 | 0.6480542737| 1.73767 e-006
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Fig. 1: Error function ofy(x) for Ex. 6 forN =8

7 Conclusions

The rational Chebyshev (RC) collocation method is propasédihd approximate solution and also, analytical solution
of Fredholm integro-differential equation with variableedficients under the mixed conditions. The proposed method
converts the integral equation and its conditions to maiations, by means of collocation points. Moreover, thihote
shows to best advantage when the functikifis t) can be expanded to the RC series which converges rapidistraitive
examples are included to demonstrate the validity and egqapility of this technique, and performed on the computerqis
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MATHMATICA 7.0. In addition, an interesting feature of thisethod is to find the analytical solution if the equation has
an exact solution of rational form. Suggested approxinmatimake this method very attractive and contributed to the
good agreement between approximate and exact values initherital example. As a result, the power of the employed
method is confirmed.
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