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Abstract: Applying single-level statistical models to multilevel data 
typically produces underestimated standard errors, which may result 
in misleading conclusions. This study examined the impact of 
ignoring multilevel data structure on the estimation of item 
parameters and their standard errors of the Rasch, two-, and three- 
parameter logistic models in item response theory (IRT) to 
demonstrate the degree of such underestimation in IRT. Also, the 
Lord’s chi-square test using the underestimated standard errors was 
used to test differential item functioning (DIF) to show the impact of 
such underestimation on the practical applications of IRT. The results 
of simulation studies showed that, in the most severe case of 
multilevel data, the standard error estimate from the standard single-
level IRT models was about half of the minimal asymptotic standard 
error, and the type I error rate of the Lord’s chi-square test was 
inflated up to .35. The results of this study suggest that standard 
single-level IRT models may seriously mislead our conclusions in 
the presence of multilevel data, and therefore multilevel IRT models 
need to be considered as alternatives. 

1. INTRODUCTION 

In traditional statistical models, observations are typically assumed to be independent. 
However, the assumption of independence is quite strong and may not be tenable in practice. 
In educational research, for example, observations in data are often not independent because of 
a hierarchical data structure. It is well known that applying traditional statistical models based 
on the independence assumption to multilevel data may result in incorrect standard errors 
(Barcikowski, 1981; Tate & Wongbundhit, 1983; Satorra & Muthen, 1995; Goldstein, 1987; 
Julian, 2001; Finch & French, 2011). Because the use of correct standard errors is the key 
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element for valid statistical inferences such as hypothesis testing and confidence intervals, 
applying single-level models to multilevel data could be problematic. 

Given the concerns on the use of single-level models to multilevel data, the goal of this study 
is to examine the extent to which multilevel data structure affects the estimation of the single-
level dichotomous IRT models and their subsequent application. More specifically, two Monte 
Carlo simulation studies were conducted to examine 1) the impact of ignoring multilevel data 
structure on the estimation of item parameters and their standard errors of the standard single-
level Rasch, two- (2PL), and three- (3PL) parameter logistic models in item response theory 
(IRT); 2) the type I error inflation of the Lord’s chi-square tests based on standard errors 
estimated from the single-level IRT models. In the simulation study 1, item responses with 
multilevel data structure were generated using the Rasch, 2PL, and 3PL models formulated in 
the hierarchical generalized linear model (HGLM), in which items, persons, and schools were 
modeled in Level-1, Level-2, and Level-3, respectively (Kamata & Vaughn, 2011). In 
generating item responses with multilevel structure, intraclass correlation coefficients (ICCs), 
numbers of groups, and group sizes were manipulated. Given the item responses with multilevel 
structure, item parameters and their standard errors were estimated using single-level IRT 
models with BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 1996). To evaluate the extent 
to which standard errors are underestimated, the analytical minimal standard errors (Thissen & 
Wainer, 1982) for item parameters in the Rasch, 2PL, and 3PL were used as reference values. 
In practice, the underestimated standard errors can be used for other applications such as DIF 
tests. In the simulation study 2, the type I error rates of two DIF tests were compared: the Lord’s 
chi-square test (Lord, 1980) using the underestimated standard errors from the single-level IRT 
models and the DIF test based on the Rasch model that was formulated in the hierarchical 
generalized linear model (HGLM). 

2. IGNORING MULTILEVEL DATA STRUCTURE IN STATISTICAL MODELS 

The impact of multilevel data on the estimation of standard errors in statistical models can be 
illustrated by an example of cluster sampling designs (Kish, 1965), in which only a subset of 
primary units or clusters is randomly selected, and then secondary units are sampled within the 
selected primary units. Cluster sampling designs are often preferred because of cost and time 
effectiveness. In cluster sampling designs, respondents in the same cluster are likely to be 
similar to one another because they share similar contexts.  From a statistical viewpoint, the 
similarity between respondents makes the information in data more redundant or less unique, 
which results in the reduction of effective sample sizes. As a result, the estimated sampling 
variances from cluster sampling designs are larger than the ones from simple random sampling 
designs. The loss of effectiveness in cluster sampling designs is measured by the design effect, 
which is defined as the ratio of the sampling variance in cluster sampling designs to the 
sampling variance in simple random sampling designs. In other words, the design effect is a 
correction factor to be multiplied to the sampling variance of the simple random sampling to 
get the actual sampling variance in cluster sampling designs (Hox, 1998). In the simplest cluster 
sampling design, the design effect is defined by the following equation: 

Design effect = 1 + ൫𝑛௚ − 1൯𝜌ூ ,       (1) 

where 𝑛௚ is the sample size in a group, and 𝜌ூ is the intraclass correlation coefficient (ICC). 
The ICC provides a measure of the amount of dependency among individuals or how similar 
individuals are within groups. As can be seen from Equation 1, the design effect is greater than 
one for a non-zero ICC. Therefore, if appropriate statistical models that can accommodate 
cluster structure are used, the sampling variance in data from cluster sampling designs should 
be larger than the one from simple random sampling designs because of reduction in effective 
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sample sizes. On the other hand, given non-zero ICCs, observed variance within clusters is 
typically less than observed variance between clusters since observations within cluster tend to 
be more similar to one another. Therefore, when observations are assumed to be independent, 
overall observed variance that is obtained without reflecting cluster nature tends to be 
underestimated, which could result in type I error inflation (Goldstein, 1987). 

The effect of multilevel data structure on the estimation of statistical models has been 
investigated in many different settings. Barcikowski (1981) reported that the type I error rates 
of t-tests can be dramatically increased as the ICC increased. Also, Tate and Wongbundhit 
(1983) reported that the ordinary least square (OLS) regression produced unbiased parameter 
estimates but downwardly biased standard error estimates in the presence of multilevel data. 
Satorra and Muthen (1995) compared the standard maximum likelihood estimation, the robust 
maximum likelihood estimation, and the multilevel maximum likelihood estimation for 
structural equation modeling (SEM) under complex sampling designs and found that standard 
error estimates from the standard maximum likelihood estimation were downwardly biased. 
Recently, Finch and French (2011) found that applying standard approaches for differential 
item functioning (DIF) to multilevel data caused type I error inflation. In line with those 
concerns on the use of standard single-level models in the presence of multilevel data, this study 
was designed to explicitly show the degree to which the multilevel data structure influences the 
estimation of standard single-level IRT models. 

3. STANDARD ERRORS IN IRT APPLICATIONS 

Standard errors measure the accuracy of estimation.  Using correct standard errors is an 
essential component for valid statistical inferences based on hypothesis tests and confidence 
intervals. The use of the correct standard error is also important in many IRT applications 
(Toland, 2008).  For example, the accurate standard error estimate is important in identifying 
DIF items using the Lord’s chi-square test in which the difference in the item parameters 
between the focal and reference groups is tested using the following equation: 

𝜒ଶ =
൫ఏ෡ಷିఏ෡ೃ൯

మ

ఏ෡ಷ
మା ఏ෡ೃ

మ ,        (2) 

Where 𝜃෠ி and 𝜃෠ோ represent the parameter estimates in the focal and reference groups, 
and 𝜎ොி

ଶ and 𝜎ොோ
ଶ represent the standard error estimates for 𝜃෠ி  and 𝜃෠ோ. Because the item 

parameter estimates for the focal and reference groups are obtained from separate 
calibrations, item parameter estimates need to be transformed on a common metric using an 
appropriate transformation.  As can be seen from Equation 2, standard error estimates affect the 
result of the Lord’s chi-square test. Some other IRT applications also require accurate standard 
error estimates for item parameter estimates (Toland, 2008): the separate calibration t-test for 
DIF (Wright & Stone, 1979), the item parameter replication (IPR) method for testing non-
compensatory DIF (Oshima, Raju, & Nanda, 2006), and the cumulative sum (CUSUM) 
procedure for the computer adaptive test (Veerkamp & Glas, 2000). 

In examining the estimation for standard errors in IRT models, this study used the minimum 
obtainable standard errors for item parameters (Thissen & Wainer, 1982) as references values. 
Thissen and Wainer (1982) derived analytical asymptotic standard errors for item parameters 
using the inverse information matrix. Those asymptotic standard errors can be considered as 
the lower limits for the estimated standard errors because they are derived under the very strong 
assumptions which are not likely to be met in practice.  Therefore, estimated standard errors are 
larger than the minimal asymptotic standard errors. 
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4. MULTILEVEL IRT MODELS 

One of the assumptions in traditional IRT models is the local independence assumption in which 
the dependencies among item responses are assumed to be fully explained by the specified IRT 
model (Embretson & Reise, 2000). More specifically, two different kinds of local independence 
assumptions can be considered (Reckase, 2009; Jiao, Kamata, Wang, & Jin, 2012). The local 
item independence refers to the independence of responses for items within a specific person. 
Given the ability of a person, a person’s response to an item does not have any influence on the 
probability of that person’s response to another item. On the other hand, the local person 
independence refers to the independence of responses of persons for a specific item. Given the 
abilities of persons, a person’s response to a specific item does not affect the probability of 
another person’s response to that item. 

Since the traditional IRT models assume a single source of the dependencies among item 
responses, which is the ability of a person, problems could occur when the dependencies among 
item responses still remain beyond what is explained by the specified IRT model. In order to 
fully explain the dependencies, therefore, additional sources of the dependencies need to be 
specified in the IRT model. For example, a common passage in a test could cause additional 
dependencies among item responses. In that case, the local item independence is considered to 
be violated. On the other hand, the local person independence could be violated in the presence 
of clustered data (Jiao et al., 2012). For example, the responses of students from the same school 
could be more similar to each other than to responses from students from other schools, even 
after controlling for the abilities of persons. In multilevel IRT models, the clustered data 
structure is considered the additional source of the dependencies among item responses 
(Kamata, 2001). 

A simple multilevel IRT model assumes that items are nested within persons, and persons are 
nested within groups (Kamata & Vaughn, 2011). For example, multilevel 2PL models can be 
expressed as  

𝑃௜௝௚[𝑌 = 1] =
ୣ୶୮ൣఈ೔൫ఏ೒ାఏೕ೒൯ାఉ೔൧

ଵାୣ୶୮ [ఈ೔൫ఏ೒ାఏೕ೒൯ାఉ೔]
,      (3) 

Where 𝛼௜ and 𝛽௜ are the discrimination and difficulty parameters of item 𝑖, 𝜃௚ is the mean of 
ability of group 𝑔, 𝜃௝௚ is the amount of deviation from the group mean ability for a person 𝑗 in 
a group 𝑔. 

5. SIMULATION STUDY1 
5.1. Simulation Designs  

This simulation study was designed to examine the impact of ignoring multilevel data 
structure on the estimation of the Rasch, 2PL, and 3PL models. To simulate multilevel 
data structure, item responses were generated based on Equation 4 below (Kamata & 
Vaughn, 2011). The parameters and their standard errors were estimated using BILOG-
MG (Zimowski et al., 1996). To make estimates comparable across replications, metric 
transformations were performed to put estimates on a common scale. This simulation 
was conducted using the R software package (R Core Team, 2013). 

5.1.1. Simulation Conditions 

The simulation conditions for multilevel data structure was manipulated in terms of the 
ICC, number of groups (nG), and group sizes (nW). The values of the ICC in this 
simulation study were set at 0, .05, .15, .25, .35, and .45 based on prior research. Hedges 
and Hedberg (2007) reported that the values of the ICC in educational performance 
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research often range between .10 and .25. Snijders and Bosker (1999) reported that the 
values of the ICC between .05 and .20 are most common in educational research, and 
values greater than .20 can be considered large. Also, the numbers of groups were set at 
50, 100, and 200 based on prior research (Maas & Hox, 2005; Finch & French, 2011). 
The group sizes or within-group sample sizes were set at 5, 15, 25, and 50, which cover 
the typical range of within-group sample sizes in family and educational research (Maas 
& Hox, 2005). In all, there were total 72 (=6 × 3 × 4) simulation conditions, and 1000 
simulated data sets were replicated for each simulation condition. 

5.1.2. Data Generation 

To simulate multilevel data structure, item responses were generated based on the following 
equation: 

𝑃௜௝௚[𝑌 = 1] = 𝑟௜ + (1 − 𝑟௜)
ୣ୶୮ൣఈ೔൫ఏ೒ାఏೕ೒൯ାఉ೔൧

ଵାୣ୶୮ൣఈ೔൫ఏ೒ାఏೕ೒൯ାఉ೔൧
,        (4) 

𝜃௝௚ ~ 𝑁(0,1),          (5) 

𝜃௚ ~ 𝑁 ቀ0, 𝜎ఏ೒

ଶ ቁ,        (6) 

which is the three-level hierarchical generalized linear model (Kamata, 2001), in which 
items, persons, and groups are modeled in Level-1, Level-2, and Level-3, respectively. In 
this simulation, the values of the difficulty parameters for seven items were set at (-3, -
2, -1, 0, 1, 2, 3) so that the estimated standard errors can be compared to the minimal 
asymptotic standard errors tabulated in Thissen and Wainer (1982).  The values of the 
discrimination parameters of the Rasch, 2PL, and 3PL models were set at (1, 1, 1, 1, 1, 
1, 1), (1, 2, 1, 2, 1, 2, 1), and (1, 2, 1, 2, 1, 2, 1), respectively. For the 3PL model, 
guessing parameters were set at (0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2). 

The proportion of the between-group variance in the total variance, which is the ICC, 
was calculated based on the following equation: 

𝐼𝐶𝐶 =
ఏഇ೒

మ

ఏ೐
మାఙೕ೒

మ ାఙഇ೒
మ ,         (7) 

Where 𝜎௘
ଶ, 𝜎ఏೕ೒

ଶ , and 𝜎ఏ೒

ଶ  represent the variation in Level-1, Level-2, and Level-3, respectively. 

𝜎௘
ଶ representing the Level-1 variance was set at 𝜋ଶ 3⁄  following Snijders and Bosker (2011). 

𝜎ఏೕ೒

ଶ  representing the amount of deviation from the group mean ability for a person 𝑗 in a group 

𝑔 and was set at 1. The values of 𝜎ఏ೒

ଶ , which represents the variance of the mean of abilities in 

a group g, can be determined given the values of the ICC.  

5.1.3. Minimal Asymptotic Standard Errors 

In examining the estimated standard errors from BILOG-MG, the minimal asymptotic 
standard errors (Thissen & Wainer, 1982) were used as reference values. Thissen and 
Wainer (1982) provided tables that contain minimal asymptotic standard errors for 
various values of locations, slopes, and asymptote parameters. Note that the values in 
the tables need to be adjusted using specific values of sample sizes. 

5.1.4. Scale Transformation 

In estimating parameters in IRT models, some parameters need to be fixed to arbitrary values 
to identify the models. Therefore, in IRT, independent estimates from two separate data sets 
can be compared only after they are expressed on a common metric (Stocking & Lord, 1983). 
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In this study, item parameter estimates from each replication were transformed into the metric 
defined by the original parameter values using the following equations (De Ayala, 2009): 𝛼ො∗ =

𝛼ො 𝐴⁄ , 𝛽መ∗ = 𝐴𝛽መ + 𝐵, 𝑐̂∗ = 𝑐̂, where 𝐴 = 𝑆ఉ෡∗ 𝑆ఉ෡⁄ , and 𝐵 = 𝛽መ̅∗ − 𝐴𝛽መ̅; 𝛼ො, 𝛽መ , and 𝑐̂ represent the 

discrimination, difficulty, and guessing parameter estimates in the origianl metric; 𝛼ො, 𝛽መ , and 𝑐̂ 
represent corresponding estimates in the target metric; and 𝑆ఉ෡∗ and 𝑆ఉ෡  represent standard 
deviations for diffculty parameters on the target and original metric respectively. The standard 
error estimates were also transformed to the metric defined by the original parameter values 
using the following equations (Kim & Cohen, 1995): 

𝑆𝐸 = ඥ𝑉𝑎𝑟[𝛼ො∗] = ට𝑉𝑎𝑟 ቂ
ఈෝ

஺
ቃ =

ௌா[ఈෝ]

஺
,                                                     (8) 

𝑆𝐸ൣ𝛽መ∗൧ = ට𝑉𝑎𝑟[𝛽መ∗] = ට𝑉𝑎𝑟ൣ𝐴𝛽መ + 𝐵൧ = 𝐴 × 𝑆𝐸ൣ𝛽መ൧,      (9) 

Where the coefficients A and B are the ones that are defined above. 

5.1.5. Evaluation 

To evaluate the impact of multilevel data structure on the estimation of item parameters 
for standard IRT models, the bias was calculated using the following equation and 
compared across simulation conditions: 

𝐵𝑖𝑎𝑠൫𝜃෠൯ =
∑ ∑ (ఏ෡ೝ೔

಺
೔సభ ିఏ೔)ೃ

ೝసభ

ோூ
,        (10) 

Where R and I represent the number of replications and the number of items respectively. Also, 
the following ratio was calculated to compare the standard error estimates from BILOG-MG 
with the minimal asymptotic standard errors (Thissen & Wainer, 1982): 

𝑟 =
ௌாಳ

ௌா೅
,         (11) 

Where SEB and SET represent the standard error estimates from BILOG-MG and the minimal 
asymptotic standard errors, respectively. 

On the other hand, the type I error inflation is also of interest when the standard errors are 
underestimated. To obtain a rough idea for the type I error inflation in the presence of 
underestimated standard errors, the theoretical type I errors of the z-tests for the statistical 
significance of time parameters were calculated in the following way. Under the assumption 
that item parameters following the standard normal distribution, the type I errors can be 
expressed as the following: 

𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟 = 1 − ∫
ଵ

√ଶగ

ଵ.ଽ଺

ିଵ.ଽ଺
𝑒ି

೥మ

మ 𝑑𝑧,      (12) 

Now, let us express the z-statistic based on the standard error estimates from BILOG-MG, 
which is denoted by 𝑧ᇱ, in terms of the z-statistics based on the minimal asymptotic standard 
error estimates, which is denoted by z, as the following: 

𝑧ᇱ =
ఏ

ௌாಳ
=

ఏ

௥ௌா೅
=

௭

௥
,        (13) 

Under the assumption that the z-test based on 𝑧 = 𝜃 𝑆𝐸்⁄  gives us the exact type I error based 
on the standard normal distribution, the theoretical type I error of the z-test based on  𝑧ᇱ =
𝜃 𝑆𝐸஻⁄  can be calculated as the following: 

𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟(𝑟) = 1 − ∫
௥

√ଶగ

ଵ.ଽ଺

ିଵ.ଽ଺
𝑒ି

(ೝ೥ᇲ)మ

మ 𝑑𝑧ᇱ,      (14) 
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Based on Equation 14, the theoretical type I error of z-test based on the underestimated standard 
error from BILOG-MG can be calculated. For example, r = 0.5 indicates that the standard error 
estimate form BILOG-MG is half of the minimal asymptotic standard error. Then, the z-statistic 
is doubled based on Equation 13, and the theoretical type I error becomes 0.32 based on 
Equation 14.  

5.2 Results for the Rasch Model 
5.2.1. Standard Errors of Difficulty Parameters 

The standard error estimates of the difficulty parameters in the Rasch model estimated from 
BILOG-MG are plotted in Figures 1 through 3 to demonstrate the influence of multilevel data 
structure on the estimation of standard errors. Figure 1, Figure 2, and Figure 3 show the standard 
error estimates for the cases where the number of groups (nG) are 50, 100, and 200, 
respectively. Each subplot in the figures shows the standard error estimates for a specific value 
of item difficulty parameters (b), and each line in the subplots shows the standard error 
estimates for a specific value of group sizes (nW). Because of space limitations, the ratios 
defined by Equation 11 are presented only for the number of groups (nG) of 50 in Table 1. In 
the table, the numbers in the parentheses are the type I errors for the corresponding values of r 
that were calculated based on Equation 14. 
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Figure 1. Standard error estimates of difficulty parameters in the Rasch model (BILOG, nG=50) 

a) Item 1 (b=-3), Item 7 (b=3)        b) Item 2 (b=-2), Item 6 (b=2) 
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c) Item 3 (b=-1), Item 5 (b=1)   d) Item 4 (b=0) 
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Note. This figure provides a graphical illustration of changes in standard error estimates depending ICC when the 
number of groups (nG) is 50. For the group size (nW) of 5, the minimal asymptotic standard errors were plotted 
together for comparison. 
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Figure 2. Standard error estimates of difficulty parameters in the Rasch model (BILOG, nG=100) 

 

a) Item 1 (b=-3), Item 7 (b=3)        b) Item 2 (b=-2), Item 6 (b=2)  
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c) Item 3 (b=-1), Item 5 (b=1)             d) Item 4 (b=0) 
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Note. This figure provides a graphical illustration of changes in standard error estimates depending ICC when the 
number of groups (nG) is 100. For the group size (nW) of 5, the minimal asymptotic standard errors were plotted 
together for comparison. 

 

Several trends can be identified from the results. Most importantly, the results show that the 
standard errors estimates decrease as the values of the ICC increase. The decrease is most 
prominent when the number of groups and the group sizes are small. For example, in Figure 
1a, the standard error estimates for nG = 50, nW = 5, and b=-3 or 3 decrease from 0.2742 to 
0.1265 as the values of the ICC increase from 0 to 0.45. Also, as can be seen from Table 1, the 
ratio r for ICC = 0.45, nG = 50, nW = 5, and b=-3 or 3 was 0.49, which indicates that the 
standard error estimate from the standard single-level Rasch model, which is 0.1265 in this 
case, is about half of the minimal asymptotic standard error. Note that the minimal asymptotic 
standard error for nG = 50, nW = 5, and b=-3 or 3 is 0.2586. 
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Secondly, the effect of the ICC on the estimation for the standard error decrease as the number 
of groups (nG) and the group sizes (nW) increase. For example, in Figure 1a, the standard error 
estimate for nW = 5 decrease more than nW = 50 as the values of the ICC increase. Also, the 
decrease is more prominent for nG = 50 (Figure 1) than nG = 200 (Figure 3). 

 

Figure 3. Standard error estimates of difficulty parameters in the Rasch model (BILOG, nG=200) 

 

a) Item 1 (b=-3), Item 7 (b=3)        b) Item 2 (b=-2), Item 6 (b=2)  
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c) Item 3 (b=-1), Item 5 (b=1)        d) Item 4 (b=0)  

 

0.3       0.3 

 

 

0.2       0.2 

 

 

0.1       0.1 

 

 

0.0       0.0 

 0.05 0.15 0.25 0.35 0.45   0.05 0.15 0.25 0.35 0.45 

   ICC       ICC 

 
Note. This figure provides a graphical illustration of changes in standard error estimates depending ICC when the 
number of groups (nG) IS 200. For the group size (nW) of 5, the minimal asymptotic standard errors were plotted 
together for comparision. 
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Table 1. The Ratios and Type I Errors for the Rasch Model When nG = 50 

ICC Groups Groups 
Sizes 

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 

0.05 50 5 0.92 
(0.07) 

0.93 
(0.07) 

0.94 
(0.06) 

0.94 
(0.06) 

0.94 
(0.07) 

0.93 
(0.07) 

0.92 
(0.07) 

0.05 50 15 0.91 
(0,07) 

0.92 
(0.07) 

0.94 
(0.07) 

0.94 
(0.06) 

0.94 
(0.07) 

0.92 
(0.07) 

0.91 
(0.07) 

0.05 50 25 0.91 
(0.08) 

0.92 
(0.07) 

0.94 
(0.07) 

0.94 
(0.07) 

0.94 
(0.07) 

0.92 
(0.07) 

0.91 
(0.08) 

0.05 50 50 0.90 
(0.08) 

0.92 
(0.07) 

0.93 
(0.07) 

0.94 
(0.07) 

0.93 
(0.07) 

0.92 
(0.07) 

0.90 
(0.08) 

0.15 50 5 0.75 
(0.14) 

0.78 
(0.13) 

0.81 
(0.11) 

0.82 
(0.11) 

0.81 
(0.11) 

0.78 
(0.13) 

0.75 
(0.14) 

0.15 50 15 0.74 
(0.15) 

0.78 
(0.13) 

0.81 
(0.11) 

0.82 
(0.11) 

0.81 
(0.11) 

0.78 
(0.13) 

0.74 
(0.15) 

0.15 50 25 0.74 
(0.14) 

0.78 
(0.13) 

0.81 
(0.11) 

0.82 
(0.11) 

0.81 
(0.11) 

0.78 
(0.13) 

0.74 
(0.14) 

0.15 50 50 0.74 
(0.15) 

0.78 
(0.13) 

0.81 
(0.11) 

0.82 
(0.11) 

0.81 
(0.11) 

0.784 
(0.13) 

0.74 
(0.14) 

0.25 50 5 0.64 
(0.21) 

0.68 
(0.18) 

0.72 
(0.16) 

0.74 
(0.15) 

0.72 
(0.16) 

0.69 
(0.18) 

0.64 
(0.21) 

0.25 50 15 0.64 
(0.21) 

0.69 
(0.18) 

0.73 
(0.15) 

0.74 
(0.15) 

0.73 
(0.15) 

0.69 
(0.18) 

0.64 
(0.21) 

0.25 50 25 0.64 
(0.21) 

0.69 
(0.18) 

0.73 
(0.15) 

0.74 
(0.14) 

0.73 
(0.15) 

0.69 
(0.18) 

0.64 
(0.21) 

0.25 50 50 0.63 
(0.22) 

0.68 
(0.18) 

0.72 
(0.16) 

0.74 
(0.15) 

0.72 
(0.16) 

0.68 
(0.18) 

0.63 
(0.22) 

0.35 50 5 0.56 
(0.27) 

0.61 
(0.23) 

0.66 
(0.20) 

0.68 
(0.19) 

0.66 
(0.20) 

0.61 
(0.23) 

0.55 
(0.28) 

0.35 50 15 0.55 
(0.28) 

0.61 
(0.23) 

0.66 
(0.20) 

0.68 
(0.18) 

0.66 
(0.20) 

0.61 
(0.23) 

0.55 
(0.28) 

0.35 50 25 0.55 
(0.28) 

0.61 
(0.23) 

0.66 
(0.19) 

0.68 
(0.18) 

0.66 
(0.19) 

0.61 
(0.23) 

0.55 
(0.28) 

0.35 50 50 0.55 
(0.28) 

0.61 
(0.23) 

0.66 
(0.19) 

0.68 
(0.18) 

0.66 
(0.19) 

0.61 
(0.23) 

0.56 
(0.28) 

0.45 50 5 0.49 
(0.34) 

0.56 
(0.28) 

0.61 
(0.23) 

0.63 
(0.22) 

0.61 
(0.23) 

0.55 
(0.28) 

0.49 
(0.34) 

0.45 50 15 0.49 
(0.34) 

0.55 
(0.28) 

0.61 
(0.24) 

0.63 
(0.22) 

0.61 
(0.23) 

0.55 
(0.28) 

0.49 
(0.34) 

0.45 50 25 0.49 
(0.34) 

0.55 
(0.28) 

0.60 
(0.24) 

0.62 
(0.22) 

0.60 
(0.24) 

0.55 
(0.28) 

0.48 
(0.34) 

0.45 50 50 0.48 
(0.34) 

0.55 
(0.28) 

0.61 
(0.24) 

0.63 
(0.22) 

0.61 
(0.23) 

0.55 
(0.28) 

0.49 
(0.34) 

 
Notes. For each simulation condition, the numbers in the first line represent ratios r based on Equation 11, and 
the numbers in parentheses in the second line represent type I erros based on Equation 14. 

5.2.2. Biases for Difficulty Parameters 

The estimates for the item difficulty parameters were also monitored to check the influence of 
manipulated factors on the estimation of item difficulty parameters. Because of the space 
limitations, the parameter estimates are presented only for the number of groups (nG) 50 in 
Figure 4. In contrast to the results of standard error estimates, it seemed that the ICC did not 
affect the estimation of the item difficulty parameters. The figure does not show any systematic 
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pattern, and the parameter estimates remain stable across the values of the ICC. Similarly, no 
systematic pattern was observed for the number of groups (nG) 100 and 200. 

 

Figure 4. Biases of difficulty parameters in the Rasch model (BILOG, nG=50) 

a) Item 1 (b=-3)          b) Item 2 (b=-2)  

 

-2.97       -1.97 

 

-2.98       -1.98 

 

-2.99       -1.99 

 

-3.00       -2.00 

 

-3.01       -2.01 

 

-3.02       -2.02  

 

-3.03       -2.03 

 0.05 0.15 0.25 0.35 0.45   0.05 0.15 0.25 0.35 0.45 

   ICC       ICC 

 

c) Item 3 (b=-1)          d) Item 4 (b=0)  

 

-0.97       0.03 

 

-0.98       0.02 

 

-0.99       0.01 

 

-1.00       0.00 

 

-1.01       -0.01 

 

-1.02       -0.02 

 

-1.03       -0.03 

 0.05 0.15 0.25 0.35 0.45   0.05 0.15 0.25 0.35 0.45 

   ICC       ICC 

 
Note. This figure provides a graphical illustration of changes in bias of parameter estimates depending on ICC for 
the number of groups (nG) 50. The true values of parameters were plotted as horizontal lines. 
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5.3. Results for the 2PL and 3PL 

Overall, similar patterns were observed for the 2PL and 3PL models. The standard error 
estimates decreased as the values of the ICC increased. Also, the estimates for item parameters 
were stable across different values of the ICC, and no systematic pattern was observed for the 
bias of parameter estimates. Because of space limitations, only parts of the results are presented 
in Table 2. The results for the number of groups 100 and 200 also showed similar patterns but 
are not presented because of the limitation of space. 

Table 2. The Ratios and Type I Errors for the 2PL and 3PL Models When nG = 50 

ICC Groups Groups Sizes 2PL (a=1) 2PL (b=3) 3PL (a=1) 3PL (b=3) 3PL (c=0.2) 
0.05 50 5 0.61 

(0.23) 
0.48 

(0.34) 
0.54 

(0.28) 
0.75 

(0.13) 
0.57 

(0.25) 
0.05 50 15 0.60 

(0.23) 
0.47 

(0.34) 
0.65 

(0.20) 
0.71 

(0.16) 
0.72 

(0.15) 
0.05 50 25 0.60 

(0.23) 
0.46 

(0.35) 
0.69 

(0.17) 
0.72 

(0.15) 
0.79 

(0.11) 
0.05 50 50 0.60 

(0.23) 
0.47 

(0.35) 
0.75 

(0.13) 
0.75 

(0.14) 
0.85 

(0.09) 
0.15 50 5 0.58 

(0.25) 
0.44 

(0.38) 
0.43 

(0.39) 
0.57 

(0.26) 
0.59 

(0.24) 
0.15 50 15 0.60 

(0.23) 
0.42 

(0.40) 
0.50 

(0.32) 
0.60 

(0.23) 
0.74 

(0.14) 
0.15 50 25 0.56 

(0.26) 
0.43 

(0.39) 
0.54 

(0.28) 
0.57 

(0.25) 
0.78 

(0.12) 
0.15 50 50 0.57 

(0.25) 
0.44 

(0.38) 
0.60 

(0.23) 
0.59 

(0.24) 
0.81 

(0.10) 
0.25 50 5 0.53 

(0.29) 
0.40 

(0.43) 
0.34 

(0.49) 
0.53 

(0.29) 
0.60 

(0.23) 
0.25 50 15 0.54 

(0.28) 
0.39 

(0.44) 
0.42 

(0.40) 
0.51 

(0.31) 
0.73 

(0.15) 
0.25 50 25 0.54 

(0.28) 
0.39 

(0.44) 
0.46 

(0.36) 
0.50 

(0.32) 
0.76 

(0.13) 
0.25 50 50 0.54 

(0.28) 
0.38 

(0.44) 
0.50 

(0.32) 
0.48 

(0.34) 
0.77 

(0.13) 
0.35 50 5 0.51 

(0.31) 
0.37 

(0.45) 
0.29 

(0.56) 
0.46 

(0.36) 
0.61 

(0.22) 
0.35 50 15 0.52 

(0.30) 
0.37 

(0.46) 
0.37 

(0.46) 
0.44 

(0.38) 
0.71 

(0.16) 
0.35 50 25 0.52 

(0.30) 
0.36 

(0.47) 
0.40 

(0.42) 
0.42 

(0.40) 
0.72 

(0.15) 
0.35 50 50 0.52 

(0.30) 
0.36 

(0.47) 
0.43 

(0.39) 
0.41 

(0.41) 
0.73 

(0.15) 
0.45 50 5 0.50 

(0.32) 
0.37 

(0.46) 
0.26 

(0.60) 
0.42 

(0.40) 
0.61 

(0.23) 
0.45 50 15 0.52 

(0.30) 
0.36 

(0.47) 
0.33 

(0.50) 
0.40 

(0.42) 
0.69 

(0.17) 
0.45 50 25 0.52 

(0.30) 
0.36 

(0.47) 
0.36 

(0.47) 
0.38 

(0.45) 
0.70 

(0.16) 
0.45 50 50 0.52 

(0.30) 
0.36 

(0.47) 
0.38 

(0.44) 
0.36 

(0.47) 
0.68 

(0.17) 

Note. For each simulation condition, the numbers in the first line represent ratios r based on Equation 11, and the 
numbers in parentheses in the second line represent type I errors based on Equation 14. 
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6. SIMULATION STUDY2 

6.1. Simulation Designs 

This simulation study was to design to compare type I error rates of DIF tests using models 
with and without reflecting multilevel data structure. To do so, data sets were generated using 
the same setting of the Rasch model in the simulation study 1 with no DIF for a studied item 
across hypothetical binary groups. In generating data sets, item difficulty parameters were set 
at (-3, -2, -1, 0, 1, 2, 3), and multilevel structure was implemented with different values of the 
ICC, which are 0, .05, .15, .25, .35, and .45. Two different kinds of DIF tests were performed 
across those hypothetical groups using the Lord’s chi-square test and the Rasch model 
formulated in hierarchical generalized linear model (HGLM). The Lord’s chi-square tests were 
performed using parameter estimates and their standard errors estimated from BILOG-MG. 
Also, another DIF tests were performed based on the Rasch model that was formulated in the 
hierarchical generalized linear model (HGLM) in which items, persons, and groups are modeled 
in Level-1, Level-2, and Level-3 respectively. 

6.2. Results 

The results of DIF tests using Lord’s chi-square tests and the multilevel Rasch model for the 
number of groups (nG) 50 are presented in Table 3. In the table, the numbers in the first line of 
each simulation condition represent type I errors from the Lord’s chi-square tests, and the 
numbers in parentheses in the second line represent type I errors from the multilevel Rasch 
model. From the table, it can be seen that the type I error rates of the Lord’s chi-square tests are 
inflated up to .270 as the values of the ICC increase, whereas the type I error rates of the 
multilevel Rasch model remain quite stable close to the nominal level of significance, which is 
.05. 

Table 3. DIF using Lord Chi square Test vs HGLM When nG = 50 

ICC Groups Groups 
Sizes 

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 

0.05 50 5 0.005 
(0.026) 

0.044 
(0.025) 

0.082 
(0.051) 

0.064 
(0.054) 

0.098 
(0.053) 

0.048 
(0.039) 

0.008 
(0.022) 

0.05 50 15 0.009 
(0.027) 

0.033 
(0.028) 

0.075 
(0.050) 

0.078 
(0.046) 

0.066 
(0.034) 

0.066 
(0.026) 

0.005 
(0.021) 

0.05 50 25 0.002 
(0.0274) 

0.043 
(0.031) 

0.056 
(0.053) 

0.042 
(0.053) 

0.058 
(0.048) 

0.035 
(0.033) 

0.002 
(0.022) 

0.05 50 50 0.003 
(0.023) 

0.046 
(0.035) 

0.062 
(0.053) 

0.073 
(0.064) 

0.068 
(0.074) 

0.049 
(0.055) 

0.007 
(0.039) 

0.15 50 5 0.021 
(0.052) 

0.116 
(0.081) 

0.136 
(0.093) 

0.130 
(0.080) 

0.114 
(0.060) 

0.105 
(0.053) 

0.026 
(0.027) 

0.15 50 15 0.012 
(0.034) 

0.072 
(0.039) 

0.100 
(0.076) 

0.112 
(0.075) 

0.093 
(0.054) 

0.080 
(0.049) 

0.013 
(0.042) 

0.15 50 25 0.022 
(0.051) 

0.081 
(0.061) 

0.121 
(0.066) 

0.143 
(0.073) 

0.129 
(0.051) 

0.096 
(0.041) 

0.031 
(0.039) 

0.15 50 50 0.021 
(0.035) 

0.094 
(0.035) 

0.131 
(0.059) 

0.134 
(0.055) 

0.121 
(0.075) 

0.072 
(0.063) 

0.015 
(0.045) 

0.25 50 5 0.028 
(0.022) 

0.094 
(0.025) 

0.112 
(0.041) 

0.130 
(0.055) 

0.129 
(0.042) 

0.105 
(0.045) 

0.020 
(0.030) 

0.25 50 15 0.032 
(0.037) 

0.121 
(0.044) 

0.167 
(0.044) 

0.149 
(0.040) 

0.130 
(0.034) 

0.109 
(0.044) 

0.048 
(0.046) 

0.25 50 25 0.028 
(0.030) 

0.132 
(0.040) 

0.159 
(0.047) 

0.164 
(0.041) 

0.145 
(0.029) 

0.127 
(0.041) 

0.047 
(0.029) 
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Table 3. Continues 

0.25 50 50 0.038 
(0.035) 

0.143 
(0.046) 

0.163 
(0.055) 

0.164 
(0.045) 

0.162 
(0.041) 

0.122 
(0.026) 

0.045 
(0.034) 

0.35 50 5 0.069 
(0.035) 

0.141 
(0.045) 

0.193 
(0.031) 

0.200 
(0.043) 

0.213 
(0.048) 

0.155 
(0.035) 

0.068 
(0.027) 

0.35 50 15 0.049 
(0.027) 

0.138 
(0.040) 

0.176 
(0.047) 

0.176 
(0.052) 

0.186 
(0.054) 

0.133 
(0.042) 

0.055 
(0.033) 

0.35 50 25 0.065 
(0.036) 

0.178 
(0.041) 

0.195 
(0.043) 

0.228 
(0.034) 

0.227 
(0.044) 

0.166 
(0.029) 

0.088 
(0.030) 

0.35 50 50 0.090 
(0.043) 

0.163 
(0.044) 

0.227 
(0.050) 

0.230 
(0.037) 

0.213 
(0.033) 

0.167 
(0.038) 

0.063 
(0.031) 

0.45 50 5 0.182 
(0.047) 

0.316 
(0.078) 

0.353 
(0.083) 

0.341 
(0.063) 

0.317 
(0.047) 

0.317 
(0.045) 

0.197 
(0.031) 

0.45 50 15 0.118 
(0.052) 

0.253 
(0.051) 

0.281 
(0.049) 

0.258 
(0.043) 

0.258 
(0.051) 

0.236 
(0.067) 

0.120 
(0.038) 

0.45 50 25 0.137 
(0.032) 

0.231 
(0.044) 

0.268 
(0.041) 

0.298 
(0.038) 

0.282 
(0.043) 

0.238 
(0.034) 

0.116 
(0.034) 

0.45 50 50 0.131 
(0.039) 

0.204 
(0.048) 

0.259 
(0.085) 

0.270 
(0.070) 

0.263 
(0.049) 

0.213 
(0.026) 

0.137 
(0.034) 

Note. For each simulation condition, the numbers in the first line represent type I errors from Lord Chi Square 
tests, and the numbers in parentheses in the second line represent type I errors from HGLM. 

7. DISCUSSION 

It is well known that applying single-level statistical models to multilevel data may produce 
underestimated standard error estimates, which in turn result in invalid statistical inferences 
based on such underestimated standard errors. The goal of this study was to examine the impact 
of multilevel data structure on the estimation of standard errors in dichotomous IRT models in 
order to explicitly demonstrate the degree of such underestimation in IRT. Given existing and 
potential IRT applications in which standard error estimates for item parameters play a crucial 
role (Toland, 2008), it is important to understand the behavior of the standard error estimation 
of the IRT models in the presence of multilevel data. Our simulation study showed that the 
degree of underestimation could be quite huge depending on the values of the ICC. In the most 
severe case, where the value of the ICC was .45, the standard error estimate from 

BILOG-MG was about half of the minimal asymptotic standard error; the type I error rates of 
the Lord’s chi-square tests were inflated up to .35; and the type I error rates of hypothetical z-
test using Equation 14 were also inflated up to .47. However, the type I error rates of DIF tests 
using the multilevel Rasch model were close to the nominal level of α, which is .05. Multilevel 
data structure did not affect item parameter estimates. 

The results of this study match those of previous studies. Ignoring multilevel data structure 
caused underestimated standard errors in regression (Goldstein, 1987) and SEM (Satorra & 
Muthen, 1995). Barcikowski (1981) also found that even a small amount of the ICC can produce 
dramatic increases in the actual type I error of a t-test. For example, with the group size of 50, 
an ICC of .05, which is usually considered small, produced a type I error of .30. In IRT, Finch 
and French (2011) showed that the type I error of a DIF test using a standard logistic regression 
can be inflated in the presence of multilevel data structure. In their work, the type I error rate 
was inflated up to .44 when the value of the ICC was .45. Because the reason for such type I 
error inflation is the underestimated standard errors, in this study, we wanted to explicitly show 
the degree of underestimation in IRT settings. 

The underestimation of standard errors is caused by the violation of the independent assumption 
of traditional statistical models. In the presence of multilevel data structure, individuals share 
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common experiences due to closeness in space or time, which makes individuals within the 
same context more similar to one another. Therefore, observed variance within clusters is 
typically less than observed variance between clusters. When observations are assumed to be 
independent, overall variance is calculated without considering the similarity among 
individuals within clusters, and tends to be underestimated. In fact, as the values of ICC 
increase, the standard error estimates should increase if the multilevel data structure is properly 
handled by statistical models (Snijders & Bosker, 1999; Raudenbush, 1997). 

Taken all together, the results of this study suggest that ignoring multilevel data structure in the 
estimation of IRT models could result in underestimated standard errors for item parameter 
estimates. More importantly, the extents to which standard errors are underestimated are quite 
huge. Many evidences from previous studies also suggest that standard error estimates in 
statistical models in general are quite sensitive to multilevel data structure. Therefore, ignoring 
multilevel data structure could result in invalid statistical inferences in IRT settings. Therefore, 
researchers who want to use IRT applications in which standard error estimates of item 
parameters play a crucial role need to check whether their data sets have multilevel data 
structure or not. In the presence of multilevel structure, traditional single level model could be 
problematic. Instead, multilevel IRT models are recommended.  
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