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Abstract 
 
Here the dynamic behavior of slider-crank mechanism with a driving force applied at crank-pin center, has 
been modeled to formulate the piston speed.  In view of the abundance of the parameters involved, a lumped 
parameter approach has been preferred to obtain a compact equation in the form of a second order non-
linear differential equation. The complexity of the resulting equation has mandated implementing a 
numerical solution technique by which the effects of the selected parameters on the piston speed have been 
investigated. Under similar conditions an experimental model has been prepared and the tests have been 
carried out to compare the results. Low error levels achieved in two results have demonstrated the validity 
of the developed model. 
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İstenen Piston Hızları için Giriş Parametrelerinin Seçilmesi Amacıyla Krank-Biyel 
Mekanizmasının Dinamik Modellenmesi: Topaklanmış Kütle Yöntemi 

 

Öz 
 
Piston hızının çıkarılması için, krank-pim merkezine bir kuvvet uygulanan krank-biyel mekanizmasının 
dinamik davranışı modellenmiştir. Dahil edilen parametrelerin çokluğu göz önüne alındığında ikinci 
dereceden lineer olmayan bir diferansiyel denklem şeklinde kompakt bir denklem elde etmek için 
topaklanmış parametre yöntemi tercih edilmiştir. Elde edilen denklemin karmaşıklığı, bir sayısal çözüm 
yöntemi uygulamayı zorunlu kılmıştır. Bu yolla çalışmada seçilen parametrelerin piston hızı üzerindeki 
etkileri incelenmiştir. Benzer şartlar altında deneysel bir model hazırlanmış ve sonuçları karşılaştırmak için 
testler gerçekleştirilmiştir. İki sonuç arasında elde edilen düşük hata oranları geliştirilen modelin 
geçerliliğini kanıtlamıştır.  
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1. INTRODUCTION 
 
Slider-crank mechanisms which are used for either 
converting rotational motion into translational 
motion (as in internal combustion engines) or vice 
versa (as in pumps or compressors) are widely 
applied [1–2] in industry. Slider-crank mechanism 
is also used as a feeder [3] such that stock material 
is pushed towards processing machine. In the feeder 
application, the piston pushing force as well as the 
piston speed at different stages of the processing 
(i.e. raw stock material free motion, pushing the 
material against machine, etc.) is very critical for 
production quality. In a recent study [4], the process 
of obtaining constant pushing force in a feeder 
slider-crank mechanism has already been 
explained. However, studying piston speed requires 
development of dynamic model for feeder slider-
crank mechanism. Once the model is obtained, 
design by analysis technique can be applied to 
determine the appropriate values of dimensional 
and operational parameters by evaluating their 
effects on piston speed within acceptable tolerance 
limits in the interval of operation. 
 
In the literature, there are several studies 
concentrating on dynamic model of a slider-crank 
mechanism for realizing different objectives. 
Franco et al. [5] used a slider-crank mechanism as a 
hand-powered press used for producing straw bales. 
Halicioglu et al. [6] reported the design and analysis 
of a slider-crank mechanism actuated by a servo 
motor at crank and used as press for metal forming 
operations. Their study applied kinematics and 
dynamics of slider-crank mechanism available from 
the literature. Erkaya et al. [7] presented the 
dynamic analysis of both a conventional and a 
modified (with additional eccentric connector and 
planetary gears) slider-crank mechanism for 
internal combustion engines. Even though the 
inertial effects were taken into consideration the 
gravitational effects were neglected. 
 
Ha et al. [8] developed the dynamic model of a 
slider-crank mechanism by taking into account 
mass, external force and motor electric input. The 
model was based on a crank driven by a servo motor 
with a piston sliding at zero eccentricity from the 
crank center as well as along the horizontal axis. For 

the development of the model, Hamilton’s 
principle, Lagrange multiplier, geometric 
constraints and partitioning method were used. The 
obtained differential equation was solved by fourth 
order Runge-Kutta Method. Due to the complex 
nature of the non-linearity of the parameters, they 
applied real-coded genetic algorithm for identifying 
optimum parameters of the mechanism. On the 
other hand, Huang et al. [9] studied a spatial slider-
crank mechanism for developing the dynamic 
model of it and similar procedures of the study of 
Ha et al. [8] were applied. 
 
Fung et al. [10] reported on the dynamic model of 
an intermittent slider-crank mechanism driven by a 
permanent magnetic synchronous servo motor at 
crank with two different constraining stops for the 
slider. The connecting rod of the mechanism was 
made out of a pneumatic cylinder. Hence, as the 
slider was stopped the pneumatic cylinder was 
either contracted or extended by a pressure 
regulating valve, based on the motion 
characteristics. Fourth order Runge-Kutta Method 
was applied for the solution of the derived 
differential equations from Hamilton’s principle. 
Silva et al. [11] developed a kinematic model of an 
inverted slider-crank mechanism where each link 
was represented as a vector and the corresponding 
kinematic parameters (i.e. position, velocity and 
acceleration) were found out by matrix operations. 
The obtained mathematical model has been solved 
by Runge-Kutta Method and the results were 
compared by multibody model developed in 
ADAMS/View. The comparison of the results 
showed that the errors were considerable. 
 
Dynamic models used in the speed control of slider-
crank mechanisms are also available. As an 
example, Yan and Chen [12] used Bezier curves in 
order to represent crank angular positions for 
attaining a desired piston speed trajectory. The 
input motion of the crank was provided by a servo 
motor controlled on the basis of a PID algorithm. 
Hence, the Bezier parameters as well as PID 
parameters had to be optimized for the 
corresponding desired speed trajectory in their 
work. Lin et al. [13] proposed a fuzzy functional 
neural network position controller for slider-crank 
mechanism driven by a permanent magnet 
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synchronous servo motor. The dynamic model of 
the mechanism derived from Hamilton’s principle 
and the Lagrange multiplier were used. It should be 
noted that a rotating disk was used as a crank in the 
model. On the other hand, Wai et al. [14] developed 
a fuzzy neural network controller with adaptive 
learning rate for the same type of mechanism with 
the same permanent magnet synchronous servo 
motor driver. 
 
There are many studies that consider dynamic 
model of slider-crank mechanisms for the purposes 
of piston or joint lubrication. For example, Zhao et 
al. [15] used Lagrange multipliers and constraint 
Jacobian matrix for developing the dynamic 
equations of the slider-crank system. Hence, this 
dynamic model was coupled with the lubrication 
model of piston skirt-liner system. By this way, slap 
noise and lubrication performances could be 
evaluated with respect to several criteria such as 
design parameters of piston, bore clearance, bulge 
position and curvature parameter of piston skirt 
profile, etc. Reis et al. [16] developed the dynamic 
model of lubricated joints that have clearance in 
between piston-pin revolute joint and in a slider-
crank mechanism of an internal combustion engine. 
The developed model takes into account the 
hydrodynamic effects as well as clearance and 
friction effects. 
 
Several studies in the literature are reported on 
applying the developed dynamic model on vibration 
effects. For instance, Wang and Chen [17] 
developed dynamic model of a slider-crank 
mechanism with a composite coupler in the form of 
an axially periodic array for studying the parametric 
resonance of the mechanism. The developed model 
is based on Fourier-series approach and Newtonian 
mechanics. Akbari et al. [18] developed dynamic 
model of a slider-crank mechanism with a flexible 
coupler by using Euler-Lagrange method as well as 
the mode summation technique. Even though they 
analyzed the dynamic behavior of the mechanism, 
they also proposed two control methods for 
elastodynamic vibration suppression of the flexible 
coupler, with actuation at crank ground joint by an 
electric motor. 

None of these studies answer the problem of 
obtaining a constant piston speed or a constant 
displacement for unit time interval in feeder slider-
crank mechanisms. Hence, in this study, dynamic 
model of a slider-crank mechanism is obtained first. 
The resulting second order non-linear differential 
equation is solved by numerical methods. Then, an 
experimental setup is developed to validate the 
theoretical model results. In the results section, the 
effect of only crank position at the start of motion 
and externally added mass (out of 13 parameters) on 
piston speed are evaluated for obtaining the desired 
piston speed within allowable tolerance. 
 
2. METHOD 
 
In this paper, a slider-crank mechanism used as a 
feeder (Figure 1) is considered. The driving force 
on the slider-crank is made up of: 
I. The constant FB force with constant magnitude 

and constant line of action 
II: Externally added mass mB at the crank-pin 

center (point B) in the direction of producing 
static (mBg) and dynamic (mBaB) effects with 
acceleration aB at point B. 

Hence, the driving force produces a non-linear 
forward translational piston motion. The rotational 
spring assembled to the crank at O has the tendency 
to obtain constant pushing force on the piston by 
balancing interacting forces developed due to the 
vertical force. When the mechanism is released at a 
particular position the piston gains speed. Hence, 
the problem is either obtaining a constant piston 
displacement from free motion in between each 
processing stage or obtaining acceptable constant 
piston speed for non-resistive / non-contact 
processing in between definite piston positions. 
 
The links of the slider-crank mechanism in Figure 1 
are identified as: link 1 is ground; link 2 is crank; 
link 3 is connecting rod; and link 4 is piston. The 
dimensions of the mechanism of interest are crank 
and connecting rod lengths (L2 and L3, respectively) 
and eccentricity between the crank center and piston 
line of action (L4). The centers of gravity of crank 
and connecting rod are away from points O and B 
by rG2 and rG3, respectively. The masses of crank, 
connecting rod and piston are represented by m2, m3, 
and m4, respectively. The variables are crank angle  
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Figure 1. Slider-crank mechanism 

 
θ and connecting rod angle β, with corresponding 
sign conventions. FB represents external load 
applied whereas mbucket stands for bare bucket mass. 
 
In order to simplify the dynamic model of the slider-
crank mechanism, the crank mass is lumped at 
points O and B while the connecting rod mass is 
lumped at points B and C. Hence, the total mass at 
point B makes only circular motion whereas the 
total mass at point C makes only translational 
motion.  
 
The lumped mass of crank and connecting rod can 
be obtained by finding the statically equivalent 
mass systems [19]. The crank mass (m2) can be 
replaced by a statically equivalent system lumped at 
points B (m2

B) and O (m2
O). The effect of crank 

mass at points B and O can be expressed as: 
 

2
2 2

2

B Grm m
L

  (1) 

	
2 2 2
O Bm m m  	 (2)	

 
Similarly, the connecting rod mass (m3) can be 
replaced by a statically equivalent system lumped at 
points B (m3

B) and C (m3
C). Hence, the effect of 

connecting rod mass at points B and C can be 
expressed by means of the following relationships: 

3 3
3 3

3

B GL r
m m

L


  (3) 

 

3 3 3
C Bm m m   (4) 

 
Resultantly, the masses can be considered as 
lumped at points A and B in the system as follows: 
 

2 3
B B

B Bm m m M    (5) 

 

3 4
C

cm m m   (6) 

 
whereas the lumped mass at point O (mO) is defined 
by Eq. (2). It should be noted that MB represents any 
external mass applied at point B including mbucket to 
create a vertical downward force. 
 
The next step would be to develop free body 
diagram (FBD) of each link (Figure 2) and analyze 
the equilibrium conditions. From FBD of link 4, the 
following two equations are obtained since there is 
no moment effect: 
 

0xF

     F34x-μF14-mCXሷ C=0 (7) 

 
0y      34 14 0y CF F m g    (8) 
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In a similar fashion, the equilibrium and 
D’Alembert equations are written for the 
connecting rod and crank by considering FBD of 
link 3 and link 2, respectively: 

0xF

     43 23 0x xF F   (9) 

 

 
Figure 2. Free body diagram of each link in the slider – crank mechanism 

 
0y   … 43 23 0y yF F   (10) 

 
0CM  … 43 2 43 2cos sin 0y xF L F L    (11) 

 
0xF


  ...

F32x+F12x-

mBL2θሷ cos θ +mBL2θሶ
2

sin θ =0 (12) 
 

0y   …F32y+F12y-FB-

mBg+mBL2θሷ sin θ +mBL2θሶ
2

cos θ=0 (13) 
 

0OM  …T+mBL2
2θሷ -F32xL2 cos θ+F32yL2 sin θ -

mBgL2 sin θ -FBL2 sin θ=0 (14) 

 
It should be noted that normal and tangential 
accelerations at point B used in Eq. (14) are defined 
as: 
 

aBt=L2α=L2θሷ  (15) 
 

aBn=L2ω
2=L2θሶ

2
 (16) 

Eqs. (7) and (8) can be rearranged to obtain: 
 
F34x=μF14+mCXሷ C (17) 
 

F34y=mCg-F14 (18) 
 

Recalling that the interacting joint forces should be 
equal and opposite to each other, Eqs. (17) and (18) 
can be substituted into Eq. (11) to obtain the 
following relation: 
 

34 34 tany xF F    (19) 
 

Eqs. (17) – (19) can be solved for F14 as: 
 

F14=
mCg+mCXሷ C tan β

1-μ tan β
 (20) 

 

Substituting Eq. (20) into Eqs. (17) and (18) would 
yield: 
 

F23x=F34x=mCXሷ C+μ ቀ
mCg+mCXሷ C tan β

1-μ tan β
ቁ (21) 

 

F23y=F34y=mCg-
mCg+mCXሷ C tan β

1-μ tan β
 (22) 



Dynamic Modeling of Slider-Crank Mechanism for Piston Speed Control: Lumped Mass Approach  

72   Ç.Ü. Müh. Mim. Fak. Dergisi, 33(4), Aralık 2018 

If the torque from spring acting on the crank is 
defined as in Eq. (23) and is substituted into Eq. 
(14), it will lead to Eq. (24): 
 

 *
2 0T k     (23) 

 

k൫θ-θ0
*൯+mBL2

2θሷ+ ቈmCXሷ C+μቆ
mCg+mCXሷ C tan β

1-μ tan β
ቇ቉ 

L2 cos θ - ቂmCg-
mCg+mCXሷ C tan β

1-μ tan β
ቃL2 sin θ -

mBgL2 sin θ -FBL2 sin θ=0 (24) 
 
In Eqs. (23) & (24), k, θ and θ0

* represent spring 
coefficient, crank angle and crank neutral angle for 
spring, respectively. The position of the piston (ܺ஼) 
is given by Eq. (25). Piston speed ( ሶܺ஼) and 
acceleration ( ሷܺ஼) can be found by taking first and 
second order derivative, respectively: 
 

2 3sin cosCX L L    (25) 

 
˙ ˙ ˙

2 3cos sinCX L L      (26) 

 

2 2¨ ˙ ¨ ˙ ¨

2 2 3 3sin cos cos sinCX L L L L           (27) 

 
The relation in between the crank and connecting 
rod angular positions can be defined from Figure 1 
as in Eq. (28) and it can be solved for β as in Eq. 
(29): 
 

3 2 4sin cosL L L    (28) 

 

1 2 4

3

cos
sin

L L

L


   
  

 
 (29) 

 
By taking the first and second order derivatives of 
Eq. (28) and manipulating the obtained results 
would yield the connecting rod angular speed and 
accelerations as follows: 
 
˙ ˙

2

3

sin sec
L

L
      (30) 

βሷ=-
L2

L3
cos θ sec β θሶ

2
-

L2

L3
sin θ sec β θሷ+

L2
2

L3
2 sin2 θ sin β sec3 β θሶ

2
 (31) 

 
Substituting Eqs. (30) & (31) into Eq. (27) and 
further manipulation results in: 
 

Xሷ C=θሶ
2
൬-L2 sin θ -

L2
2

L3
sin2 θ sec β+L2 cos θ sin β sec β -

L2
2

L3
sin2 θ sin2 β sec3 β൰+θሷ ሺL2 cos θ+L2 sin θ sin β sec βሻ (32) 

 
Substituting Eq. (32) into Eq. (24) and further 
manipulation yields: 
 

ە
ۖ
۔

ۖ
ۓ

ሺ1-μ tan βሻൣk൫θ-θ0
*൯-mBgL2 sin θ -FBL2 sin θ൧ ൅

μmCgL2 cos θ+μmCgL2 sin θ tan β+ߠሶ ଶ ൬-

mCL2
2 cos θ sin θ -

mC
L2

3

L3
cos θ sin2 θ sec β+mCL2

2 cos2 θ tan β -

mC
L2

3

L3
cos θ sin2 θ tan2 β sec β -mCL2

2 sin2 θ tan β -

mC
L2

3

L3
sin3 θ tan β sec β+mCL2

2 sin θ cos θ tan2 β -

mC
L2

3

L3
sin3 θ tan3 β sec β൰ ൅

ሷߠ

ۉ

ۈ
ۇ

mBL2
2-μmBL2

2 tan β

+mCL2
2 cos2 θ

+2݉஼ܮଶ
ଶ cos ߠ sin ߠ tanߚ

൅݉஼ܮଶ
ଶ sinଶ ߠ tanଶ ߚ ی

ۋ
ۊ

ۙ
ۖ
ۘ

ۖ
ۗ

/ሺ1 െ

ߤ tanߚሻ (33) 
 
where ሺ1 െ ߤ tanߚሻ ് 0. Eq. (33) can be written as 
a second order non-linear differential equation as: 
 

A0ሺθሻ+A1ሺθሻθሶ
2
+A2ሺθሻθሷ=0 (34) 

 
where A0, A1 and A2 can be written as: 
 
A0=ሺ1-μ tan βሻൣk൫θ-θ0

*൯-mBgL2 sin θ -
FBL2 sin θ൧+μmCgL2 cos θ+μmCgL2 sin θ tan β (35) 
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A1=-mCL2
2 cos θ sin θ -

mC
L2

3

L3
cos θ sin2 θ sec β+mCL2

2 cos2 θ tan β -

mC
L2

3

L3
cos θ sin2 θ tan2 β sec β -mCL2

2 sin2 θ tan β -

mC
L2

3

L3
sin3 θ tan β sec β+mCL2

2 sin θ cos θ tan2 β -

mC
L2

3

L3
sin3 θ tan3 β sec β (36) 

 
A2=mBL2

2-μmBL2
2 tan β+mCL2

2 cos2 θ+ 

2mCL2
2 cos θ sin θ tan β+mCL2

2 sin2 θ tan2 β (37) 
 
Each term in A0, A1 and A2 is divided by “mBL2

2” to 
prevent any instability at numerical solution process 
and the following constants in Eq. (38) are defined 
to obtain the new A0, A1 and A2 as in Eqs. (39) – 
(41), respectively: 
 

λ1=
L2

L3
;  λ2=

L4

L3
;  λ3=

mC

mB
;  

λ4=
k

mBL2
2; 	λ5ൌ

g

L2
;  λ6=

FB

mBL2
  (38) 

 
A0=ሺ1-μ tan βሻൣλ4൫θ-θ0

*൯-

ሺλ5+λ6ሻ sin θ൧+μλ3λ5
cosሺθ-βሻ

cos β
 (39) 

 

A1=-λ3
cosሺθ-βሻ

cos2 β
൤sinሺθ-βሻ+λ1

sin2 θ

cos2 β
൨ (40) 

 

A2=1-μ tan β+λ3 ቀ
cos2ሺθ-βሻ

cos2 β
ቁ 

 (41) 
 
3. SOLUTION OF NON-LINEAR 

DIFFERENTIAL EQUATION BY 
RUNGE-KUTTA METHOD 

 
Eq. (34) is a second order non-linear differential 
equation. It can be solved by numerical methods 
where one of them is the 4th order Runge-Kutta 
Method [20]. In this method, the change in slopes 
of the first and second order differentials are 
evaluated at 4 different points for each individual 
discrete time interval: the beginning and end points 
as well as two intermediate points of an individual 
time interval. Initial conditions are defined by Eqs. 
(42) and (43). 

θሺt0ሻ=θ0     (42) 
 
dθ

dt
ሺt0ሻ=ωሺt0ሻ=ω0     (43) 

 
In the solution procedure, if the first order 
derivative of the crank angle θ is defined as in Eq. 
(44) then second order derivative of the crank angle 
θ can be defined by Eq. (45). 
 
dθ

dt
=ω=f1ሺt,θ,ωሻ     (44) 

 
dω

dt
=

d2θ

dt2
=f2ሺt,θ,ωሻ      (45) 

 
From Eq. (34), the second order derivative of the 
crank angle θ can easily be obtained as: 
 

f2=-
A1f1

2+A0

A2
       (46) 

 
The change in θ and ω in the discrete time interval 
“h” can be calculated by Eqs. (47) and (48), 
respectively. 
 
θn+1=θn+

1

6
ሺ∆θ1+2∆θ2+2∆θ3+∆θ4ሻ    (47) 

 
ωn+1=ωn+

1

6
ሺ∆ω1+2∆ω2+2∆ω3+∆ω4ሻ      (48) 

 
In these equations, Δθ1 and Δω1 represent the 
corresponding slope values multiplied by h at the 
beginning of the discrete time interval and 
calculated as in Eqs. (49) and (50), respectively. 
 
∆θ1=hf1ሺtn,θn,ωnሻ       (49) 
 

∆ω1=hf2ሺtn,θn,ωnሻ  (50) 
 
Δθ2 and Δθ3 as well as Δω2 and Δω3 represent the 
corresponding slope values at the intermediate 
points of the discrete time interval (tn+h/2) and 
calculated as in Eqs. (51)-(54), respectively. 
 
∆θ2=hf1 ቀtn+

h

2
,θn+

∆θ1

2
,ωn+

∆ω1

2
ቁ  (51) 
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∆ω2=hf2 ቀtn+
h

2
,θn+

∆θ1

2
,ωn+

∆ω1

2
ቁ  (52) 

 

∆θ3=hf1 ቀtn+
h

2
,θn+

∆θ2

2
,ωn+

∆ω2

2
ቁ  (53) 

∆ω3=hf2 ቀtn+
h

2
,θn+

∆θ2

2
,ωn+

∆ω2

2
ቁ  (54) 

 
Lastly, Δθ4 and Δω4 represent the corresponding 
slope values at the end of the discrete time interval 
and given as: 
 
∆θ4=hf1ሺtn+h,θn+∆θ3,ωn+∆ω3ሻ (55) 
 
∆ω4=hf2ሺtn+h,θn+∆θ3,ωn+∆ω3ሻ   (56) 
 
4. EXPERIMENTS 
 
An experimental setup (Figure 3) is developed to 
validate the results obtained from numerical 
solution of the second order non-linear differential 
equation. The setup has a crank, a connecting rod 
and a piston sliding inside a channel. A spring is 
attached to the crank and the ground. On the crank 
and connecting rod pin, a bucket is assembled to add 
any external load. There is also a scale attached for 
representing the crank angular position 
instantaneously. 
 

 
Figure 3. Experimental setup 

 
Each experiment is recorded by a handy camcorder. 
The recorded videos are analyzed by a software 
program called “Movie Maker” such that each one 
second consists of 25 frames. Hence, the angular 

positon of the crank in each video frame is tracked 
for obtaining the piston position according to Eq. 
(25) at a particular time frame. 
 
The physical as well as operational parameters of 
the experimental setup are tabulated in Table 1. 
Experiments are performed for 10 kg, 12 kg and 14 
kg external loads as the only driving force added to 
the bucket. However, the bare mass of the bucket is 
1,04 kg which should be added to the external load 
values. Experiments are carried for 3 different crank 
starting angular positions for each net external load 
applied (represented by MB). The configuration of 
the experiments is also listed in Table 2 for ready 
reference. 
 
Table 1. Physical and operational parameters for 

experiments 
m2 

(kg) 
0,96 

L2 
(m) 

0,45 
k 

(Nm/r) 
80 

m3 
(kg) 

0,96 
L3 

(m) 
0,45 µ 0,3 

m4 
(kg) 

0,76 
L4 

(m) 
0 FB (N) 0 

mb 
(kg) 

1,04 
rG2 
(m) 

0,225 θ0
* (°) 20 

  
rG3 
(m) 

0,225 
ω0 

(r/s) 
0 

 
Table 2. Experiment configurations 

 MB = 
11,04 kg 

MB = 
13,04 kg 

MB = 
15,04 kg 

Exp. 1 θ = 20° θ = 20° θ = 20° 

Exp. 2 θ = 30° θ = 30° θ = 30° 

Exp. 3 θ = 40° θ = 40° θ = 40° 

 
5. RESULTS AND DISCUSSION 
 
Results of experiments are obtained by analyzing 
each video frame as explained in previous section 
and tabulated in an Excel worksheet. Theoretical 
solutions for Eq. (34) are developed by applying the 
4th order Runge-Kutta method as explained in 
Section 3. Hence, theoretical and experimental 
results are graphically shown in Figures 4-6. In 
Figure 4, theoretical and experimental results are 
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shown when 11,04 kg external load applied for 
three different crank starting angular positions 
values. Similarly, Figure 5 and Figure 6 present 
theoretical and experimental results graphically for 
external loads of 13,04 kg and 15,04 kg, 
respectively. In these figures, the effect of crank 
position at the start of motion for each externally 
added mass value can be explained as lower crank 
angles (steeper crank positions) yielding larger 
piston displacements in a longer duration. Also, the 
effect of externally added mass value can be 
observed as higher mass values producing larger 
piston displacement in a shorter duration. 
 
The figures show that when crank starting angle is 
30°, theoretical and experimental results very 
closely match for any three external load applied. 
Larger deviations are observed when crank starting 
angle is 20°. 
 
At this point, it would be better to show the error 
percentage of experimental results against 
theoretical results. The error percentage for each 
experiment is calculated by the following equation: 
 

Error %=  

Theoretical result-Experimental result
Theoretical result

*100 (57) 

 

Figure 7 represents graphically the error percentage 
of each experimental result against the 
corresponding theoretical result. From this figure, 
error percentage of θ = 20° experiment for each 
external load depicts a considerable error level even 
though the error level keeps less than 10% until 0,4 
seconds. Interestingly, error percentage of θ = 30° 
experiment for any external load is always less than 
5% except only for higher loads. Finally, error 
percentage of θ = 40° experiments tend to yield 
higher errors at lower external load whereas higher 
external load results indicate to almost zero error. 
Therefore, the obtained results demonstrate that the 
proposed method can be regarded as reliable to 
analyze the dynamic effects of any slider-crank 
mechanism for securing a desired piston speed at 
particular piston positions. As an example, piston 
speed vs. piston position graphs for three different 
external loads are drawn for crank starting angle 
θ=30° in Figure 8 and similar graphs are drawn for 
three different crank starting angle values when MB 
is kept constant at 13,04 kg, (Figure 9). 
 
Analysis of Figure 8 clearly shows that an increase 
in the external load results in higher speeds in a 
wider range of piston displacement whereas in 
Figure 9 a decrease in the crank starting angle 
would result in higher piston speeds in a wider 
piston displacement. 
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Figure 4. Comparison of theoretical and experimental results for 11,04 kg external load  
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Figure 5. Comparison of theoretical and experimental results for 13,04 kg external load 
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Figure 6. Comparison of theoretical and experimental results for 15,04 kg external load 
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Figure 7. Comparison of error percentage of theoretical results against experimental results 

 

Figure 8. Analysis of External load MB on piston speed vs. displacement for θ=30° 
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Figure 9. Analysis of crank starting angle θ on piston speed vs. displacement for MB =13,04 kg 

 
The problem at this point would be to choose 
appropriate piston positions where piston speed 
deviation constrained to a predetermined error level 
with respect to desired average speed. As an 
example, in Figure 8 or Figure 9, by considering the 
graph for MB =13,04 kg and θ=30° as well as an 
acceptable maximum 5% deviation from average 
speed would yield a minimum speed of 0,64 m/s 
where the maximum speed is 0,71 m/s as well as a 
resultant average speed is 0,675 m/s. Hence, in the 
corresponding figures, the piston operation range 
would be identified as from 0,58 m to 0,74 m for the 
minimum speed. In this piston position range, the 
piston speed is restrained to 5% error.  
Hence, the piston position vs. piston speed graphs 
can be evaluated by changing the dimensional and 
operational parameters until the acceptable piston 
speed in the required piston range is obtained.  
 
6. CONCLUSION 
 
Here in this work, against the force acting on the 
crank-pin of a slider-crank mechanism the dynamic 
behavior of the mechanism is modeled by lumped-
mass approach to achieve the speed control of the 
piston. An experimental model under similar 
conditions was set up and experiments were carried 
out for comparative purposes. The difference 
between theoretical and experimental models were 
reasonably low to demonstrate the reliability of 

theoretical model. Nevertheless, the differences 
between the theoretical and experimental models 
can be explained by the following factors: 
 The frictional effects at revolute joints. 
 Three-dimensional effects of the moving 

gravitational loads added in the bucket on the 
accelerating slider towards the end of the fast 
experiments. 

 Non-uniform and variable coefficient of 
friction between piston and ground. 

 Lumped mass system not satisfying dynamic 
equivalence condition. 

 The resolution and frame per second of the 
camera being not high enough. 

If these factors are taken into account in continuous 
model of the dynamic behavior of the mechanism, 
then the opportunities of the speed control 
developed from the improved theoretical model will 
give a better opportunity to that end, which is a 
subject of future work. 
 
7. REFERENCES 
 
1. Vinogradov, O., 2000. Fundamentals of 

Kinematics and Dynamics of Machines and 
Mechanisms (1st ed.), CRC Press, Boca Raton 
(FL). 

2. Myszka, D., 2012. Machines and Mechanisms, 
Applied Kinematic Analysis (4th ed.), Prentice 
Hall, Upper Saddle River (NJ). 



Mehmet İlteriş SARIGEÇİLİ, İbrahim Deniz AKÇALI 

Ç.Ü. Müh. Mim. Fak. Dergisi, 33(4), Aralık 2018  81 

3. Erdil, A.H., 1998. Buz Kalıplarından Kar 
Üretilmesi İçin Bir Makina Tasarımı, Yüksek 
Lisans Tezi, Çukurova Üniversitesi, Adana, 94. 

4. Sarigecili, M.I., Akcali, I.D., 2018. 
Development of Constant Output–input Force 
Ratio in Slider–crank Mechanisms, Inverse 
Problems in Science and Engineering. (In Press) 
DOI: 10.1080/17415977.2018.1470625. 

5. Franco, W., Iarussi, F., Quaglia, G., 2016. 
Human powered press for producing straw bales 
for use in construction during post-emergency 
conditions, Biosystems Engineering, 150, 170-
181. DOI: 10.1016/j.biosystemseng.2016.08. 
007. 

6. Halicioglu, R., Dulger, L.C., Bozdana, A.T., 
2016. Structural Design and Analysis of a Servo 
Crank Press, Engineering Science and 
Technology, an International Journal, 19(4), 
2060-2072. DOI: 10.1016/j.jestch.2016.08.008. 

7. Erkaya, S., Su, Ş., Uzmay, İ., 2007. Dynamic 
Analysis of a Slider–crank Mechanism with 
Eccentric Connector and Planetary Gears, 
Mechanism and Machine Theory, 42(4),        
393-408. DOI: 10.1016/j.mechmachtheory. 
2006.04.011. 

8. Ha, J.L., Fung, R.F., Chen, K.Y., Hsien, S.C., 
2006. Dynamic Modeling and Identification of 
a Slider-crank Mechanism, Journal of Sound 
and Vibration, 289(4–5), 1019-1044. DOI: 
10.1016/j.jsv.2005.03.011. 

9. Huang, M.S., Chen, K.Y., Fung, R.F., 2010. 
Comparison Between Mathematical Modeling 
and Experimental Identification of a Spatial 
Slider–crank Mechanism, Applied 
Mathematical Modelling, 34(8), 2059-2073.      
DOI: 10.1016/j.apm.2009.10.018. 

10. Fung, R.F., Chiang, C.L., Chen, S.J., 2009.  
Dynamic Modelling of an Intermittent Slider–
crank Mechanism, Applied Mathematical 
Modelling, 33, 2411-2420. DOI: 10.1016/j.apm. 
2008.07.004 

11. Silva R., de C., Nunes, M.A.A., Bento, J.P.M., 
da Costa, V.E., 2013. Modelling an Inverted 
Slider Crank Mechanism Considering 
Kinematic Analysis and Multibody Aspects, 
Proceedings of the XV International 
Symposium on Dynamic Problems of 
Mechanics (DINAME 2013), Buzios, RJ, 
Brazil, 1-10. 

12. Yan, H.S., Chen, W.R., 2000. On the Output 
Motion Characteristics of Variable Input Speed 
Servo-controlled Slider-crank Mechanisms, 
Mechanism and Machine Theory, 35(4),        
541-561. DOI: 10.1016/S0094-114X(99)00023 
-3 

13. Lin, F.J., Fung, R.F., Lin, H.H., Hong, C.M., 
2001. A Supervisory Fuzzy Neural Network 
Controller for Slider-crank Mechanism, 
Mechatronics, 11(2), 227-250. DOI: 10.1016/ 
S0957-4158(99)00070-7 

14. Wai, R.J., Lin, F.J., 1998. A Fuzzy Neural 
Network Controller with Adaptive Learning 
Rates for Nonlinear Slider-crank Mechanism, 
Neurocomputing, 20(1–3), 295-320. DOI: 
10.1016/S0925-2312(98)00022-8 

15. Zhao, B., Dai, X.D., Zhang, Z.N., Xie, Y.B., 
2016. A New Numerical Method for Piston 
Dynamics and Lubrication Analysis, Tribology 
International, 94, 395-408. DOI: 10.1016/j. 
triboint.2015.09.037 

16. Reis, V.L., Daniel, G.B., Cavalca, K.L., 2014. 
Dynamic Analysis of a Lubricated Planar 
Slider–crank Mechanism Considering Friction 
and Hertz Contact Effects, Mechanism and 
Machine Theory, 74, 257-273. DOI: 10.1016/ 
j.mechmachtheory.2013.11.009 

17. Wang, Y.M., Chen, C.H., 2012. The Dynamics 
of a Slider-crank Mechanism with a Fourier-
Series Based Axially Periodic Array Non-
Homogeneous Coupler, Journal of Sound and 
Vibration, 331(22), 4831-4847. DOI: 10.1016 
/j.jsv.2012.05.025. 

18. Akbari, S., Fallahi, F., Pirbodaghi, T., 2016. 
Dynamic Analysis and Controller Design for a 
Slider–crank Mechanism with Piezoelectric 
Actuators, Journal of Computational Design and 
Engineering, 3(4), 312-321.  

      DOI: 10.1016/j.jcde.2016.05.002. 
19. Hirschhorn, J., 1962. Kinematics and Dynamics 

of Plane Mechanisms (First ed.), McGraw-Hill 
New York. 

20. Chapra, S.C., Canale, R.P., 2010. Numerical 
Methods for Engineers (Sixth ed.) McGraw-
Hill, New York. 

  



Dynamic Modeling of Slider-Crank Mechanism for Piston Speed Control: Lumped Mass Approach  

82   Ç.Ü. Müh. Mim. Fak. Dergisi, 33(4), Aralık 2018 

 

 


