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Abstract: In this paper, the trial equation method is presented to seekthe exact solutions of two nonlinear partial differential
equations (NLPDEs), namely, the Hirota equation and the Hirota-Maccari system. The obtained solutions are solitary, topological,
singular solitons and singular periodic waves. This methodis powerful, effective and it can be extended to many NLPDEs.
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1 Introduction

In science, many important phenomena can be described by nonlinear partial differential equations. Seeking the exact

solutions for these equations plays an important role in thestudy on the dynamics of those phenomena which appear in

various scientific and engineering fields, such as solid state physics, fluid mechanics, chemical kinetics, plasma physics,

population models, and nonlinear optics [1-17]. Many powerful methods have been proposed to obtain exact and

approximated solutions of these models such as inverse scattering method [2,3], Hirota bilinear transformation [7], the

F-expansion method [11,12,13], the modified simple equation method [10,11], the (G′/G) -expansion method [12] and

the trial equation method [13,14]. In the present work, we use the trial equation method for seeking the exact solutions

for two important physical models, the Hirota equation and Hirota-Maccari System [16,17]

iut + uxx +2|u|2u+ iαuxxx +6iα|u|2ux = 0.

which defines the propagation of the femto-second soliton pulse in the single-mode fibers, whereu= u(x, t) is the complex

amplitude of the slowly varying optical field, the subscripts t andx , respectively, demonstrate the temporal and spatial

partial derivatives andα is a small parameter andut ,uxx, |u|
2u,uxxx and |u|2ux indicate the linear evolution, the group

velocity dispersion (GVD), self-phase modulation, third-order dispersion, and self-steepening, respectively.

iut + uxy + iuxxx + uv− i|u|2ux = 0,

3vx +
(

|u|2
)

y
= 0,

whereu = u(x,y, t) and v = v(x,y, t) represent the complex scalar field and the real scalar field, respectively, whilet

represents the temporal variablex,y are the independent spatial variables.
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2 Description of the trial equation method

In this subsection we outline the main steps of the trial equation method [13,14] as following:

let us consider the nonlinear evolution equation (NLEE):

F (u,ut ,ux,uxx,uxt , ...) = 0, (1)

whereu = u(x, t) is an unknown function,F is a polynomial inu and its various partial derivativesut ,ux with respect to

t,x respectively, in which the highest order derivatives and nonlinear terms are involved.

Using the traveling wave transformation

u(x, t) = u(ξ ), ξ = k(x− ct), (2)

wherek,c are constant to be determined later. Then Eq. (1) is reduced to a nonlinear ordinary differential equation of the

form

P
(

u,u′,u′′, ...
)

= 0. (3)

Step 1. Consider the trial equation
(

u′
)2

= F(u) =
s

∑
l=0

alu
l , (4)

whereal ,(l = 0,1, ...,s) are constants to be determined. Substituting Eq. (4) and other derivative terms such asu′′ or u′′′

and so on into Eq.(3) yields a polynomialG(u) of u . According to the balance principle we can determine the value ofs .

Setting the coefficients ofG(u) to zero, we get a system of algebraic equations. Solving thissystem, we shall determine

c,k and values ofa0,a1, ...,as .

Step 2. Rewrite Eq. (4) by the integral form

±(ξ − ξ0) =

∫

1
√

F(u)
du. (5)

According to the complete discrimination system of the polynomial, we classify the roots ofF(u), and solve the integral

equation (5). Thus, we obtain the exact solutions to Eq. (1).

3 Applications

In this section, we apply the trial equation method to solve the proposed models

3.1 The Hirota equation

The Hirota equation can be written as

iut + uxx +2|u|2u+ iαuxxx +6iα|u|2ux = 0. (6)

In this section, we employ the trial equation method to Eq. (6). To this end, we use the wave transformation

u(x, t) =U(ξ )ei(px+qt), ξ = x+ωt. (7)
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where p,q,ω are constants to be determined later. Now Eq. (6) is reduced to the following two ordinary differential

equations:
(

p3α − p2− q
)

U(ξ )+ (1−3α p)U ′′(ξ )+2(1−3α p)U3(ξ ) = 0, (8)

(

ω +2p−3α p2)U ′(ξ )+αU ′′′(ξ )+6αU2(ξ )U ′(ξ ) = 0. (9)

From Eqs. (8) and (9), we can deduce that

ω =
α
(

p3α − p2− q
)

1−3α p
+3α p2−2p, (10)

and

U ′′(ξ )+
(

p3α − p2− q
1−3α p

)

U(ξ )+2U3(ξ ) = 0. (11)

BalancingU ′′ with U3 in Eq. (11), then we gets = 4. Using the solution procedure of the trial equation method, we obtain

the system of algebraic equations as follows:
a1

2
= 0, (12)

a2+
p3α − p2− q

1−3α p
= 0, (13)

3
2

a3 = 0, (14)

2(a4+1) = 0. (15)

By solving the above system of algebraic equations, we obtain the following results:

a1 = 0, a2 =
−p3α + p2+ q

1−3α p
, a3 = 0, a4 =−1. (16)

By substituting these results into Eqs. (4) and (5), we get

±(ξ − ξ0) =
∫

1
√

a0+
−p3α+p2+q

1−3α p U2−U4
dU. (17)

wherea0 is an arbitrary real constant. Now, we discuss two cases as following:

Case 1: If we seta0 = 0 in Eq. (17) and integrating with resect toU , we get the following exact solution of Eq. (6)

u(x, t) =±

√

−p3α + p2+ q
1−3α p

sech





√

−p3α + p2+ q
1−3α p

(x+ωt − ξ0)



ei(px+qt), (18)

u(x, t) =±

√

p3α − p2− q
1−3α p

csch





√

−p3α + p2+ q
1−3α p

(x+ωt − ξ0)



ei(px+qt). (19)
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These solutions are non-topological and singular soliton solutions which are valid for

−p3α + p2+ q
1−3α p

> 0. (20)

u(x, t) =±

√

−p3α + p2+ q
1−3α p

sec





√

p3α − p2− q
1−3α p

(x+ωt− ξ0)



ei(px+qt), (21)

u(x, t) =∓

√

−p3α + p2+ q
1−3α p

csc





√

p3α − p2− q
1−3α p

(x+ωt− ξ0)



ei(px+qt). (22)

These solutions are couple of singular periodic solutions which are valid for

−p3α + p2+ q
1−3α p

< 0. (23)

Case 2: If we seta0 = −
(−α p3+p2+q)

2

4(1−3α p)2
in Eq. (17) and integrating with resect toU , we get the following exact solution

of Eq. (6)

u(x, t) =±

√

−p3α + p2+ q
2(1−3α p)

tanh

[
√

p3α − p2− q
2(1−3α p)

(x+ωt − ξ0)

]

ei(px+qt), (24)

u(x, t) =±

√

−p3α + p2+ q
2(1−3α p)

coth

[

√

p3α − p2− q
2(1−3α p)

(x+ωt − ξ0)

]

ei(px+qt). (25)

These solutions are topological and singular 1-soliton solutions which are valid for

−p3α + p2+ q
1−3α p

< 0. (26)

u(x, t) =±

√

p3α − p2− q
2(1−3α p)

tan

[

√

−p3α + p2+ q
2(1−3α p)

(x+ωt − ξ0)

]

ei(px+qt), (27)

u(x, t) =∓

√

p3α − p2− q
2(1−3α p)

cot

[

√

−p3α + p2+ q
2(1−3α p)

(x+ωt − ξ0)

]

ei(px+qt). (28)

These solutions are singular periodic solutions which are valid for

−p3α + p2+ q
1−3α p

> 0. (29)

3.2 The Hirota-Maccari system

The Hirota-Maccari system can be written as

iut + uxy + iuxxx + uv− i|u|2ux = 0,

3vx +
(

|u|2
)

y
= 0,

(30)
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In this section, we employ the trial equation method to Eq. (30). To this end, we use the wave transformation

u(x,y, t) =U(ξ )ei(px+qy+rt), v(x,y, t) =V (ξ ), ξ = x+ y+ωt. (31)

wherep,q,r,ω are constants to be determined later. Now Eq. (30) is reducedto the following two ordinary differential

equations:

3(1−3p)U ′′+3(p3− pq− r)U +(3p−1)U3 = 0,

V =−
1
3

U2, p 6=
1
3

(32)

BalancingU ′′ with U3 in Eq. (32), then we gets = 4. Using the solution procedure of the trial equation method, we obtain

the system of algebraic equations as follows:

(6a4−1)(−(3p−1)) = 0, (33)

9
2

a3(1−3p) = 0, (34)

3
(

a2(1−3p)+ p3− pq− r
)

= 0, (35)

3
2

a1(1−3p) = 0. (36)

By solving the above system of algebraic equations, we obtain the following results:

a1 = 0, a2 =
p2− pq− r

3p−1
, a3 = 0, a4 =

1
6
. (37)

By substituting these results into Eqs. (4) and (5), we get

±(ξ − ξ0) =

∫

1
√

a0+
p2−pq−r

3p−1 U2+ 1
6U4

dU. (38)

wherea0 is an arbitrary real constant. Now, we discuss two cases as following:

Case 1: If we seta0 = 0 in Eq. (38) and integrating with resect toU , we get the following exact solution of Eq. (30)

u(x,y, t) =±

√

6(−p2+ pq+ r)
3p−1

sech





√

p2− pq− r
3p−1

(x+ y+ωt− ξ0)



ei(px+qy+rt), (39)

v(x,y, t) =
2(p2− pq− r)

3p−1
sech2





√

p2− pq− r
3p−1

(x+ y+ωt− ξ0)



 , (40)

u(x,y, t) =±

√

6(p2− pq− r)
3p−1

csch





√

p2− pq− r
3p−1

(x+ y+ωt− ξ0)



ei(px+qy+rt), (41)
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v(x,y, t) =
2(−p2+ pq+ r)

3p−1
csch2





√

p2− pq− r
3p−1

(x+ y+ωt− ξ0)



 . (42)

These solutions are non-topological and singular soliton solutions which are valid for

p2− pq− r
3p−1

> 0.

u(x,y, t) =∓

√

6(−p2+ pq+ r)
3p−1

sec





√

−p2+ pq+ r
3p−1

(x+ y+ωt− ξ0)



ei(px+qy+rt), (43)

v(x, ,y, t) =
2(p2− pq− r)

3p−1
sec2





√

−p2+ pq+ r
3p−1

(x+ y+ωt− ξ0)



 , (44)

u(x,y, t) =±

√

6(−p2+ pq+ r)
3p−1

csc





√

−p2+ pq+ r
3p−1

(x+ y+ωt− ξ0)



ei(px+qy+rt), (45)

v(x,y, t) =
2(p2− pq− r)

3p−1
csc2





√

−p2+ pq+ r
3p−1

(x+ y+ωt− ξ0)



 . (46)

These solutions are couple of singular periodic solutions which are valid for

p2− pq− r
3p−1

< 0.

Case 2: If we seta0 =
3(p3−pq−r)

2

2(3p−1)2
in Eq. (38) and integrating with resect toU , we get the following exact solution of

Eq. (30)

u(x,y, t) =±

√

3(−p2+ pq+ r)
3p−1

tanh

[

√

−p2+ pq+ r
2(3p−1)

(x+ y+ωt− ξ0)

]

ei(px+qy+rt), (47)

v(x,y, t) =
(p2− pq− r)

3p−1
tanh2

[

√

−p2+ pq+ r
2(3p−1)

(x+ y+ωt− ξ0)

]

, (48)

u(x,y, t) =±

√

3(−p2+ pq+ r)
3p−1

coth

[

√

−p2+ pq+ r
2(3p−1)

(x+ y+ωt− ξ0)

]

ei(px+qy+rt), (49)

v(x,y, t) =
(p2− pq− r)

3p−1
coth2

[

√

−p2+ pq+ r
2(3p−1)

(x+ y+ωt− ξ0)

]

. (50)

These solutions are topological and singular 1-soliton solutions which are valid for

p2− pq− r
3p−1

< 0.
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u(x,y, t) =±

√

3(p2− pq− r)
3p−1

tan

[
√

p2− pq− r
2(3p−1)

(x+ y+ωt− ξ0)

]

ei(px+qy+rt), (51)

v(x,y, t) =
(−p2+ pq+ r)

3p−1
tan2

[

√

p2− pq− r
2(3p−1)

(x+ y+ωt− ξ0)

]

, (52)

u(x,y, t) =∓

√

3(p2− pq− r)
3p−1

cot

[

√

p2− pq− r
2(3p−1)

(x+ y+ωt− ξ0)

]

ei(px+qy+rt), (53)

v(x,y, t) =
(−p2+ pq+ r)

3p−1
cot2

[

√

p2− pq− r
2(3p−1)

(x+ y+ωt− ξ0)

]

. (54)

These solutions are singular periodic solutions which are valid for

p2− pq− r
3p−1

> 0.

4 Conclusions

In this paper, we successfully applied the proposed method to solve the Hirota equation and the Hirota-Maccari system.

As a result of this application different types of solitons are obtained such as solitary, topological, singular soliton, singular

periodic waves etc. The constraint conditions for the existence of these solutions are given.
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