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Weingarten Map of the Hypersurface in Euclidean
4-Space and its Applications
Salim Yüce

Abstract
In this paper, by taking into account the beginning of the hypersurface theory in Euclidean space E4, a practical
method for the matrix of the Weingarten map (or the shape operator) of an oriented hypersurface M3 in E4 is
obtained. By taking this efficient method, it is possible to study of the hypersurface theory in E4 which is analog
the surface theory in E3. Furthermore, the Gaussian curvature, Mean curvature, fundamental forms and Dupin
indicatrix of M3 is introduced.
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1. Introduction

Let x =
4
∑

i=1
xiei, y =

4
∑

i=1
yiei, z =

4
∑

i=1
ziei be three vectors in R4, equipped with the standard inner product given by

〈x,y〉= x1y1 + x2y2 + x3y3 + x4y4,

where {e1,e2,e3,e4} is the standard basis of R4. The norm of a vector x ∈ R4 is given by ‖x‖=
√
〈x,x〉. The vector product

(or the ternary product or cross product) of the vectors x,y,z ∈ R4 is defined by

x⊗ y⊗ z =

∣∣∣∣∣∣∣∣
e1 e2 e3 e4
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

∣∣∣∣∣∣∣∣ . (1)

Some properties of the vector product are given as follows: (for the vector product in R4, see [1, 2, 5]

i. 
e1⊗ e2⊗ e3 =−e4
e2⊗ e3⊗ e4 = e1
e3⊗ e4⊗ e1 =−e2
e4⊗ e1⊗ e2 = e3
e3⊗ e2⊗ e1 = e4


ii.

‖x⊗ y⊗ z‖2 =

∣∣∣∣∣∣
〈x,x〉 〈x,y〉 〈x,z〉
〈y,x〉 〈y,y〉 〈y,z〉
〈z,x〉 〈z,y〉 〈z,z〉

∣∣∣∣∣∣ (2)



iii. 〈x⊗ y⊗ z, t〉= det(x,y,z, t).

Let M3 be an oriented hypersurface in 4-dimensional Euclidean space E4. Let examine the implicit and parametric equations
of M3. Firstly; the implicit equation of M3 can be defined by

M3 =
{

X ∈ E4| f : U ⊂ E4 di f f .→ R, f (X) = const.
−→
∇ f |P 6= 0, P ∈M3

}
(3)

where
−→
∇ f |P is the gradient vector of M3. The unit normal vector field of M3 is defined by N =

−→
∇ f∥∥∥−→∇ f
∥∥∥ .

The Weingarten map (or the shape operator) of M3 is defined by

S : χ
(
M3)→ χ

(
M3) , S (X) = DX N,

where D is the connection of E4 and χ
(
M3
)

is the space of vector fields of M3. Then the Gauss curvature K and mean curvature
H of M3 are given by K = detS and H = 1

3 TrS, respectively. Also, the q− th fundamental forms of M3 are given by [3],

Iq (X ,Y ) =
〈
Sq−1 (X) ,Y

〉
, ∀ X ,Y ∈ χ

(
M3) .

Secondly, to examine parametric form of the hypersurface M3 given by the implicit equation in the equation (3), let consider

φ : U ⊂ R3→ E4

(u,v,w)→ φ (u,v,w) = (ϕ1 (u,v,w) ,ϕ2 (u,v,w) ,ϕ3 (u,v,w) ,ϕ4 (u,v,w))

where (u,v,w) ∈ R⊂ R3 and ϕi,1≤ i≤ 4 are the real functions defined on R.
M3 = φ (R)⊂ E4 is a hypersurface if only if the frame field {φu,φv,φw} of M3 is linearly independent system. It can be also
seen by taking the Jacobian matrix [φ ]∗ =

[
φu φv φw

]
of the differential map of φ . It is clear that if rank [φ ]∗ = 3, then

the vector system {φu,φv,φw} is linearly independent. Furthermore, φu,φv,φw are the tangent vectors of the parameter curves
α (u) = φ (u,v0,w0), β (v) = φ (u0,v,w0) and γ (w) = φ (u0,v0,w), respectively. Then the unit normal vector field of M3 is
defined by

N =
φu⊗φv⊗φw

‖φu⊗φv⊗φw‖
(4)

and it has the following properties:

〈N,φu〉= 〈N,φv〉= 〈N,φw〉= 0. (5)

By using the Weingarten operator the below equalities can be written

S (φu) = DφuN =
∂N
∂u

S (φv) = DφvN =
∂N
∂v

S (φw) = DφwN =
∂N
∂w

.

2. The matrix of the Weingarten map of hypersurface M3 in E4

In this original section, a practical method for the matrix of the Weingarten map of hypersurface M3 in E4 is introduced.
Let M3 be an oriented hypersurface with the parametric equation φ (u,v,w). Then {φu,φv,φw} is linearly independent and

we also can write

S (φu) = a11 φu +a21 φv +a31 φw
S (φv) = a12 φu +a22 φv +a32 φw
S (φw) = a13 φu +a23 φv +a33 φw

(6)
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and the Weingarten matrix is given by

S =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,

where ai j ∈ R,1≤ i, j ≤ 3. Using the equation (6), we have the following systems of linear equations:

 〈S (φu) ,φu〉= a11φ11 +a21φ12 +a31φ13
〈S (φu) ,φv〉= a11φ12 +a21φ22 +a31φ23
〈S (φu) ,φw〉= a11φ13 +a21φ23 +a31φ33, 〈S (φv) ,φu〉= a12φ11 +a22φ12 +a32φ13
〈S (φv) ,φv〉= a12φ12 +a22φ22 +a32φ23
〈S (φv) ,φw〉= a12φ13 +a22φ23 +a32φ33, 〈S (φw) ,φu〉= a13φ11 +a23φ12 +a33φ13
〈S (φw) ,φv〉= a13φ12 +a23φ22 +a33φ23
〈S (φw) ,φw〉= a13φ13 +a23φ23 +a33φ33,

(7)

where

〈φu,φu〉= φ11, 〈φu,φv〉= φ12, 〈φu,φw〉= φ13,
〈φv,φv〉= φ22, 〈φv,φw〉= φ23, 〈φw,φw〉= φ33.

(8)

Since the system {φu,φv,φw} is linearly independent, using the equations (2) and (8), we have

‖φu⊗φv⊗φw‖2 =

∣∣∣∣∣∣
φ11 φ12 φ13
φ12 φ22 φ23
φ13 φ23 φ33

∣∣∣∣∣∣ 6= 0.

Also, 3-linear equation systems given by the equation 7 have the determinant∣∣∣∣∣∣
φ11 φ12 φ13
φ12 φ22 φ23
φ13 φ23 φ33

∣∣∣∣∣∣= ∆.

Because of the property ‖φu⊗φv⊗φw‖2 = ∆ 6= 0, these 3-linear equations systems can be solved by Cramer method. Then
using the equations (6), (7) and (8) the matrix S of the Weingarten map in M3 can be found. Although S is a symmetric linear
operator, the matrix presentation (ai j) of S with respect to {φu,φv,φw} is not necessary to be symmetric because the system
{φu,φv,φw} is not orthonormal.

2.1 Special Case
If we take the orthogonal frame field {φu,φv,φw} of the hypersurface M3, then we have φ12 = φ13 = φ23 = 0 from the equation
(8). Then, the system

{
U = φu

‖φu‖ , V = φv
‖φv‖ , W = φw

‖φw‖

}
is an orthonormal frame field. Furthermore, we can write the following

equations

S (U) = c1 U + c2 V + c3 W
S (V ) = c2 U + c4 V + c5 W
S (W ) = c3U + c5 V + c6 W,

(9)

then, the matrix of the Weingarten map can be calculated as follows:

S =

 c1 c2 c3
c2 c4 c5
c3 c5 c6

 .

3 Vol.1, No.1, 1-8, 2019



By using the equations (4), (6) and (9), the coefficients ci ∈ R, 1≤ i≤ 6 can be calculated as follows:

c1 = 〈S (U) ,U〉= 1
‖φu‖2

〈
∂N
∂u ,φu

〉
,

c2 = 〈S (U) ,V 〉= 1
‖φu‖

1
‖φv‖

〈
∂N
∂u ,φv

〉
,

c3 = 〈S (U) ,W 〉= 1
‖φu‖

1
‖φw‖

〈
∂N
∂u ,φw

〉
,

c4 = 〈S (V ) ,V 〉= 1
‖φv‖2

〈
∂N
∂v ,φv

〉
,

c5 = 〈S (V ) ,W 〉= 1
‖φv‖

1
‖φw‖

〈
∂N
∂v ,φw

〉
,

c6 = 〈S (W ) ,W 〉= 1
‖φw‖2

〈
∂N
∂w ,φw

〉
.

(10)

By using the equation (5), we can also write six equations as below:〈
∂N
∂u ,φu

〉
+ 〈N,φuu〉= 0,

〈
∂N
∂u ,φv

〉
+ 〈N,φuv〉= 0,

〈
∂N
∂u ,φw

〉
+ 〈N,φuw〉= 0,

〈
∂N
∂v ,φv

〉
+ 〈N,φvv〉= 0,

〈
∂N
∂v ,φw

〉
+ 〈N,φvw〉= 0,

〈
∂N
∂w ,φw

〉
+ 〈N,φww〉= 0.

(11)

Also, by using the equations (2) and (8), we find

‖φu⊗φv⊗φw‖2 =

∣∣∣∣∣∣
φ22 0 0
0 φ11 0
0 0 φ33

∣∣∣∣∣∣= ‖φu‖2 ‖φv‖2 ‖φw‖2. (12)

Hence we find the coefficients c1,c2,c3,c4,c5,c6 of the Weingarten matrix in the equation (9) as follows:

c1 =− 1
‖φu‖3

1
‖φv‖

1
‖φw‖ det(φuu,φu,φv,φw) ,

c2 =− 1
‖φu‖2

1
‖φv‖2

1
‖φw‖ det(φuv,φu,φv,φw) ,

c3 =− 1
‖φu‖2

1
‖φv‖

1
‖φw‖2

det(φuw,φu,φv,φw) ,

c4 =− 1
‖φu‖

1
‖φv‖3

1
‖φw‖ det(φvv,φu,φv,φw) ,

c5 =− 1
‖φu‖

1
‖φv‖2

1
‖φw‖2

det(φvw,φu,φv,φw) ,

c6 =− 1
‖φu‖

1
‖φv‖

1
‖φw‖3

det(φww,φu,φv,φw) .

(13)
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So, by taking into account the equations (4), (12) and (13) we have the symmetric Weingarten matrix

S =


ϕ11
φ11

ϕ12√
φ11φ22

ϕ13√
φ11φ33

ϕ12√
φ11φ22

ϕ22
φ22

ϕ23√
φ22φ33

ϕ13√
φ11φ33

ϕ23√
φ22φ33

ϕ33
φ33

 (14)

where

ϕ11 =−〈φuu,N〉 , ϕ12 =−〈φuv,N〉 , ϕ13 =−〈φuw,N〉 ,
ϕ22 =−〈φvv,N〉 , ϕ23 =−〈φvw,N〉 , ϕ33 =−〈φww,N〉 .

Finally the following theorem can be given for hypersurface M3 in E4:

Theorem 1. Let M3 be an oriented hypersurface in E4. Then the Gaussian curvature and the mean curvature of M3 can be
given by:

K =
ϕ11ϕ22ϕ33 +2ϕ12ϕ13ϕ23−ϕ2

12ϕ33−ϕ2
13ϕ22−ϕ2

23ϕ11

φ11φ22φ33

and

H =
1
3

(
ϕ11

φ11
+

ϕ22

φ22
+

ϕ33

φ33

)
,

respectively.

Proof. By using the equation (14) and the definitions of the Gaussian curvature K and the mean curvature H, the theorem can
be easily proved. �

Example 2. Let M3 be an oriented hypersurface with the implicit equation xy = 1 in E4. The parametric equation of M3 can
be given by

φ (u,v,w) =
(

u,
1
u
,v,w

)
.

Then, we obtain φu⊗φv⊗φw =
(
− 1

u2 ,−1,0,0
)

and the unit normal field N = 1√
1+u4

(
−1,−u2,0,0

)
. By using the orthonormal

basis
{

φu
‖φu‖ ,

φv
‖φv‖ ,

φw
‖φw‖

}
, we have

S
(

φu
‖φu‖

)
= 2u3

(1+u4)
3/2

φu
‖φu‖ ,

S
(

φv
‖φv‖

)
= 0,

S
(

φw
‖φw‖

)
= 0.

So, we find the Weingarten matrix S as:

S =


2u3

(1+u4)
3/2 0 0

0 0 0
0 0 0

 .

Example 3. Let S3 be a hypersphere with the implicit equation x2 + y2 + z2 + t2 = 1 in E4. The parametric equation of S3 can
be given by

φ (u,v,w) = (sinucosvsinw,sinusinvsinw,cosusinw,cosw) .
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Then, {φu,φv,φw} is an orthogonal system. Also we have the orthonormal basis {U,V,W} of S3 such that

U = φu
‖φu‖ = (cosucosv,cosusinv,−sinu,0) ,

V = φv
‖φv‖ = (−sinv,cosv,0,0) ,

W = φw
‖φw‖ = (sinucosvcosw,sinusinvcosw,cosucosw,−sinw) .

Furthermore, the unit normal vector field N can be found:

N = (−sinucosvsinw,−sinusinvsinw,−cosusinw,−cosw) .

Then using the equation (15), we obtain S = I3.

Example 4. Let M3 be an oriented hypersurface with implicit equation t = x2 + y2 + z2 in E4. The parametric equation of M3

can be given by

φ (u,v,w) =
(
ucosvcosw,ucosvsinw,usinv,u2) .

By calculating

φu⊗φv⊗φw =
(
−2u3cos2vcosw,−2u3cos2vsinw,−2u3 sinvcosv,u2 cosv

)
we obtain the unit normal vector field

N =
1√

1+4u2
(−2ucosvcosw,−2ucosvsinw−2usinv,1) .

By using the orthonormal basis {φu,φv,φw}, we have the following matrix form of the shape operator:

S =


− 2

(1+4u2)
3/2 0 0

0 − 2

(1+4u2)
1/2 0

0 0 − 2

(1+4u2)
1/2

 .

Theorem 5. Let M3 be an oriented hypersurface in E4 and let {XP,YP,ZP} be a linearly independent vector system of the
tangent space TM3 (P). Then, we have

i. S (XP)⊗S (YP)⊗S (ZP) = K (P)(XP⊗YP⊗ZP)
ii. (S (XP)⊗YP⊗ZP)+(XP⊗S (YP)⊗ZP)+(XP⊗YP⊗S (ZP)) = 3H (P)(XP⊗YP⊗ZP) ,

where K and H are the Gaussian curvature and the mean curvature of M3, respectively.

Proof. By using (i), (ii) parts of the equation (2) and considering the definitions of the Gaussian curvature K and the mean
curvature H the theorem can be easily proved. �

In [4], it is proved that these equations are also provided for closed hypersurfaces.

Theorem 6. Let M3 be an oriented hypersurface in E4 and let Iq, K, H be the q-th fundamental forms, the Gaussian curvature
and the mean curvature, respectively. Then we have

I4−3H I3 +
3K
h

I2−K I = 0 (15)

where h is the harmonic mean of the non-zero principal curvatures of M3.

Proof. Let k1,k2,k3 be the characteristic values of the Weingarten map S (or the principal curvatures of M3 ). Then we obtain
the characteristic polynomial PS (λ ) of the Weingarten map S of M3 as

PS (λ ) = det(λ I3−S) = λ 3− (k1 + k2 + k3)λ 2 +(k1k2 + k1k3 + k2k3)λ − (k1k2k3) .
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By using the Cayley-Hamilton theorem, we obtain

S3− (k1 + k2 + k3)S2 +(k1k2 + k1k3 + k2k3)S− (k1k2k3) I3 = 0.

By using the definitions of the q− th fundamental forms, the Gaussian curvature, the mean curvature and the harmonic mean

h =
3

1
k1
+ 1

k2
+ 1

k3

of the principal curvature k1,k2,k3, we obtain the equation (15). �

3. Dupin indicatrix of the hypersurface in E4

Let X ,Y,Z be three principal vectors according to the principal curvatures k1,k2,k3 of M3. If we consider the orthonormal basis
{X ,Y,Z} of M3 then for any tangent vector WP ∈ TM3(P), we can write WP = xXP + yYP + zZP, where x,y,z ∈ R, and

S (WP) = xS (XP)+ yS (YP)+ zS (ZP)
= xk1XP + yk2YP + zk3ZP

Here, the Dupin indicatrix D of M3 can be defined by

D=
{

WP = (x,y,z) ∈ TM3(P)| 〈S (WP) ,WP〉= k1x2 + k2y2 + k3z2 =±1
}
.

In another words, the Dupin indicatrix corresponds to a hypercylinder which has the equation

k1x2 + k2y2 + k3z2 =±1.

Now, we will examine the Dupin indicatrix according to the Gaussian curvature K :
1) Let K (P)> 0.

• If k1, k2, k3 > 0 then for equation of the Dupin indicatrix, we can write k1x2 + k2y2 + k3z2 = ±1. Hence, the Dupin
indicatrix is the ellipsoidal class and this equation is called ellipsoidal cylinder in E4. In this condition, P ∈M3 is called
an ellipsoidal point.

• If k1 > 0, k2, k3 < 0 or k2 > 0, k1, k3 < 0 or k3 > 0 k1, k2 < 0 then for equation of the Dupin indicatrix, we can
write k1x2− k2y2− k3z2 = ±1. Hence, the Dupin indicatrix is the hyperboloidical class and this equation is called
hyperboloidical cylinder one or two sheets in E4. In this condition, P ∈M3 is called a hyperboloidical point.

2) Let K (P)< 0.

• If only one of ki’s, i = 1,2,3 is negative, then for the equation of the Dupin indicatrix, we can write
k1x2 + k2y2− k3z2 =±1,
k1x2− k2y2 + k3z2 =±1,
−k1x2 + k2y2 + k3z2 =±1.

The above equations are called one or two sheeted hyperboloidical cylinder in E4. Then P∈M3 is called a hyperboloidical
point.

• If k1,k2,k3 < 0 then the Dupin indicatrix is the ellipsoidal class and this equation is called ellipsoidal cylinder in E4. So
P ∈M3 is called a ellipsoidal point.

3) Let K (P) = 0.

• If k1 = 0 or k2 = 0 or k3 = 0, then for the equation of the Dupin indicatrix for each case, we get

i If k1 = 0, k2, k3 are the same or different signs then k2y2 + k3z2 =±1.
ii If k2 = 0, k1,k3 are the same or different signs then k1x2 + k3z2 =±1.

iii If k3 = 0, k1, k2 are the same or different signs then k1x2 + k2y2 =±1.

These equations are called elliptic cylinder or hyperbolic cylinder in E4. In this condition, P ∈M3 is called an elliptic
cylinder or hyperbolic cylinder point.

• If k1 = k2 = k3 = 0 then the point P ∈M3 is a flat point.

• If any two of ki’s, i = 1,2,3 are zero and other positive or negative then k3z2 =±1 or k2y2 =±1 or k1x2 =±1.
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4. Conclusions
In this present study, the basic notations of hypersurface theory in E4 are examined firstly. After that, analog to calculation of
the matrix presentation of Weingarten Map for 2-surfaces in E3 and E4, a practical and an efficient method is established for
the 3-surfaces (hypersurfaces). The method and the results are given in this study lead light to practical calculations of other
algebraic invariants of the Weingarten Map and the investigations of the special hypersurfaces in 4-dimensional space.
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