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Abstract
In this paper, we consider a Lebesgue space with a mixed norm of
periodic functions of many variables. We obtain the exact estimation
of the best M-term approximations of Nikol’skii’s and Besov’s classes
in the Lebesgue space with the mixed norm.
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1. Introduction
Let x = (x1, ..., xm) ∈ Tm = [0, 2π)m and pj ∈ [1,+∞), j = 1, ...,m. Lp̄(Tm) denotes

the space of Lebesgue measureable functions f(x̄) defined on Rm, which have 2π period
with respect to each variable such that

‖f‖p̄ =

[∫ 2π

0

[
· · ·
[∫ 2π

0

|f(x̄)|p1dx1

] p2
p1

· · ·
] pm
pm−1

dxm

] 1
pm

< +∞,

where p = (p1, ..., pm) , 1 ≤ pj < +∞, j = 1, ...,m (see [18], p. 128, [4], p. 54). In the
case p1 = ... = pm = p, we write Lp(Tm).

Any function f ∈ L1 (Tm) = L (Tm) can be expanded to the Fourier series∑
n∈Zm

an (f) ei〈n,x〉,

where {an(f)} are Fourier coefficients of a function f ∈ L1 (Tm) with respect to a multiple
trigonometric system {ei〈n,x〉}n̄∈Zm and Zm is the space of points in Rm with integer
coordinates.

For a function f ∈ L(Tm) and a number s ∈ Z+ = N ∪ {0}, let us introduce the
notation

δ0(f, x̄) = a0(f)
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and
δs(f, x) =

∑
n∈ρ(s)

an(f)ei〈n,x〉,

where 〈ȳ, x̄〉 =
m∑
j=1

yjxj and

ρ(s) =

{
k = (k1, ..., km) ∈ Zm : [2s−1] ≤ max

j=1,...,m
|kj | < 2s

}
,

where [a] is the integer part of the number a.
Let us consider Nikol’skii’s and Besov’s classes ([4, 7, 18]). Let 1 < pj < +∞,

j = 1, ...,m, 1 ≤ θ ≤ ∞, r > 0, and

Hr
p =

{
f ∈ Lp (Tm) : sup

s∈Z+

2sr ‖δs(f)‖p̄ ≤ 1

}
,

Brp̄,θ =
{
f ∈ Lp(Tm) :

(∑
s∈Z+

2srθ ‖δs(f)‖θp̄
) 1
θ ≤ 1

}
.

It is known that for 1 ≤ θ ≤ θ1 ≤ ∞ the following holds

Brp̄,1 ⊂ Brp̄,θ ⊂ Brp̄,θ1 ⊂ B
r
p̄,∞ = Hr

p̄ .

Let f ∈ Lp̄(Tm) and
{
k̄(j)

}M
j=1

be a system of vectors k̄(j) = (k
(j)
1 , ..., k

(j)
m ) with

integer coordinates. Consider the quantity

eM (f)p̄ = inf
k̄(j),bj

∥∥∥∥∥f −
M∑
j=1

bje
i〈k̄(j),x̄〉

∥∥∥∥∥
p̄

,

where bj is an arbitrary number. The quantity eM (f)p̄ is called the best M -term ap-
proximation of a function f ∈ Lp̄(Tm). For a given class F ⊂ Lp̄(Tm) let

eM (F )p̄ = sup
f∈F

eM (f)p̄ .

The best M -term approximation was defined by S.B. Stechkin [22]. Estimations of M -
term approximations of different classes were provided by R.S. Ismagilov [13], E.S. Be-
linsky [6], V.E. Maiorov [17], B.S. Kashin [14], R. DeVore [8], V.N. Temlyakov [23],
A.S. Romanyuk [19], Dinh Dung [10], D.B. Bazarkhanov [5], L. Duan [11], M. Hansen
and W. Sickel [12], S.A. Stasyuk [20, 21], and others (see bibliography in [1], [2], [8], [21],
[23]).

For the case p1 = ... = pm = p and q1 = ... = qm = q, R.A. De Vore and
V.N. Temlyakov [9] proved the following theorem.

1.1. Theorem. (see [9]). Let 1 ≤ p, q, θ ≤ ∞, r(p, q) = m
(

1
p
− 1

q

)
+

if 1 ≤ p ≤ q ≤ 2

or 1 ≤ q ≤ p < ∞ and r(p, q) = max
{
m
p
, m

2

}
in other cases. Then, for r > r(p, q), the

following relation holds

eM (Brp,θ)q �M
− r
m

+
(

1
p
−max

{
1
q
, 1
2

})
+ ,

where a+ = max {a; 0} .

Moreover, in the case of m
(

1
p
− 1

q

)
< r < m

p
and 1 < p ≤ 2 < q < ∞, S.A. Stasyuk

[20, 21] proved that eM (Brp,θ)q �M
− q

2

(
r
m
−
(

1
p
− 1
q

))
.

The main goal of the present paper is to find the order of the quantity eM (F )q̄ for
the class F = Brp̄,θ.
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Let us denote by C(p, q, r, y) positive quantities, which depend on the parameters in
the parentheses, such that the parameters, in general, are distinct in distinct formulas.
A (y) � B (y) means that there are positive numbers C1 and C2 such that C1 · A (y) ≤
B (y) ≤ C2 ·A (y).

To prove the main results, we need the following auxiliary results.

1.2. Theorem. (see [24]). Let n̄ = (n1, ..., nm), nj ∈ N, j = 1, ...,m, and

Tn̄(x̄) =
∑

|kj |≤nj ,j=1,...,m

ck̄e
i〈k̄,x̄〉.

Then, for 1 ≤ pj < qj ≤ ∞, j = 1, ...m, the following inequality holds

‖Tn̄‖q̄ ≤ 2m
m∏
j=1

n
1
pj
− 1
qj

j ‖Tn̄‖p̄ .

1.3. Theorem. (see [16]). Let p ∈ (1,∞). Then there exist positive constants C1(p)
and C2(p) such that for each function f ∈ Lp(Tm) the following estimation is valid

C1(p)‖f‖p ≤
∥∥∥( ∞∑

s=0

|δs(f)|2
) 1

2
∥∥∥
p
≤ C2(p)‖f‖p.

Let ΩM be a set containing no more than M vectors k̄ = (k1, ..., km) with integer
coordinates and P (ΩM , x̄) be any trigonometric polynomial, which consists of harmonics
with “indices“ in ΩM .

1.4. Lemma. (see [2]). Let 2 < qj < +∞ and j = 1, ...,m. Then, for any trigonometric
polynomial P (ΩN ) and for any natural number M < N , there exists a trigonometric
polynomial P (ΩM ) such that the following estimation holds

‖P (ΩN )− P (ΩM )‖q̄ ≤ C1(NM−1)
1
2 ‖P (ΩN )‖2,

and, moreover, ΩM ⊂ ΩN .

2. Main results
Let us prove the main results.

2.1. Theorem. Let p̄ = (p1, ..., pm), q̄ = (q1, ..., qm), 1 < pj ≤ 2 < qj < ∞, and
1 ≤ θ ≤ ∞.

1. If
m∑
j=1

(
1
pj
− 1

qj

)
< r <

m∑
j=1

1
pj

, then

eM
(
Brp̄,θ

)
q̄
�M

−
(

2
m∑
j=1

1
qj

)−1(
r−

m∑
j=1

(
1
pj
− 1
qj

))
.

2. If r =
m∑
j=1

1
pj

, then

eM
(
Brp̄,θ

)
q̄
�M−

1
2 (log(1 +M))1− 1

θ .

3. If r >
m∑
j=1

1
pj

, then

eM
(
Brp̄,θ

)
q̄
�M

− 1
m

(
r+

m∑
j=1

(
1
2
− 1
pj

))
.
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Proof. Firstly, we are going to consider the upper bound in the first item. Taking
into account the inclusion Brp̄,θ ⊂ Hr

p̄ , 1 ≤ θ < +∞, it suffices to prove it for the class
Hr
p̄ .
Let 1 ≤ pj < qj < ∞ and N be the set of natural numbers. For a number M ∈ N

choose a natural number n such that 2nm < M ≤ 2(n+1)m. For a function f ∈ Hr
p̄ , it is

known that

f(x̄) =

∞∑
s=0

δs(f, x̄)

and

‖δs(f)‖p̄ ≤ 2−sr, 1 < pj <∞, j = 1, ...,m.

We will seek an approximation polynomial P (ΩM , x̄) in the form

P (ΩM , x̄) =

n−1∑
s=0

δs(f, x̄) +
∑

n≤s<αn

P (ΩNs , x̄), (1)

where the polynomials P (ΩNs , x̄) will be constructed for each δs(f, x̄) in accordance with
Lemma 1.4 and the number α > 1 will be chosen during the construction.

Let
m∑
j=1

( 1
pj
− 1

qj
) < r <

m∑
j=1

1
pj
. Suppose

Ns =
[
2nm2

s

(
m∑
j=1

1
pj
−r
)

2
−nα

(
m∑
j=1

1
pj
−r
)]

+ 1,

where [y] is the integer part of the number y.
Now we are going to show that the polynomials (1) have no more than M harmonics

(in terms of order). By the definition of the number Ns, we have

n−1∑
s=0

]{k̄ = (k1, ..., km) : [2s−1] ≤ max
j=1,...,m

|kj | < 2s}+
∑

n≤s<αn

Ns ≤ C2nm+

+
∑

n≤s<αn

2nm2
s

(
m∑
j=1

1
pj
−r
)

2
−nα

(
m∑
j=1

1
pj
−r
)

+ 1

 ≤ C2nm + (α− 1)n ≤ C2nm �M,

where ]A denotes the number of elements in the set A.
Next, by the property of the norm, we have

‖f − P (ΩM )‖q̄ ≤ C

∥∥∥∥∥∥
∑

n≤s<αn

(δs(f)− P (ΩNs))

∥∥∥∥∥∥
q̄

+

+

∥∥∥∥∥∥
∑

αn≤s<+∞

δs(f)

∥∥∥∥∥∥
q̄

= J1(n) + J2(n). (2)

Let us estimate J2(n). Applying the inequality of different metrics for trigonometric
polynomials (Theorem 1.2), we can obtain

J2(n) ≤
∑

αn≤s<+∞

‖δs(f)‖q̄ ≤ C
∑

αn≤s<+∞

2
s
m∑
j=1

(
1
pj
− 1
qj

)
‖δs(f)‖p̄.
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Therefore, taking into account f ∈ Hr
p̄ and

m∑
j=1

( 1
pj
− 1

qj
) < r, we get

J2(n) ≤ C
∑

αn≤s<+∞

2
−s
(
r−

m∑
j=1

(
1
pj
− 1
qj

))
≤ C2

−nα
(
r−

m∑
j=1

(
1
pj
− 1
qj

))
. (3)

Let us estimate J1(n). Using the property of the norm, Lemma 1.4 and the inequality of
different metrics (Theorem 1.2), we get

J1(n) ≤
∑

n≤s<αn

‖δs(f)− P (ΩNs)‖q̄ ≤ C
∑

n≤s<αn

(
N−1
s 2sm

) 1
2 ‖δs(f)‖2 ≤

≤ C
∑

n≤s<αn

(
N−1
s 2sm

) 1
2 2

s
m∑
j=1

(
1
pj
− 1

2

)
‖δs(f)‖p̄ ≤

≤ C
∑

n≤s<αn

N
− 1

2
s 2

s
m∑
j=1

1
pj 2−sr ≤

≤ C2−
nm
2 2

nα
2

(
m∑
j=1

1
pj
−r
) ∑
n≤s<αn

2
s

(
m∑
j=1

1
pj
−r
)

1
2 ≤ C2−

nm
2 2

nα
2

(
m∑
j=1

1
pj
−r
)
. (4)

Suppose α = m

(
2
m∑
j=1

1
qj

)−1

. Then, from the inequality (4), we get

J1(n) ≤ C2
−nm

(
2
m∑
j=1

1
qj

)−1(
r−

m∑
j=1

(
1
pj
− 1
qj

))
�M

−
(

2
m∑
j=1

1
qj

)−1(
r−

m∑
j=1

(
1
pj
− 1
qj

))
. (5)

For α = m

(
2
m∑
j=1

1
qj

)−1

, using the inequality (3) and taking into account 2nm �M , we

obtain

J2(n) ≤ CM
−
(

2
m∑
j=1

1
qj

)−1(
r−

m∑
j=1

(
1
pj
− 1
qj

))
. (6)

By (5) and (6), we get from the inequality (2) the following

‖f − P (ΩM ) ‖q̄ ≤ CM
−
(

2
m∑
j=1

1
qj

)−1(
r−

m∑
j=1

(
1
pj
− 1
qj

))
,

for any function f ∈ Hr
p̄ in the case of

m∑
j=1

( 1
pj
− 1

qj
) < r <

m∑
j=1

1
pj
.

From the inclusion Brp̄,θ ⊂ Hr
p̄ and the definition of the M -term approximation, it

follows that

eM
(
Brp̄,θ

)
q̄
≤ CM

−
(

2
m∑
j=1

1
qj

)−1(
r−

m∑
j=1

(
1
pj
− 1
qj

))

in the case of
m∑
j=1

( 1
pj
− 1

qj
) < r <

m∑
j=1

1
pj
.

Let us consider the lower bound. We will use the well-known formula (see [19], p. 79)

eM (f)q̄ = inf
ΩM

sup
P∈L⊥

M
,‖P‖q̄′≤1

∣∣∣∣∫
Tm

f(x̄)P̄ (x̄)dx̄

∣∣∣∣ , (7)

where q̄′ = (q1
′, ..., qm

′), 1
qj

+ 1
qj ′

= 1, j = 1, ...,m, and L⊥M is the set of functions that
are orthogonal to the subspace of trigonometric polynomials with harmonics in the set
ΩM .
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Consider the function

Fq̄,n(x̄) =
∑

max
j=1,...,m

|kj |≤2

nm
2

m∑
j=1

1
qj

−1
ei〈k̄,x̄〉.

Let ΩM be a set of M vectors with integer coordinates. Suppose

g(x̄) = Fq̄,n(x̄)−
∗∑

k̄∈ΩM

ei〈k̄,x̄〉,

where the sum
∗∑

k̄∈ΩM

contains those terms in the function Fq̄,n(x̄) with indices only in

ΩM . By the inequality (see [18], p. 88)

‖
∑

max
j=1,...,m

|kj |≤2l

ei〈k̄,x̄〉‖p̄ ≤ C2
l
m∑
j=1

(1− 1
pj

)

(8)

and Perseval’s equality for 1 < qj
′ < 2, j = 1, ...,m, we obtain

‖g‖q̄′ ≤ ‖Fq̄,n‖q̄′ + (2π)

m∑
j=1

( 1
qj
− 1

2
)

‖
∗∑

k̄∈ΩM

ei〈k̄,x̄〉‖2 ≤ C(2
nm
2 +M

1
2 ) ≤ C2

nm
2 . (9)

Now we consider the function

P1(x̄) = C22(−nm2 )g(x̄). (10)

Then (9) implies that the function P1 satisfies the assumptions of the formula (7) for
some constant C2 > 0.

Consider the function

f1(x̄) = C32
−nm

(
2
m∑
j=1

1
qj

)−1(
r−

m∑
j=1

(
1
pj
−1

))
Fq̄,n(x̄). (11)

By the inequality (8), we get
∞∑
s=0

2sr ‖δs (f1)‖p̄ ≤

≤ C2
−nm

(
2
m∑
j=1

1
qj

)−1(
r−

m∑
j=1

(
1
pj
−1

))
[
nm

(
2
m∑
j=1

1
qj

)−1]
∑
s=0

2sr2
s
m∑
j=1

(
1− 1

pj

)
≤ C3.

Hence C−1
3 f1 ∈ Brp̄,1.

For the functions (10) and (11), we have, by the formula (7), the following

eM (f1)q̄ ≥ inf
ΩM

∣∣∣∣∫
Tm

f1 (x̄) P̄1 (x̄) dx̄

∣∣∣∣ ≥
≥ C2

−nm
(

2
m∑
j=1

1
qj

)−1(
r−

m∑
j=1

(
1
pj
−1

))
2−

nm
2
(
‖Fq̄,n‖22 −M

)
≥

≥ C2
−nm

(
2
m∑
j=1

1
qj

)−1(
r−

m∑
j=1

(
1
pj
− 1
qj

))
. (12)

Hence, it follows from (12) by the inclusion Brp̄,1 ⊂ Brp̄,θ that

eM (f1)q̄ ≥ C2
−nm

(
2
m∑
j=1

1
qj

)−1(
r−

m∑
j=1

(
1
pj
− 1
qj

))
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in the case of
m∑
j=1

( 1
pj
− 1

qj
) < r <

m∑
j=1

1
pj
. So we have proved the first item.

Now we consider the case r =
m∑
j=1

1
pj
. Let f ∈ Brp̄,θ. Suppose α = m

(
2
m∑
j=1

1
qj

)−1

and
Ns =

[
2nmn

1
θ
−1 ‖δs(f)‖p̄ 2sr

]
+ 1.

Then, by definition of the numbers Ns and Holder’s inequality, we obtain
n−1∑
s=0

]{k̄ = (k1, ..., km) : [2s−1] ≤ max
j=1,...,m

|kj | < 2s}+
∑

n≤s<αn

Ns ≤

≤ C2nm + (α− 1)n+ 2nmn
1
θ
−1((α− 1)n)

1
θ′

(
∞∑
s=0

‖δs(f)‖θp̄ 2srθ
) 1
θ

≤ C2nm �M.

Suppose β = max{q1, ..., qm}. Then

J1(n) =

∥∥∥∥∥∥
∑

n≤s<αn

(δs(f)− P (ΩNs))

∥∥∥∥∥∥
q̄

≤ C

∥∥∥∥∥∥
∑

n≤s<αn

(δs(f)− P (ΩNs))

∥∥∥∥∥∥
β

.

Next, by Theorem 1.3, we have

J1(n) ≤ C

∥∥∥∥∥∥∥
 ∑
n≤s<αn

|δs(f)− P (ΩNs)|
2

 1
2

∥∥∥∥∥∥∥
β

.

Since β > 2, then by applying the property of the norm, Lemma 1.4 and the inequality
of different metrics for trigonometric polynomials (see Theorem 1.2), we obtain

J1(n) ≤

 ∑
n≤s<αn

‖δs(f)− P (ΩNs)‖
2
β

 1
2

≤ C

 ∑
n≤s<αn

N−1
s 2sm ‖δs(f)‖22

 1
2

≤

≤ C

 ∑
n≤s<αn

N−1
s 2sm2

2s
m∑
j=1

( 1
pj
− 1

2
)

‖δs(f)‖2p̄

 1
2

. (13)

Next, since r =
m∑
j=1

1
pj
, we have, by the definition of the numbersNs and using Holder’s

inequality, the following

J1(n) ≤ C(2−nmn1− 1
θ )

1
2

 ∑
n≤s<αn

2sr ‖δs(f)‖p̄

 1
2

≤

≤ C(2−nmn1− 1
θ )

1
2

 ∑
n≤s<αn

2srθ ‖δs(f)‖θp̄

 1
2θ
 ∑
n≤s<αn

1

 1
2

(1− 1
θ

)

≤ C2−
nm
2 n1− 1

θ �M−
1
2 (log(1 +M))1− 1

θ .

Thus,
J1(n) ≤ CM−

1
2 (log(1 +M))1− 1

θ (14)

in the case of r =
m∑
j=1

1
pj
.
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To estimate J2(n), we apply Holder’s inequality, and taking into account r =
m∑
j=1

1
pj

and α = m

(
2
m∑
j=1

1
qj

)−1

, we obtain

J2(n) ≤ C
∑

nα≤s<+∞

2
s
m∑
j=1

( 1
pj
− 1
qj

)

‖δs(f)‖p̄ ≤ (15)

≤ C

(
∞∑
s=0

2srθ ‖δs(f)‖θp̄

) 1
θ

 ∑
nα≤s<+∞

2
−sθ′

m∑
j=1

1
qj

 1
θ′

≤ C2
−nα

m∑
j=1

1
qj = C2−

nm
2 �M−

1
2 .

By (14) and (15), the inequality (2) implies that

‖f − P (ΩM )‖q̄ ≤ CM−
1
2 (log(1 +M))1− 1

θ

in the case of r =
m∑
j=1

1
pj
. It proves the upper bound estimation in the second item.

Let r >
m∑
j=1

1
pj
. Suppose

Ns =
[
2
n

(
r−

m∑
j=1

(
1
pj
−1

))
2
−s
(
r−

m∑
j=1

1
pj

)]
+ 1.

Then
n−1∑
s=0

]{k̄ = (k1, ..., km) : [2s−1] ≤ max
j=1,...,m

|kj | < 2s}+
∑

n≤s<αn

Ns ≤

≤ C2nm + (α− 1)n ≤ C2nm ≤ CM.

If f ∈ Hr
p̄ , then, by using the definition of the numbers Ns and r >

m∑
j=1

1
pj
, we obtain

from (13) the following

J1(n) ≤

 ∑
n≤s<αn

N−1
s 2sm2

2s
m∑
j=1

(
1
pj
− 1

2

)
‖δs(f)‖2p̄

 1
2

≤

≤ C2
−n

2

(
r−

m∑
j=1

(
1
pj
−1

)) ∑
n≤s<αn

2
−s
(
r−

m∑
j=1

1
pj

)
1
2

≤ C2
−n
(
r+

m∑
j=1

(
1
2
− 1
pj

))
.

Thus,

J1(n) ≤ CM
− 1
m

(
r+

m∑
j=1

( 1
2
− 1
pj

)

)
(16)

in the case of r >
m∑
j=1

1
pj
.

To estimate J2(n), we suppose α =

(
r +

m∑
j=1

(
1
2
− 1

pj

))(
r +

m∑
j=1

(
1
qj
− 1

pj

))−1

and

get

J2(n) ≤ C
∑

nα≤s<∞

2
−s
(
r+

m∑
j=1

(
1
pj
− 1
qj

))
≤ C2

−n
(
r+

m∑
j=1

(
1
2
− 1
pj

))
≤

≤ CM
− 1
m

(
r+

m∑
j=1

(
1
2
− 1
pj

))
(17)
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for a function f ∈ Hr
p̄ . By (16) and (17), it follows from (2) that

‖f − P (ΩM ) ‖q̄ ≤ CM
− 1
m

(
r+

m∑
j=1

(
1
2
− 1
pj

))

for any function f ∈ Hr
p̄ in the case of r >

m∑
j=1

1
pj
.

It follows from Brp̄,θ ⊂ Hr
p̄ that

eM
(
Brp̄,θ

)
q̄
≤ eM

(
Hr
p̄

)
q̄
≤ CM

− 1
m

(
r+

m∑
j=1

(
1
2
− 1
pj

))

in the case of r >
m∑
j=1

1
pj
. It proves the upper bound estimation in the item 3.

Let us consider the lower bound estimation in the case of r =
m∑
j=1

1
pj
. Consider the

function

g1(x̄) =

n∑
s=1

∑
k̄∈ρ(s)

m∏
j=1

k−1
j cos kjxj . (18)

Then

δs(g1, x̄) =
∑
k̄∈ρ(s)

m∏
j=1

k−1
j cos kjxj .

It is known that for a function ds(x̄) =
∑

k̄∈ρ(s)

m∏
j=1

cos kjxj the following relation holds

‖ds‖p̄ � 2
s
m∑
j=1

(1− 1
pj

)

, 1 < pj < +∞, j = 1, ...,m.

Therefore, by the Marcinkiewicz theorem on multipliers (see [18]), we have

‖δs(g1)‖p̄ ≤ C2−sm‖ds‖p̄ ≤ C2
−s

m∑
j=1

1
pj .

Hence, since r =
m∑
j=1

1
pj
, we obtain

(
∞∑
s=0

2srθ ‖δs(g1)‖θp̄

) 1
θ

≤ C1n
1
θ .

Therefore, the function f2(x̄) = C−1
1 n−

1
θ g1(x̄) belongs to the class Brp̄,θ, 1 < pj < +∞,

j = 1, ...,m.
Now, we are going to construct a function P1, which satisfies the conditions of the

formula (7). Let

v1(x̄) =

n∑
s=1

∑
k̄∈ρ(s)

m∏
j=1

cos kjxj

and ΩM be an arbitrary set of M vectors k̄ = (k1, ..., km) with integer coordinates.
Consider the function

u1(x̄) =

∗∑
k̄∈ΩM

m∏
j=1

cos kjxj

which contains only those terms in (18) with indices in ΩM . Suppose w1(x̄) = v1(x̄) −
u1(x̄). Then, since 1 < qj

′ < 2, j = 1, ...,m, we obtain, by Perseval’s equality, the
following

‖w1‖q̄′ ≤ ‖v1‖q̄′ + ‖u1‖2 ≤ ‖v1‖q̄′ + CM
1
2 .
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By the property of the norm and the estimation of the norm of the Dirichlet kernel in
the Lebesgue space, we have

‖v1‖q̄′ ≤
n∑
s=1

‖δs(v1)‖q̄′ ≤

≤ C
n∑
s=1

2
s
m∑
j=1

(
1− 1

qj
′

)
≤ C2

n
m∑
j=1

1
qj .

Therefore, taking into account 1
qj
< 1

2
, j = 1, ...,m, we get

‖w1‖q̄′ ≤ C(2
nm
2 +M

1
2 ) ≤ C22

nm
2 .

Hence, the function
P1(x̄) = C−1

2 2−
nm
2 w1(x̄)

satisfies the conditions of the formula (7). Then, by substituting the functions f2 and P1

into (7) and by orthogonality of the trigonometric system, we obtain

eM (f2)q̄ ≥ C
∑

n1≤s<n

∑
k̄∈ρ(s)

m∏
j=1

k−1
j 2−

nm
2 n−

1
θ ≥

≥ C(ln 2)m
∑

n1≤s<n

2−
nm
2 n−

1
θ = C(ln 2)m2−

nm
2 n−

1
θ (n− n1) ≥

≥ C(ln 2)m2−
nm
2 n1− 1

θ �M−
1
2 (log(1 +M))1− 1

θ ,

where n1 is a natural number such that n1 ≤ n
2
.

So, for the function f2 ∈ Brp̄,θ, it has been proved that

eM (f2)q̄ ≥ CM
− 1

2 (log(1 +M))1− 1
θ

in the case of r =
m∑
j=1

1
pj
. Hence

eM
(
Brp̄,θ

)
q̄
≥ CM−

1
2 (log(1 +M))1− 1

θ

in the case of r =
m∑
j=1

1
pj
. It proves the lower bound estimation in the second item.

Let us prove the lower bound estimation for the case r >
m∑
j=1

1
pj
. Since in this case an

upper bound estimation of the quantity eM
(
Brp̄,θ

)
q̄
does not depend on θ and Brp̄,1 ⊂ Brp̄,θ,

1 < θ ≤ +∞, it suffices to prove the lower bound estimation for Brp̄,1.
For a number M ∈ N, we choose a natural number n such that 2nm < M ≤ 2(n+1)m

and 2M ≤ ]ρ(n), where ]ρ(n) denotes the number of elements in the set ρ(n).
Consider the following function

f3(x̄) = 2
−n
(
r+

m∑
j=1

(
1− 1

pj

)) ∑
k̄∈ρ(n)

ei〈k̄,x̄〉.

Then ‖δs(f3)‖p̄ = 0 provided s 6= n and

‖δn(f3)‖p̄ = 2
−n
(
r+

m∑
j=1

(
1− 1

pj

))
m∏
j=1

∥∥∥ 2n−1∑
kj=2n−1

eikjxj
∥∥∥
pj

.
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By the estimation of the norm of the Dirichlet kernel (see [18], p. 181), we have∥∥∥ 2n−1∑
kj=2n−1

eikjxj
∥∥∥
pj

≤ C2
n(1− 1

pj
)
,

for pj ∈ (1,∞), j = 1, ...,m. Therefore

‖δn(f3)‖p̄ ≤ C2−nr.

Hence
∞∑
s=0

2sr ‖δs(f3)‖p̄ ≤ C3,

i.e. the function C−1
3 f3 ∈ Brp̄,1. Next, we consider the functions

v2(x̄) =
∑

k̄∈ρ(n)

ei〈k̄,x̄〉

and
u2(x̄) =

∑
k̄∈ρ(n)∩ΩM

ei〈k̄,x̄〉.

Suppose w2(x̄) = v2(x̄)− u2(x̄). By Perseval’s equality,

‖u2‖2 ≤M
1
2 , ‖v2‖2 ≤ C2

nm
2 .

From these relations, we obtain, by the properties of the norm, the following

‖w2‖2 ≤ ‖v2‖2 + ‖u2‖2 ≤ C42
nm
2 .

Therefore, the function P2(x̄) = C−1
4 2−

nm
2 w2(x̄) satisfies the conditions of the formula

(7). Since 2 < qj <∞, j = 1, ...,m, we have eM (f3)2 ≤ CeM (f3)q̄. Now, by the formula
(7), we get

eM (f3)q̄ ≥ CeM (f3)2 ≥

≥ C inf
ΩM

∫
Tm

f3(x̄)P̄2(x̄)dx̄ =

= C−1
2 2−

nm
2 2
−n
(
r+

m∑
j=1

(
1− 1

pj

))
inf
ΩM

[]ρ(n)− ] (ρ(n) ∩ ΩM )] ≥

≥ C2−
nm
2 2
−n
(
r+

m∑
j=1

(
1− 1

pj

))
[]ρ(n)−M ] ≥

≥ C2−
nm
2 2
−n
(
r+

m∑
j=1

(
1− 1

pj

))
[]ρ(n)− ]ρ(n)

2
] ≥

≥ C2−
nm
2 2
−n
(
r−

m∑
j=1

1
pj

)
.

It follows from the relation 2nm �M that

eM (f3)q̄ ≥ CM
− 1
m

(
r+

m∑
j=1

(
1
2
− 1
pj

))

in the case of r >
m∑
j=1

1
pj

for the function C−1
3 f3 ∈ Brp̄,1. Hence

eM
(
Brp̄,1

)
q̄
≥ CM

− 1
m

(
r+

m∑
j=1

(
1
2
− 1
pj

))
.
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Therefore,

eM
(
Brp̄,θ

)
q̄
≥ CM

− 1
m

(
r+

m∑
j=1

(
1
2
− 1
pj

))

in the case of r >
m∑
j=1

1
pj
. So Theorem 2.1 has been proved.

2.2. Theorem. Let p̄ = (p1, ..., pm), q̄ = (q1, ..., qm), 1 < pj < qj ≤ 2, and 1 ≤ θ ≤ +∞.

If r >
m∑
j=1

( 1
pj
− 1

qj
), then

eM
(
Brp̄,θ

)
q̄
�M

− 1
m

(
r−

m∑
j=1

(
1
pj
− 1
qj

))
.

Proof. For a number M ∈ N, we choose a natural number n such that M � 2nm. By
the inequality of distinct metrics (see Theorem 1.2) and by Holder’s inequality, we have

‖f −
n∑
s=0

δs(f)‖q̄ ≤
∞∑
s=n

‖δs(f)‖q̄ ≤

≤
[ ∞∑
s=0

2srθ‖δs(f)‖θq̄
] 1
θ
[ ∞∑
s=n

2
sθ′
(
r−

m∑
j=1

(
1
pj
− 1
qj

))] 1
θ′ ≤

≤ C2
n

(
r−

m∑
j=1

(
1
pj
− 1
qj

))
≤ CM

− 1
m

(
r−

m∑
j=1

(
1
pj
− 1
qj

))

for f ∈ Brp̄,θ, 1
θ

+ 1

θ
′ = 1. Therefore

eM (f)q̄ ≤ ‖f −
n∑
s=0

δs(f)‖q̄ ≤ CM
− 1
m

(
r−

m∑
j=1

(
1
pj
− 1
qj

))
.

Hence

eM
(
Brp̄,θ

)
q̄
≤ CM

− 1
m

(
r−

m∑
j=1

(
1
pj
− 1
qj

))
.

It proves the upper bound estimation.
For the lower bound estimation, let us consider the function

f4(x̄) = n
−r+

m∑
j=1

(
1
pj
−1

)
Vn(x̄),

where Vn(x̄) is a multiple of the Valle-Poisson sum.
Next, following the proof in [9] (pp. 46-47) and applying Theorem 1.2, we obtain the

lower bound estimation of the quantity eM
(
Brp̄,θ

)
q̄
.

2.3. Theorem. Let p̄ = (p1, ..., pm), q̄ = (q1, ..., qm), 2 ≤ pj < qj <∞, j = 1, ...,m, and
1 ≤ θ ≤ +∞. If r > m

2
, then

eM
(
Brp̄,θ

)
q̄
�M−

r
m .

Proof. By the inclusion Brp̄,θ ⊂ Br2̄,θ ⊂ H
r
2 , we have

eM
(
Brp̄,θ

)
q̄
≤ eM

(
Br2,θ

)
q̄
≤ eM (Hr

2 )q̄ .

By Theorem 2.1,
eM (Hr

2 )q̄ ≤ CM
− r
m ,

for pj = 2, j = 1, ...,m. Hence

eM
(
Brp̄,θ

)
q̄
≤ CM−

r
m .

It proves the upper bound estimation.
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Let us consider the lower bound estimation. Consider Rudin-Shapiro’s polynomial
(see [15], p. 155) of the type

Rs(x) =

2s∑
s=2s−1

εke
ikx, x ∈ [0, 2π], εk = ±1.

It is known that ‖Rs‖∞ = max
x∈[0,2π]

|Rs(x)| ≤ C2
s
2 (see [15], p. 155). For a given number

M choose a number n such that M � 2nm. Now we consider the function

f5(x̄) = 2−n(m
2

+r)
n∑
s=1

m∏
1

Rs(xj).

Then, by the continuity, we have f5 ∈ Lp̄(Tm) and

∞∑
s=0

2sθr‖δs(f5)‖θp̄ = 2−n(m
2

+r)
n∑
s=1

2sθr‖
m∏
1

Rs(xj)‖θp̄ ≤

≤ 2−n(m
2

+r)
n∑
s=1

2s(
m
2

+r)θ ≤ C5.

Hence, the function C−1
5 f5 ∈ Brp̄,θ. Now, we construct a function P (x̄), which satisfies

the conditions in the formula (7). Suppose

v3(x̄) =

n∑
s=1

m∏
1

Rs(xj), u3(x̄) =

∗∑
s

m∏
1

Rs(xj),

where the sign ∗ means that the polynomial u3(x̄) contains only those harmonics of v3,
which have indices in ΩM . Suppose w3(x̄) = v3(x̄)−u3(x̄). Then, since 1 < qj

′ =
qj
qj−1

<

2, j = 1, ...,m, we have the following (by Perseval’s equality)

‖w3‖q̄′ ≤ ‖w3‖2 ≤ C12
nm
2 .

Therefore, for the function P3(x̄) = C−1
1 2−

nm
2 w3(x̄) the inequality ‖P3‖q̄′ ≤ 1 holds.

Now, using the formula (7), we obtain

eM
(
Brp̄,θ

)
q̄
≥ eM (f3)q̄ ≥ 2−n(m

2
+r)2−

nm
2 (2nm −M) ≥ C2−n(m+r)2nm ≥ CM−

r
m .

So

eM
(
Brp̄,θ

)
q̄
≥ CM−

r
m .

It proves Theorem 2.3.
Remark. In the case pj = p, qj = q, j = 1, ...,m, and r > m( 1

p
− 1

q
), the results of

R.A. DeVore and V.N. Temlyakov [9] follow from Theorem 2.1 - 2.3. If 1 < p ≤ 2 < q <∞
and m( 1

p
− 1

q
) < r ≤ m

p
, the results of S.A. Stasyuk [20, 21] follow from the first and

second items of Theorem 2.1. Theorem 2.1 - 2.3 were announced in [3].
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