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Abstract— This paper aims to improve a new hybrid model for system identification area. The proposed hybrid model
consists of an adaptive Hammerstein model, an adaptive Wiener model, and a Neuro-Fuzzy (NF) network based soft-
switching mechanism (SSM). SSM structure in hybrid model increases the success of block model by selecting the best
results of Hammerstein and Wiener model outputs. In literature, there are various studies about NF based on Hammerstein
or Wiener model types applied to system identification. In the proposed model, Hammerstein and Wiener models with
NF network are used together different from the literature. In simulation studies, five different type of systems are
identified with different models (Hammerstein, Wiener and the proposed hybrid model) optimized by Recursive Least
Square (RLS). Then the performances of these models are compared. Simulation results reveal the effectiveness and
robustness of the proposed identification model.

Keywords— fuzzy neural networks, hybrid intelligent systems, optimization, soft switching, system identification

Sistem Kimliklendirme I¢in Bulanik Sinir Ag1 Esnek
Anahtarlama Mekanizmasi Temelli Yeni Bir Karma Model

Ozet— Bu calismanin amaci sistem kimliklendirme alaninda yeni bir karma model gelistirmektir. Onerilen karma model
uyarlanabilen bir Hammerstein model, bir Wiener model ve esnek anahtarlama mekanizmasina dayanan bulanik sinir
agini icermektedir. Karma modeldeki esnek anahtarlama mekanizmasi Hammerstein ve Wiener model ¢ikiglarinin en iyi
sonuglarini segerek blok model basarisim arttirmaktadir. Literatiirde, sistem Kimliklendirmede uygulanan bulanik sinir
ag1 temelli Hammerstein ya da Wiener modellerle ilgili birgok ¢alisma vardir. Onerilen modelde, bulanik sinir agiyla
birlikte Hammerstein ve Wiener modelleri literatiirden farkli olarak bir arada kullanilmistir. Simiilasyon ¢alismalarinda,
farkli tipteki bes sistem tekrarlayan en kiigiik kare ile optimize edilmis olan farkli modeller (Hammerstein, Wiener ve
Onerilen model) ile kimliklendirilmistir. Daha sonra bu modellerin performanslar1 Kkarsilagtirilmistir. Simiilasyon
caligmalar1 6nerilen modelin etkinligini ve saglamligini ortaya koymaktadir.

Anahtar Kelimeler— bulanik sinir ag1, karma zeki sistemler, optimizasyon, esnek anahtarlama, sistem kimliklendirme

1. INTRODUCTION and the output of the system stated with linear equations, is

mostly used because of its advanced theoretical
System identification is the model of the system achieved baCk_ground [4,5_]- However, many systems 'n_real life ha\_/e
by utilizing data obtained from experimental or  nonlinear behaviours. Linear methods can be inadequate in
mathematical way. The studies in literature show that identification of such systems and nonlinear methods are
system identification processes are successful in solving ~ used [6-8]. In order to describe the nonlinear behaviour of
real life problems [1-3]. System identification is proceeded ~ the system over the entire range of operating conditions
through linear and nonlinear models as to the linearity of ~ adequately, a nonlinear block-oriented model is often used
the system [4-8]. Linear system identification that the input ~ @nd the identified system is generally subdivided into linear
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dynamic subsystems (or linear dynamic blocks) and
nonlinear static subsystems (or nonlinear static blocks).
The well-known Wiener model and Hammerstein model
are nonlinear models that are used in many domains for
their simplicity and physical meaning, where the system
steady-state behaviour is determined completely by the
static-nonlinearities, while the system dynamic behaviour
is determined by both the nonlinearities and the linear
dynamic model components. For example, a Wiener model
consist of a linear dynamic block followed by a nonlinear
static block. A Hammerstein model is just a Wiener model
structurally reversed, that is, a nonlinear static block is
followed by a linear dynamic block [9-11]. Moreover,
these models are useful in simple effective control systems.
Besides the usefulness in applications, these models are
also preferred because of the effective predict of a wide
nonlinear process [10,11]. In this kind of cascade models,
the polynomial representation has advantage of more
flexibility and of a simpler use [9].

To improve Hammerstein [6,7,12-15] and Wiener models
[16-18], various algorithms have been applied. In the last
decade, various applications of soft computing techniques
are used, such as Neural Networks and Fuzzy Inference
System (FIS), for the problems in many ranges [19, 20].
Neural Network and FIS have robust learning and
adaptation capabilities to solve linear or nonlinear
problems. Neuro-Fuzzy (NF) system which integrates both
neural networks and FIS has the potential to benefit from
both in a single framework [21-23]. Therefore, NF systems
may be used as more powerful tools for identification
areas. In literature there are various studies about NF based
on Hammerstein [24-26] or Wiener [27-30] model types
applied to system identification.

The main motivation of this study is to suggest a simple
and successful model structure. At this point authors
designed a new hybrid model for system identification. The
proposed hybrid model consists of an adaptive
Hammerstein model, an adaptive Wiener model, and a NF
network based soft-switching mechanism (SSM). The
structure of proposed hybrid model is shown in Figure 3.
SSM structure in proposed hybrid model increases the
success of block model by selecting the best results of
Hammerstein and Wiener model outputs. The advantage of
the proposed model; It can make more successful and
stable identification by using two different block models as
Hammerstein and Wiener in a hybrid structure. The
disadvantage of the proposed model; Because of its
complex structure; it contains more mathematical
operations and accordingly the duration of the
identification is longer than other model types in literature.
In simulation studies, five different type systems are
identified with different Hammerstein, Wiener and the
proposed hybrid models. Then the performances of these
models are compared. Simulation results are showed that
the proposed hybrid model has better result than the
adaptive Hammerstein and Wiener models.

The paper is organized as follows: In section 2, model
structures are detailed. In section 2.3, the proposed hybrid
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model is detailed. In section 3, Recursive Least Square
(RLS) algorithm is explained. In section 4, simulations are
made to verify the feasibility of the proposed method.
Conclusions are offered in section 5.

2. BLOCK ORIENTED MODELS

Many nonlinear dynamic systems such as heat exchangers,
electric drives, pH control, biological systems, and
identification of linear systems with nonlinear sensors [31,
32] can be approximated by block oriented model such as
Hammerstein or Wiener. Also in a Wiener and
Hammerstein model, many different linear and nonlinear
sub model structures have been considered.

2.1. Hammerstein Model

In Hammerstein model structure in Figure 1, Memoryless
Polynomial (MP) model is used as a nonlinear part and
Finite Impulse Response (FIR) model is used as a linear
part. The nonlinear part is described by a polynomial
function [33].

x(n) MP z(m) FIR y(n)
model model |

Figure 1. Hammerstein model

In Figure 1 x(n) and y(n) are the input and the output of the
block model respectively. z(n) represents the unavailable
internal data. MP model output and intermediate variable

z(n);

z(m) = X, ax'(n) @
FIR model output;

y() = EZobiz(n —1) )
block model output;

OB WIPWNTRICED (3)

where bj and ¢ are the coefficients of the MP and the FIR
model. | is an integer and | >0. m and p are lengths of the
models [33].

2.2. Wiener Model

In Wiener model structure, FIR model is used as a linear
block and MP model is used as a nonlinear block. Cascade
structure is shown in Figure 2 [34-36].

x(n) FIR z{n}) MP v(n)
model model |

Figure 2. Wiener model
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FIR model is defined as;
z(n) = ¥ bix(n — i) 4)

where m shows model length. MP and Wiener model
output is defined as;

ym) =37 azl(n) ®)

where p shows MP and Wiener model length. The
disadvantage of Wiener compared to Hammerstein; is it
can be formed with more complex mathematical
substructure because of its structure.

2.3. Proposed Hybrid Model

Proposed hybrid model is shown in Figure 3. The model
consists of a Hammerstein model, a Wiener model, input
data and NF network based SSM. The NF network uses the
information from the adaptive Hammerstein, the Wiener,
and the input signal to compute the system output. The
proposed model is different from the other hard switching
models in literature in terms of soft switching feature.

SSM of the system is a first-order Sugeno typed NF
network with 3 input and 1 output. In each input of the
network, there are 2 Gaussian membership function and in
output there is a linear membership function [37-39].

-
>

x(n)
4>l\ Hammerstein Model J—b

Figure 3. Proposed hybrid model

v(n)

Funpmg 1 o8
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Wiener Model

The parameters of the NF network are iteratively tuned by
using the hybrid learning optimization algorithm which
combines the gradient method and the least squares
estimate to identify [37-39].

3. RLS ALGORITHM

RLS algorithm is used to optimization of model
parameters. Studies in literature shows that RLS is popular
optimization algorithm among derivative based algorithms
[40]. The most important feature of RLS algorithm is that
the algorithm uses all information in input data towards
start moment. The aim of the RLS algorithm is minimized
to error between desired and model response by adjusting
model parameters. The error is defined as Eq. (6).

e(n) =dmn) —w(n—Dxn) (6)
Here, e is error value, d is desired output, x(n) is input
signal for model and w is model parameters vector.
Adjusting model parameter process is given by Eq. (7)

wn) =wn—1) —k(n)e(n) (7)

Here, k is gain vector and defined by Eq. (8),

A71P(n — 1)x(n) (8)

k(n) = 1+ A xHMm)P(n — Dx(n)

Here, P is current covariance matrix and defined by Eq. (9)
P(n) =2"1P(n—1) = 1 tk(m)x"(n)P(n — 1) 9)
here, A is forgetting factor for this algorithm [23, 40].

4. RESULTS AND DISCUSSION

Training and testing structures of a Hammerstein model, a
Wiener model and the proposed hybrid model are given in
Figure 4 and 5 for system identification. The input signal
x(n) was preferred to be a Gaussian distributed white noise
of 1000 data samples. Figure 4 shows the structure of the
representing optimization of the adaptive Hammerstein
and Wiener models. In these simulations, all models are
optimized till the error e(n) between the model yn(n) and
system output d(n) is minimized by RLS algorithm [40,41].

pl Unknown d(m)
x(n) System
— /
* Hammerstein Model
* Wiener Model

Zz

Y

Figure 4. Training and testing structure of models for
adaptive optimization.
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Figure 5. Training and testing structure of proposed hybrid
model for adaptive optimization.

Figure 5 shows the structure of the representing
optimization of the proposed hybrid model. All of these
mentioned models were simulated using the noiseless input
signal x(n) and length L = 1000. The first 900 samples of
the input signal were used for the model training and the
remaining 100 sample data were used for model testing.
Hammerstein and Wiener models are given Eq. (10) and
(12).

Hammerstein model in Eq. (10) is obtained from Eq. (3)
with p=3, m=1.

Y1 (M) = bycx(n) + bycx?(n) + bycsx3(n) + bycyx(n— 1) +

bicx?(n—1) + bycsx3(n—1) (10)
Wiener model in Eq. (11) is obtained from Eqg. (5) with
m=1, p=3.



Ym2(n) = c1box(n) + ¢;byx(n — 1) + c,b¢x?(n) +
cbobix(m)x(n — 1) + c,bybox(M)x(n — 1) +
cb?x%(n— 1) + c3b3x3(n) + c3b2bx%(n) x(n — 1) +
c3b bEx?(n) x(n — 1) + c3b?box(M)x?(n— 1) +
c3b bEx?(n) x(n — 1) + c3byb?x(M)x%(n — 1) +
c3bob?x(M)x?(n— 1) + czh3x3(n— 1) (11)

4.1. Example-I

In this example, considering the structure given in Figure
4 and 5 unknown Hammerstein system [42] is chosen as in
Eg. (12) and (13). The memoryless nonlinearity of
Hammerstein system,

z,(n) = x(n) + 0.5x3(n) (12)
and a linear component with the transfer function
0.4 +02z71 (13)

H) = o8+ 06

The unknown system is identified with Hammerstein,
Wiener and proposed hybrid models. Model successes for
testing process were compared according to MSE [43],
correlation and run time values, and the results are
presented in Table 1. According to these comparisons
proposed hybrid model identifies the unknown system with
the lowest error. Also visual results for testing process are
shown in Figure 6. Proposed hybrid model’s performance
of system identification in terms of membership function,
number of membership and epoch number is presented in
Table 2.

Table 1. MSE, correlation and run time values for example-
I

Type of Model MSE  Correlation Run Time (sec)
Hammerstein 0.70642 0.78783 0.04
Wiener 0.43585 0.82348 0.03
Hybrid (Proposed)  0.38710 0.84100 79

Table 2. Proposed hybrid model performance

NDS HM
MF NM NE TR T MSE C RTM
gauss2mf 2 1000 900 100 0.38751 0.84076 8
gauss2mf 2 5000 900 100 0.38741 0.84080 40
gausszmf 2 10000 900 100 0.38710 0.84100 79
gauss2mf 3 1000 900 100 0.43492 0.82962 18
gauss2mf 3 5000 900 100 0.43133 0.82401 91
gauss2mf 3 10000 900 100 0.42981 0.82460 186
gaussmf 2 1000 900 100 0.39329 0.83880 6
gaussmf 2 5000 900 100 0.40587 0.83528 28
gaussmf 2 10000 900 100 0.40568 0.83535 61
gaussmf 3 1000 900 100 0.44951 0.82001 15
gaussmf 3 5000 900 100 0.44971 0.81838 72
gaussmf 3 10000 900 100 0.45028 0.81839 143
gbellmf 2 1000 900 100 0.39926 0.83758 6
gbellmf 2 5000 900 100 0.41771 0.83013 30
gbellmf 2 10000 900 100 0.41788 0.83012 60
gbellmf 3 1000 900 100 0.44421 0.82180 15
gbellmf 3 5000 900 100 0.44788 0.82027 74
gbellmf 3 10000 900 100 0.45047 0.81917 149

MF=membership function, NM=number of membership,
NE=number of epoch, TR= training, T= test,
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C=correlation, RTM=run time(sec), NDS= number of data
samples, HM= hybrid model.

Amplitude

Amplitude

) [ E) E) [ ® ™ £ E] 10

E
samples

Figure 6. Simulated response comparisons of example-I
4.2. Example-1l

In this example, considering the structure given in Figure
4 and 5 unknown Bilinear system [41,44] is chosen as in
Eq. (14).

d(n) =0.25y(n — 1) — 0.5y(n — Dx(n) + 0.05y(n — Dx(n—1) —
0.5x(n) + 0.5x(n — 1) (14)

The unknown system is identified with Hammerstein,
Wiener and proposed hybrid models. MSE, correlation and
run time values of the tested models are given in Table 3.
Proposed hybrid model identifies the unknown system with
the lowest error. Proposed hybrid model performance is
given in Table 4. Also visual results of the tested models
are shown in Figure 7.

Table 3. MSE, correlation and run time values for example-
]

Type of Model MSE Correlation  Run Time(sec)
Hammerstein 0.08602 0.90105 0.11
Wiener 0.05062 0.94425 0.03
Hybrid (Proposed)  0.04013 0.95429 21

Table 4. Proposed hybrid model performance

NDS HM
MF NM NE TR T MSE C RTM
gauss2mf 2 1000 900 100 0.04013 0.95429 21
gauss2mf 2 5000 900 100 0.04036 0.95401 106
gauss2mf 2 10000 900 100 0.04045 0.95390 212
gauss2mf 3 1000 900 100 0.13445 0.89624 128
gauss2mf 3 5000 900 100 0.19795 0.87445 636
gauss2mf 3 10000 900 100 0.18350 0.88110 1322
gaussmf 2 1000 900 100 0.04370 0.94995 17
gaussmf 2 5000 900 100 0.04331 0.95040 83
gaussmf 2 10000 900 100 0.04332 0.95039 167
gaussmf 3 1000 900 100 0.09719 0.90308 121
gaussmf 3 5000 900 100 0.15744 0.86162 604
gaussmf 3 10000 900 100 0.20771 0.82143 1214
gbellmf 2 1000 900 100 0.04229 0.95220 17
gbellmf 2 5000 900 100 0.04342 0.95070 86
gbellmf 2 10000 900 100 0.04467 0.94912 175
gbellmf 3 1000 900 100 0.09158 0.90805 124
gbellmf 3 5000 900 100 0.11851 0.89029 606
gbellmf 3 10000 900 100 0.12877 0.89635 1211




BiLiSiM TEKNOLOJILERI DERGISI, CILT: 12, SAYI: 1, OCAK 2019

MF=membership function, NM=number of membership,
NE=number of epoch, TR= training, T= test,
C=correlation, RTM=run time(sec), NDS= number of data
samples, HM= hybrid model.

E) o E) %

%
Samples

Figure 7. Simulated response comparisons of example-II

4.3. Example-IlI

In this example, considering the structure given in Figure
4 and 5 unknown ARMA system [45,46] is chosen as in
Eg. (15). The unknown system is identified with
Hammerstein, Wiener and proposed hybrid models.

d(n) =0.7x(n) = 0.4x(n — 1) — 0.1x(n — 2) + 0.25y(n — 1) —

0.1y(n — 2) + 0.4y(n — 3) (15)
Model successes were compared according to MSE,
correlation and run time values, and the results are
presented in Table 5. According to these comparisons
proposed hybrid model identifies the unknown system with
the lowest error. Also visual results are shown in Figure 8.

Table 5. MSE, correlation and run time values for example-
"

Type of Model MSE Correlation Run Time(sec)
Hammerstein 0.11002 0.89874 0.09
Wiener 0.10737 0.89810 0.03
Hybrid (Proposed) 0.10051 0.90206 28

Amplitude

Amplitude

Proposed hybrid model’s performance of system
identification in terms of membership function, number of
membership and epoch number is presented in Table 6.

Table 6. Proposed hybrid model performance

NDS HM
MF NM NE TR T MSE C RTM

gauss2mf 2 1000 900 100 0.10527 0.89734 8
gausszmf 2 5000 900 100 0.10554 0.89712 42
gausszmf 2 10000 900 100 0.10554 0.89712 84
gauss2mf 3 1000 900 100 0.10792 0.89461 18
gausszmf 3 5000 900 100 0.10962 0.89288 88
gauss2mf 3 10000 900 100 0.10961 0.89289 174
gaussmf 2 1000 900 100 0.10056 0.90199 6
gaussmf 2 5000 900 100 0.10051 0.90206 28
gaussmf 2 10000 900 100 0.10054 0.90203 57
gaussmf 3 1000 900 100 0.10933 0.89314 15
gaussmf 3 5000 900 100 0.10929 0.89313 74
gaussmf 3 10000 900 100 0.10910 0.89329 143
gbellmf 2 1000 900 100 0.10249 0.90022 6
gbellmf 2 5000 900 100 0.10257 0.90010 30
gbellmf 2 10000 900 100 0.10250 0.90017 60
gbellmf 3 1000 900 100 0.10667 0.89577 14
gbellmf 3 5000 900 100 0.10830 0.89405 73
gbellmf 3 10000 900 100 0.11027 0.89199 147

MF=membership function, NM=number of membership,
NE=number of epoch, TR= training, T= test,
C=correlation, RTM=run time(sec), NDS= number of data
samples, HM= hybrid model.

4.4, Example-1V

In this example, considering the structure given in Figure
4 and 5 unknown Hammerstein system [47] is chosen as in
Eg. (16) and (17). The unknown system is identified with
Hammerstein, Wiener and proposed hybrid models. The
memoryless nonlinearity of Hammerstein,

z,(n) = 0.1x(n) — 0.075x%(n) + 0.05x3(n) (16)
and a linear component with the transfer function
0.25 17

H&) =T a7 +02.2

MSE, correlation and run time values of the tested models
are given in Table 7. Proposed hybrid model identifies the
unknown system with the lowest error. Also visual results
are shown in Figure 9.

Table 7. MSE, correlation and run time values for example-

Amplitude

2| —Desired Output

Hybrid Model Output [ [ i L L L L L
o n ) E) [}

)
Samples

Figure 8. Simulated response comparisons of example-I11

Type of Model MSE Correlation  Run Time(sec)
Hammerstein 6.2794x10° 0.99460 0.07
Wiener 1.8446x10 0.99192 0.04
. Hybrid (Proposed) ~ 5.8115x10°  0.99490 102
Proposed hybrid model’s performance of system

identification in terms of membership function, number of
membership and epoch number is presented in Table 8.



Table 8. Proposed hybrid model performance

NDS HM
MF NM NE TR T MSE C RTM
gauss2mf 2 1000 900 100 5.9144x10° 0.99485 20
gauss2mf 2 5000 900 100 5.8115x10° 0.99490 102
gauss2mf 2 10000 900 100 5.8187x10° 0.99490 203
gauss2mf 3 1000 900 100 6.2953x10° 0.99455 128
gauss2mf 3 5000 900 100 6.2294x10° 0.99457 632
gauss2mf 3 10000 900 100 6.5483x10° 0.99431 1346
gaussmf 2 1000 900 100 5.9588x10° 0.99475 19
gaussmf 2 5000 900 100 5.9577x10° 0.99475 96
gaussmf 2 10000 900 100 5.9564x10° 0.99475 190
gaussmf 3 1000 900 100 6.3496x10° 0.99439 132
gaussmf 3 5000 900 100 6.4853x10° 0.99427 659
gaussmf 3 10000 900 100 6.6535x10° 0.99412 1237
gbellmf 2 1000 900 100 6.0544x10° 0.99466 22
gbellmf 2 5000 900 100 6.0417x10° 0.99468 94
gbellmf 2 10000 900 100 6.0468x10° 0.99467 15
gbellmf 3 1000 900 100 8.5860x10° 0.99267 18
gbellmf 3 5000 900 100 7.1000x10° 0.99380 643
gbellmf 3 10000 900 100 6.7246x10° 0.99410 1276

MF=membership function,
NE=number

of

epoch,

NM=number of membership,

TR=

training,

T=

test,
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Table 9. MSE, correlation and run time values for example-

\Y
Type of Model MSE Correlation Run Time(sec)
Hammerstein 1.02608 0.87619 0.05
Wiener 0.90383 0.89176 0.03
Hybrid (Proposed) 0.88671 0.89378 18

[

E)
samples

T T T T T

[

E)
samples
T

Amplitude

i

sred Outpu
Hybrg Mocel Output

o 1 ) %
samples

Figure 10. Simulated response comparisons of example-V

0

C=correlation, RTM=run time(sec), NDS= number of data
samples, HM= hybrid model.

Proposed hybrid model’s performance of system
identification in terms of membership function, number of
membership and epoch number is presented in Table 10.

Table 10. Proposed hybrid model performance

Figure 9. Simulated response comparisons of example-1V

4.5. Example-V

In this example, considering the structure given in Figure
4 and 5 unknown Volterra system [48,49], is chosen as in
Eg. (18). The unknown system is identified with
Hammerstein, Wiener and proposed hybrid models.
d(n) = —0.64x(n) + x(n — 2) — 0.9x%(n) + x>(n — 1) (18)
Model successes were compared according to MSE,
correlation and run time values, and the results are
presented in Table 9. According to these comparisons
proposed hybrid model identifies the unknown system with
the lowest error. Also visual results are shown in Figure 10.

NDS HM
MF NM NE TR T MSE C RTM
gauss2mf 2 1000 900 100 0.90132 0.89189 7
gauss2mf 2 5000 900 100 0.90289 0.89169 36
gauss2mf 2 10000 900 100 0.90300 0.89168 71
gauss2mf 3 1000 900 100 0.88671 0.89378 18
gauss2mf 3 5000 900 100 0.88811 0.89357 93
gauss2mf 3 10000 900 100 0.88815 0.89359 196
gaussmf 2 1000 900 100 0.90511 0.89140 6
gaussmf 2 5000 900 100 0.90441 0.89149 29
gaussmf 2 10000 900 100 0.90443 0.89149 62
gaussmf 3 1000 900 100 0.90232 0.89176 16
gaussmf 3 5000 900 100 0.90339 0.89163 90
gaussmf 3 10000 900 100 0.90468 0.89147 163
gbellmf 2 1000 900 100 0.90039 0.89202 6
gbellmf 2 5000 900 100 0.89842 0.89227 33
gbellmf 2 10000 900 100 0.90493 0.89142 68
gbellmf 3 1000 900 100 0.91063 0.89074 18
gbellmf 3 5000 900 100 0.91071 0.89073 89
gbellmf 3 10000 900 100 0.91073 0.89072 155

MF=membership function, NM=number of membership,
NE=number of epoch, TR= training, T= test,
C=correlation, RTM=run time(sec), NDS= number of data
samples, HM= hybrid model.

Simulation  samples, linear ARMA, nonlinear
Hammerstein, Bilinear and Volterra systems are identified
through various studies. According to results of all
simulation samples, the proposed Hybrid model is more
successful in terms of MSE and correlation value compared
to other models. In Figures 6-10 and Tables 1-10 the results
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are analysed. But the proposed model is unsuccessful in
terms of run time, compared to other models. This is the
disadvantage of the proposed model.

5. CONCLUSION

This study aims to improve a new hybrid model for system
identification area. At this point authors designed a soft-
switching hybrid model through a NF network to improve
the performance of block-oriented models in system
identification area. System identification studies are
carried out to determine the performance of proposed
model. So, different structure unknown systems are
identified with both proposed model and different type
models.

As disadvantage of the model, proposed model has more
complex structure compared to Hammerstein and Wiener
models. Also the proposed model requires a lot of
parameter estimation. Thus, the run time is increasing. In
order to decrease the run time in simulations, NF network
based SSM forms are tested different membership
functions, different membership numbers and different
number of epoch. The details are presented in Table
2,4,6,8,10. According to these results, it is concluded that
working time is prolonged due to the increase of
membership number and number of epochs. Membership
function, number of membership and number of epoch
simulation example details are as follows; For Example-I
in Table 2, the control parameters for hybrid model
performance tests the least MSE (0.38710) and the ideal
correlation relation (0.84100) are as follows; membership
function= gauss2mf, number of membership=2 ve number
of epoch=10000. For Example-Il in Table 4, the control
parameters for hybrid model performance tests the least
MSE (0.04013) and the ideal correlation relation (0.95429)
are as follows; membership function= gauss2mf, number
of membership=2ve number of epoch=1000. For
Example-I11 in Table 6, the control parameters for hybrid
model performance tests the least MSE (0.10051) and the
ideal  correlation  relation  (0.90206) are as
follows; membership function= gaussmf, number of
membership=2 ve number of epoch=5000. For Example-
IV in Table 8, the control parameters for hybrid model
performance tests the least MSE (5.8115 x10°°) and the
ideal  correlation  relation  (0.99490) are as
follows; membership function= gauss2mf, number of
membership=2 ve number of epoch=5000. For Example-V
in Table 10, the control parameters for hybrid model
performance tests the least MSE (0.88671) and the ideal
correlation relation (0.89378) are as follows; membership
function= gauss2mf, number of membership=3 ve number
of epoch=1000.

But as advantage has a successful identification tool.
According to MSE and correlation results, the systems can
be identified with less error in proposed model compared
to simple Hammerstein or Wiener model. In addition the
author will try to identify real system problems in future
studies.

REFERENCES

[1] M. Peker, O. Ozkaraca, B. Kesimal, “Enerji tasarruflu bina tasarmmi
icin 1sitma ve sogutma yiiklerini regresyon tabanlt makine 6grenmesi
algoritmalari ile modelleme”, Bilisim Teknolojileri Dergisi, 10(4),
443-449, 2017.

[2] U. Kése, E. Ulker, “Pareto zarflama-temelli secim algoritmasi
(PESA) ile B-spline egri tahmini”, Bilisim Teknolojileri Dergisi,
5(2), 25-31, 2012.

[3] S. Ozden, A. Oztiirk, “Yapay sinir aglar1 ve zaman serileri yontemi
ile bir endiistri alanmnmn (ivedik OSB) elektrik enerjisi ihtiyag
tahmini”, Bilisim Teknolojileri Dergisi, 11(3), 255-261, 2018.

[4] T. Schweickhardt, F. Allgower, "On system gains, nonlinearity
measures, and linear models for nonlinear systems", I|EEE
Transactions on Automatic Control, 54, 62-78, 2009.

[5] N.B. Hizir, M.Q. Phan, R. Betti, R.W. Longman, "ldentification of
discrete-time bilinear systems through equivalent linear models",
Nonlinear Dynamics, 69, 2065-2078, 2012.

[6] Y. Mao, F. Ding, Y. Liu, "Parameter estimation algorithms for
Hammerstein time-delay systems based on the orthogonal matching
pursuit scheme", IET Signal Processing, 11, 265-274, 2017.

[7] F. Ding, X.P. Liu, G. Liu, "ldentification methods for Hammerstein
nonlinear systems", Digital Sig. Proc., 21, 215-238, 2011.

[8] S. Ozer, H. Zorlu, "ldentification of bilinear systems using
differential evolution algorithm", Sadhana Academy Proceedings in
Engineering Sciences, 36, 281-292, 2011.

[9] F.Guo, A new identification method for wiener and hammerstein
systems, Doktora Tezi, Karlsruhe Universitesi, Angewandte
Informatik Bolimi, 2004.

[10]L.A. Aguirre, M.C.S. Coelhoand, M.V. Correa, "On the
interpretation and practice of dynamical differences between
hammerstein and wiener models”, IEE P-Contr. Theor. Ap., 152,
349-356, 2005.

[11]J. Lee, W. Cho, T.F. Edgar, "Control system design based on a
nonlinear first-order plus time delay model”, J Process Contr., 7, 65-
73, 1997.

[12]H.X. Li, "ldentification of hammerstein models using genetic
algorithms", IEE P-Contr. Theor. Ap., 146, 499-504, 1999.

[13]K.S. Narendra, P.G. Galman, "An iterative method for the
identification of nonlinear systems using a hammerstein model",
IEEE T. Automat. Contr., 11, 546-550, 1966.

[14]L. Yu,J. Zhang, Y. Liao, J. Ding, "Parameter estimation error bounds
for hammerstein nonlinear finite impulsive response models", Appl.
Math. Comput., 202, 472-480, 2008.

[15]A. Gotmare, R. Patidar, N.V. George, "Nonlinear system
identification using a cuckoo search optimized adaptive hammerstein
model", Expert Syst. Appl., 42, 2538-2546, 2015.

[16]H.N. Al-Duwaish, "A genetic approach to the identification of linear
dynamical systems with static nonlinearities”, International Journal
of Systems Science, 31, 307- 313, 2010.

[17]D.L. Zhang, Y.G. Tang, J.H. Ma, X.P. Guan, "ldentification of
Wiener model with discontinuous nonlinearities using differential
evolution”, International Journal of Control, Automation and
Systems, 11, 511-518, 2013.



[18]H. Al-Duwaish, M.N. Karim, V. Chandrasekar, "Use of multilayer
feedforward neural networks in identification and control of Wiener
model", IEE Proc., part D., 143, 255-258, 1996.

[19]S. Haykin, Neural Networks: A Comprehensive Foundation,
Macmillan College Publishing Company, New York, 1994.

[20]J.T.R. Jang, C.T. Sun, E. Mizutani, Neuro-Fuzzy and Soft
Computing, Prentice Hall, PTR, 1997.

[21]M.E. Yuksel, A. Basturk, "Efficient removal of impulse noise from
highly corrupted digital images by a simple neuro-fuzzy operator",
Int. J. Electron. Commun. (AEU), 57, 214-219, 2003.

[22] M.E. Yuksel, E. Besdok, "A simple neuro-fuzzy impulse detector for
efficient blur reduction of impulse noise removal operators for digital
images", IEEE Trans. Fuzzy Syst., 12, 854-865, 2004.

[23]H. Zorlu, Identification of nonlinear systems with soft computing
techniques, Doktora Tezi, Erciyes Universitesi, Fen Bilimleri
Enstitiisii, 2011.

[24]L. Jia, M.S. Chiu, S.S. Ge, "A noniterative neuro-fuzzy based
identification method for Hammerstein processes”, Journal of
Process Control., 15, 749-761, 2005.

[25]J.S. Wang, Y.P. Chen, "A Hammerstein recurrent neuro-fuzzy
network with an online minimal realization learning algorithm",
IEEE Transactions on Fuzzy Systems, 16, 1597-1612, 2008.

[26]J. Zhai, J. Zhou, L. Zhang, J. Zhao, W. Hong, "Dynamic behavioral
modeling of power amplifiers using ANFIS based Hammerstein",
IEEE Microwave and Wireless Compo. Letters, 18, 704-706, 2008.

[27] E. Mohammadi, M. Montazeri-Gh, "A new approach to the Gray-Box
identification of Wiener models with the application of gas turbine
engine modelling”, J. Eng. Gas Turbines Power, 137, 1521-1533,
2015.

[28]C.L. Chen, C.Y. Chiu, "A fuzzy neural approach to design of a
Wiener printer model incorporated into model-based digital half
toning", Applied Soft Computing, 12, 1288-1302, 2012.

[29]L. Yong, T. Ying-Gan, "Chaotic system identification based on a
fuzzy Wiener model with particle swarm optimization”, Chinese
Physics Letters, 27, 1-4, 2010.

[30]R. Sujendran, M. Arunachalam, "Hybrid fuzzy adaptive Wiener
filtering with optimization for intrusion detection", ETRI Journal, 37,
1-10, 2015.

[31]J. Wang, Q. Zhang, L. Ljung, "Revisiting the two-stage algorithm for
hammerstein system identification", Chinese Control Conf. (CDC),
Shanghai, 3620-3625, 2009.

[32]H.N. Al-Duwaish, "ldentification of Wiener model using genetic
algorithms", IEEE GCC Conf. & Exhib., Kuwait City,1-4, 2009.

[33]F. Sbeity, J.M. Girault, S. Ménigot, J. Charara, "Sub and ultra
harmonic extraction using several hammerstein models"”, Int. Conf.
Comp. Syst. (ICCS), Morocco, 1-5, 2012.

[34]N. Wiener, Nonlinear Problems in Random Theory, Wiley, New
York, 1958.

BiLiSiM TEKNOLOJILERI DERGISI, CILT: 12, SAYI: 1, OCAK 2019

[35]M. Schetzen, The Volterra and Wiener Theories of Nonlinear
Systems, Krieger, Malabar, 1980.

[36]P. Celka, N.J. Bershad, J.M. Vesin, "Fluctuation analysis of
stochastic gradient identification of polynomial Wiener systems",
IEEE Transactions on Signal Proc., 48, 1820-1825, 2000.

[37]S. Ozer, H. Zorlu, "Neuro-Fuzzy soft-switching hybrid filter for
impulsive noisy environments", Turk. J. Elec. Eng. & Comp., 19, 73-
85, 2011.

[38] A. Basturk, M. E. Yuksel, "Neuro-Fuzzy soft switching hybrid filter
for impulse noise removal from digital images", Proc. of the IEEE
Signal Proces. Com. Ap. Conf. (SIU), Kayseri, 13-16, 2005.

[39]M.A. Soyturk, A. Basturk, M. E. Yuksel, "A novel fuzzy filter for
speckle noise removal”, Turk. J. Elec. Eng. & Comp., 22, 1367-1381,
2014.

[40]Z. Wang, Y. Shen, Z. Ji, F. Ding, "Filtering based recursive least
squares algorithm for Hammerstein FIR-MA systems", Nonlinear
Dynamic, 73, 1045-1054, 2013.

[41]S. Mete, S. Ozer, H. Zorlu, "System identification application using
hammerstein ~ model”, Sadhana-Academy  Proceedings in
Engineering Sciences, 41, 597-605, 2016.

[42]S.J. Nanda, G. Panda, B. Majhi, "Development of immunized PSO
algorithm and its application to Hammerstein model identification”,
IEEE Congress on Evoluti. Comp., Trondheim, 3080-3086, 2009.

[43]M. H. Calp, “Isletmeler igin Personel Yemek Talep Miktarinin Yapay
Sinir Aglart Kullanilarak Tahmin Edilmesi”, Politeknik Dergisi,
2019. DOLI: 10.2339/politeknik.444380. (Basimda)

[44]H. Zorlu, S. Mete, S. Ozer, “System identification using hammerstein
model optimized with artificial bee colony algorithm”, Omer
Halisdemir University Journal of Engineering Sciences, 7(1), 83-98,
2018.

[45]S. Mete, S. Ozer, H. Zorlu, "System identification using
Hammerstein  model optimized with differential evolution
algorithm”,  International ~ Journal of  Electronics and

Communications (AEU), 70, 1667-1675, 2016.

[46]S. Ozer, H. Zorlu, S. Mete, “A comparison study of system
identification using hammerstein model”, IEEE 2015 11th
International Conference on Innovations in Information
Technology (11T'15), Dubai, 367-372, 2015.

[47]J. Jeraj, V.J. Mathews, "Stochastic mean-square performance
analysis of an adaptive hammerstein filter”, IEEE Transaction on
Signal Proces., 54, 2168-2177, 2006.

[48]H. Zorlu, S. Ozer, "Identification of nonlinear volterra systems using
differential evolution algorithm”, National Conf. on Electrical,
Electronics and Computer Engineering, Bursa, 630-633, 2010.

[49]S. Mete, S. Ozer, H. Zorlu, “System identification using hammerstein
model”, 22nd IEEE Signal Processing and Communications
Applications Conference, Trabzon, 1303-1306, 2014.



