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1. Introduction

A. Friedmann and J. A. Schouten introduced the idea of a semi-symmetric linear
connection on a Riemannian manifold in [10]. Later, H. A. Hayden [11] gave the definition
of a semi-symmetric metric connection. In 1970, K. Yano [19] studied semi-symmetric
metric connection and proved that a Rimannian manifold admits a semi-symmetric metric
connection with vanishing curvature tensor if and only if the manifold is conformally
flat. Then, in [12], [13] and [16] T. Imai and Z. Nakao considered some properties of a
Riemannian manifold admitting a semi-symmetric metric connection and they studied
submanifolds of a Riemannian manifold with a semi-symmetric metric connection.

On the other hand, B. Y. Chen introduced Chen inequality and he gave the definition
of new types of curvature invariants (called extrinsic and intrinsic invariants) in [6]. Then,
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in [7], [8] and [9], he established sharp inequalities for different submanifolds in various
ambient spaces.

In [3] and [4], K. Arslan, R. Ezentaş, I. Mihai, C. Murathan and C. Özgür studied
Chen inequalities for submanifolds in locally conformal almost cosymplectic manifolds
and (κ, µ)-contact space forms, respectively. Later, P. Alegre, A. Carriazo, Y. H. Kim
and D. W. Yoon considered same inequalities for submanifolds of generalized space forms
in [2].

Recently, in [14], A. Mihai and C. Özgür proved Chen inequalities for submanifolds
of real space forms admitting a semi-symmetric metric connection. They also studied
same problems for submanifolds of complex space forms and Sasakian space forms with
a semi-symmetric metric connection in [15]. As a generalization of the results of [15],
in tis study, we prove similar inequalities for submanifolds of generalized complex space
forms and generalized Sasakian space forms with respect to a semi-symmetric metric
connection.

2. Preliminaries

Let N be an (n+p)-dimensional Riemannian manifold with a Riemannian metric g. A
linear connection ∇̃ on a Riemannian manifold N is called a semi-symmetric connection
if the torsion tensor T̃ of the connection ∇̃

(2.1) T̃ (X̃, Ỹ ) = ∇̃X̃ Ỹ − ∇̃Ỹ X̃ − [X̃, Ỹ ]

satisfies

(2.2) T̃ (X̃, Ỹ ) = w(Ỹ )X̃ − w(X̃)Ỹ ,

for any vector fields X̃ and Ỹ on N , where w is a 1-form associated with the vector field
U on N defined by

(2.3) w(X̃) = g(X̃, U).

∇̃ is called a semi-symmetric metric connection if

∇̃g = 0.

If
◦

∇̃ is the Levi-Civita connection of a Riemannian manifold N , the semi-symmetric
metric connection ∇̃ is given by

(2.4) ∇̃X̃ Ỹ =
◦

∇̃X̃ Ỹ + w(Ỹ )X̃ − g(X̃, Ỹ )U,

(see [19]).
Let M be an n-dimensional submanifold of an (n+ p)-dimensional Riemannian man-

ifold N . We will consider the induced semi-symmetric metric connection by ∇ and the

induced Levi-Civita connection by
◦
∇ on the submanifold M .

Let R̃ and
◦

R̃ be curvature tensors of ∇̃ and
◦

∇̃ of a Riemannian manifold N , re-

spectively. We also denote by R the curvature tensor of M with respect to ∇ and
◦
R the
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curvature tensor ofM with respect to
◦
∇. Then the Gauss formulas with a semi-symmetric

metric connection ∇ and the Levi-Civita connection
◦
∇, respectively, are given by

∇̃XY = ∇XY + σ(X,Y )

and
◦

∇̃XY =
◦
∇XY +

◦
σ(X,Y ),

for any vector fields X,Y tangent toM , where
◦
σ is the second fundamental form ofM in

N and σ is a (0, 2)-tensor on M . Also, the mean curvature vector of M in N is denoted

by
◦
H.
The equation of Gauss for an n-dimensional submanifold M in an (n+p)-dimensional

Riemannian manifold N is given by

(2.5)
◦

R̃(X,Y, Z,W ) =
◦
R(X,Y, Z,W ) + g(

◦
σ(X,Z),

◦
σ(Y,W ))− g(

◦
σ(Y,Z),

◦
σ(X,W ))

Then, R̃ and
◦

R̃ are related by

R̃(X,Y, Z,W ) =
◦

R̃(X,Y, Z,W )− α(Y,Z)g(X,W ) + α(X,Z)g(Y,W )−

−α(X,W )g(Y,Z) + α(Y,W )g(X,Z),(2.6)

for any vector fields X,Y, Z,W on N [19], where (0, 2)-tensor field α is given by

α(X,Y ) =

(
◦

∇̃w

)
Y − w(X)w(Y ) +

1

2
w(U)g(X,Y ),

for X,Y ∈ χ(M), where the trace of α is denoted by

traceα = λ.

Denote by K(π) or K(u, v) the sectional curvature of M associated with a 2-plane
section π ⊂ TxM with respect to the induced semi-symmetric non-metric connection ∇,
where {u, v} is an orthonormal basis of π. The scalar curvature τ at x ∈ M is denoted
by

τ(x) =
∑

1≤i<j≤n

K(ei ∧ ej),

where {e1, ..., en} is any orthonormal basis of TxM [8].
We will need the following Chen’s lemma for later use:

2.1. Lemma. [6] Let n ≥ 2 and a1, a2, ..., an, b be real numbers such that

(2.7)

(
n∑
i=1

ai

)2

= (n− 1)

(
n∑
i=1

a2i + b

)
.

Then 2a1a2 ≥ b, with equality holding if and only if

a1 + a2 = a3 = ... = an.
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LetM be an n-dimensional Riemannian manifold, L a k-plane section of TxM , x ∈M
and X a unit vector in L.

For an orthonormal basis {e1, ..., ek} of L such that e1 = X, the Ricci curvature (or
k-Ricci curvature) of L at X is defined by

RicL(X) = K12 +K13 + ...+K1k,

where Kij denotes the sectional curvature of the 2-plane section spanned by ei and ej .
For any integer k, 2 ≤ k ≤ n, the Riemannian invariant Θk of M is denoted by

Θk(x) = 1
k−1

inf
L,X

RicL(X), x ∈M,

where L runs over all k-plane sections in TxM and X runs over all unit vectors in L.

3. Chen inequality for submanifolds of generalized complex space
forms

We consider as an ambient space a generalized complex space form with a semi-
symmetric metric connection.

A 2m-dimensional almost Hermitian manifold (N, J, g) is said to be a generalized
complex space form (see [17] and [18]) if there exist two functions F1 and F2 on N such
that

(3.1)
◦

R̃(X,Y, Z,W ) = F1[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )]+

+F2[g(X, JZ)g(JY,W )− g(Y, JZ)g(JX,W ) + 2g(X, JY )g(JZ,W )],

for any vector fields X,Y, Z,W on N , where
◦

R̃ is the curvature tensor of N with respect

to the Levi-Civita connection
◦

∇̃. In such a case, we will write N(F1, F2).
If N(F1, F2) is a generalized complex space form with a semi-symmetric metric con-

nection ∇̃, then by the use of (2.6) and (3.1), the curvature tensor R̃ of N(F1, F2) can
be written as

(3.2) R̃(X,Y, Z,W ) = F1[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )]+

+F2[g(X, JZ)g(JY,W )− g(Y, JZ)g(JX,W ) + 2g(X, JY )g(JZ,W )]−

−α(Y,Z)g(X,W ) + α(X,Z)g(Y,W )− α(X,W )g(Y,Z) + α(Y,W )g(X,Z).

Let M be an n-dimensional, n ≥ 3, submanifold of a 2m-dimensional generalized
complex space form N(F1, F2). We put

JX = PX + FX,

for any vector field X tangent to M , where PX and FX are tangential and normal
components of JX, respectively.

We also set

‖P‖2 =

n∑
i,j=1

g2(Jei, ej).
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On the other hand, Θ2(π) is denoted by Θ2(π) = g2(Pe1, e2) = g2(Je1, e2) in [2], where
{e1, e2} is an orthonormal basis of a 2-plane section π. Θ2(π) is a real number in [0, 1],
independent of the choice of e1 and e2.

For submanifolds of generalized complex space forms with respect to the semi-symmetric
metric connection we establish the following sharp inequality:

3.1. Theorem. Let M , n ≥ 3, be an n-dimensional submanifold of a 2m-dimensional
generalized complex space form N(F1, F2) with respect to the semi-symmetric metric
connection ∇̃. Then we have:

τ(x)−K(π) ≤ n− 2

2

[
n2

n− 1
‖H‖2 + (n+ 1)F1 − 2λ

]
−

−
[
6Θ2(π)− 3 ‖P‖2

] F2

2
− trace(α|π⊥),(3.3)

where π is a 2-plane section of TxM , x ∈M .

Proof. Let {e1, e2, ...en} be an orthonormal basis of TxM and {en+1, ..., e2m} be an or-
thonormal basis of T⊥x M , x ∈ M , where en+1 is parallel to the mean curvature vector
H.

Taking X = W = ei and Y = Z = ej such that i 6= j and by the use of (3.2), we get

(3.4) R̃(ei, ej , ej , ei) = F1 + 3F2g
2(Jei, ej)− α(ei, ei)− α(ej , ej).

From [16], the Gauss equation with respect to the semi-symmetric metric connection can
be written as

(3.5) R̃(ei, ej , ej , ei) = R(ei, ej , ej , ei) + g(σ(ei, ej), σ(ei, ej))− g(σ(ei, ei), σ(ej , ej)).

Comparing the right hand sides of the equations (3.4) and (3.5), we obtain

F1 + 3F2g
2(Jei, ej)− α(ei, ei)− α(ej , ej)

= R(ei, ej , ej , ei) + g(σ(ei, ej), σ(ei, ej))− g(σ(ei, ei), σ(ej , ej)).

Then, by summation over 1 ≤ i, j ≤ n, the above equation turns into

2τ + ‖σ‖2 − n2 ‖H‖2(3.6)

= n(n− 1)F1 + 3F2

n∑
i,j=1

g2(Jei, ej)− 2(n− 1)λ,

where

‖σ‖2 =

n∑
i,j=1

g(σ(ei, ej), σ(ei, ej))

and

H =
1

n
traceσ.

We set

(3.7) δ = 2τ − n2(n− 2)

n− 1
‖H‖2 + 2(n− 1)λ− n(n− 1)F1 − 3F2 ‖P‖2 .
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Then, the equation (3.6) can be written as follows

(3.8) n2 ‖H‖2 = (n− 1)
(
‖σ‖2 + δ

)
.

For a chosen orthonormal basis, the relation (3.8) takes the following form(
n∑
i=1

σn+1
ii

)2

= (n− 1)

 n∑
i=1

(σn+1
ii )2 +

∑
i6=j

(σn+1
ij )2 +

2m∑
r=n+2

n∑
i,j=1

(σrij)
2 + δ

 .
So, by the use of Chen’s Lemma, we have

2σn+1
11 σn+1

22 =
∑

1≤i 6=j≤n

(σn+1
ij )2 +

2m∑
r=n+2

n∑
i,j=1

(σrij)
2 + δ.

Let π be a 2-plane section of TxM at a point x, where π = sp{e1, e2}. Then, the
Gauss equation for X = Z = e1 and Y = W = e2 gives us

K(π) = F1 + 3F2g
2(Je1, e2)− α(e1, e1)− α(e2, e2) +

2m∑
r=n+1

[σr11σ
r
22 − (σr12)2] ≥

≥ F1 + 3F2g
2(Je1, e2)− α(e1, e1)− α(e2, e2)+

+
1

2

 ∑
1≤i6=j≤n

(σn+1
ij )2 +

2m∑
r=n+2

n∑
i,j=1

(σrij)
2 + δ

+

2m∑
r=n+2

σr11σ
r
22 −

2m∑
r=n+1

(σr12)2

= F1 + 3F2g
2(Je1, e2)− α(e1, e1)− α(e2, e2)+

+
1

2

∑
1≤i 6=j≤n

(σn+1
ij )2 +

1

2

2m∑
r=n+2

n∑
i,j>2

(σrij)
2+

+
1

2

2m∑
r=n+2

(σr11 + σr22)2 +
∑
j>2

[(σn+1
1j )2 + (σn+1

2j )2] +
1

2
δ ≥

≥ F1 + 3F2g
2(Je1, e2)− α(e1, e1)− α(e2, e2) +

1

2
δ

which implies

K(π) ≥ F1 + 3F2g
2(Je1, e2)− α(e1, e1)− α(e2, e2) +

1

2
δ.

From (3.7), it is easy to see that

K(π) ≥ τ − n− 2

2

[
n2

n− 1
‖H‖2 + (n+ 1)F1 − 2λ

]
+

+
[
6Θ2(π)− 3 ‖P‖2

] F2

2
+ trace(α|π⊥),

where trace(α|π⊥) is denoted by

α(e1, e1) + α(e2, e2) = λ− trace(α|π⊥)

(see [15]). Hence, we finish the proof of the theorem.

3.2. Proposition. The mean curvature H of M admitting semi-symmetric metric con-

nection coincides with the mean curvature
◦
H of M admitting Levi-Civita connection if

and only if the vector field U is tangent to M .

As a consequence of Proposition 3.2 we can give the following result:
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3.3. Theorem. If the vector field U is tangent to M , then the equality case of (3.3)

holds at a point x ∈ M if and only if there exist an orthonormal basis {e1, e2, ...en} of
TxM and an orthonormal basis {en+1, ..., e2m} of T⊥x M such that the shape operators of
M in N(F1, F2) at x have the following forms:

Aen+1 =



a 0 0 · · · 0

0 b 0 · · · 0

0 0 µ · · · 0
...

...
...

. . .
...

0 0 0 · · · µ


, a+ b = µ

and

Aer =



σr11 σr12 0 · · · 0

σr12 −σr11 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0


, n+ 2 ≤ i ≤ 2m,

where we denote by σrij = g(σ(ei, ej), er), 1 ≤ i, j ≤ n and n+ 2 ≤ r ≤ 2m.

Proof. Equality case holds at a point x ∈ M if and only if the equality holds in each of
the previous inequalities and hence the Lemma yields equality.

σn+1
ij = 0, ∀i 6= j, i, j > 2,

σrij = 0, ∀i 6= j, i, j > 2, r = n+ 1, ..., 2m,

σr11 + σr22 = 0, ∀r = n+ 2, ..., 2m,

σn+1
1j = σn+1

2j = 0, ∀j > 2,

σn+1
11 + σn+1

22 = σn+1
33 = ... = σn+1

nn .

If we choose {e1, e2} such that σn+1
12 = 0 and denote by a = σr11, b = σr22, µ = σn+1

33 =

... = σn+1
nn , then the shape operators take the desired forms.

4. Ricci curvature for submanifolds of generalized complex space
forms

In this section we establish relationship between the Ricci curvature of a submani-
fold M in a generalized complex space form N(F1, F2) with a semi-symmetric metric
connection, and the squared mean curvature ‖H‖2.

Now, let begin with the following theorem:

4.1. Theorem. Let M , n ≥ 3, be an n-dimensional submanifold of a 2m-dimensional
generalized complex space form N(F1, F2) with respect to the semi-symmetric metric
connection ∇̃. Then we have:

(4.1) ‖H‖2 ≥ 2τ

n(n− 1)
+

2

n
λ− F1 −

3F2

n(n− 1)
‖P‖2 .
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Proof. Let {e1, e2, ..., en} be an orthonormal basis of TxM and {en+1, ..., e2m} be an
orthonormal basis of T⊥x M at x ∈ M , where en+1 is parallel to the mean curvature
vector H.

Then, the equation (3.7) can be written as follows

(4.2) n2 ‖H‖2 = 2τ + ‖σ‖2 + 2(n− 1)λ− n(n− 1)F1 − 3F2 ‖P‖2 .

For a choosen orthonormal basis, let e1, e2, ..., en diagonalize the shape operator Aen+1 .
Then, the shape operators take the forms

Aen+1 =


a1 0 · · · 0

0 a2 · · · 0
...

...
. . .

...
0 0 · · · an


and

Aer = (σrij), i, j = 1, ..., n; r = n+ 2, ..., 2m, traceAer = 0.

By the use of (4.2), we obtain

n2 ‖H‖2 = 2τ +

n∑
i=1

a2i +

2m∑
r=n+2

n∑
i,j=1

(σrij)
2 +

+2(n− 1)λ− n(n− 1)F1 − 3F2 ‖P‖2 .(4.3)

On the other hand, since

0 ≤
∑
i<j

(ai − aj)2 = (n− 1)

n∑
i=1

a2i − 2
∑
i<j

aiaj ,

we get

n2 ‖H‖2 =

(
n∑
i=1

ai

)2

=

n∑
i=1

a2i + 2
∑
i<j

aiaj ≤ n
n∑
i=1

a2i ,

which means

(4.4)
n∑
i=1

a2i ≥ n ‖H‖2 .

Thus, in view of (4.4) in (4.3) we get (4.1), which completes the proof of the theorem.

In view of Theorem 4.1, we can give the following theorem:

4.2. Theorem. Let M , n ≥ 3, be an n-dimensional submanifold of a 2m-dimensional
generalized complex space form N(F1, F2) with respect to the semi-symmetric metric
connection ∇̃ such that the vector field U is tangent to M . Then, for any integer k,
2 ≤ k ≤ n and for any point x ∈M , we have:

(4.5) ‖H‖2 (x) ≥ Θk(π) +
2

n
λ− F1 −

3F2

n(n− 1)
‖P‖2 .
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Proof. Let {e1, e2, ..., en} be an orthonormal basis of TxM at x ∈M . The k-plane section
spanned by ei1 , ..., eik is denoted by Li1...ik . Then, by the definitions, we can write

(4.6) τ(Li1...ik ) =
1

2

∑
i∈{i1...ik}

RicLi1...ik
(ei)

and

(4.7) τ(x) =
1

Ck−2
n−2

∑
1≤i1≤...≤ik≤n

τ(Li1...ik ).

By making use of (4.6) and (4.7) in (4.1), we obtain

τ(x) ≥ n(n− 1)

2
Θk(π),

which gives us (4.5).

5. Chen inequality for submanifolds of generalized Sasakian space
forms

Let N be a (2m + 1)-dimensional almost contact metric manifold [5] with an almost
contact metric structure (ϕ, ξ, η, g) consisting of a (1, 1)-tensor field ϕ, a vector field ξ, a
1-form η and a Riemannian metric g on N satisfying

ϕ2X = −X + η(X)ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0,

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), g(X, ξ) = η(X),

for all vector fields X,Y on N . Such a manifold is said to be a contact metric manifold
if dη = Φ, where Φ(X,Y ) = g(X,ϕY ) is called the fundamental 2-form of N [5].

On the other hand, the almost contact metric structure of N is said to be normal if

[ϕ,ϕ](X,Y ) = −2dη(X,Y )ξ,

for any vector fields X,Y on N , where [ϕ,ϕ] denotes the Nijenhuis torsion of ϕ, given by

[ϕ,ϕ](X,Y ) = ϕ2[X,Y ] + [ϕX,ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ].

A normal contact metric manifold is called a Sasakian manifold [5].
Given an almost contact metric manifold N with an almost contact metric structure

(ϕ, ξ, η, g), N is called a generalized Sasakian space form [1] if there exist three functions
f1, f2 and f3 on N such that

(5.1)
◦

R̃(X,Y, Z,W ) = f1{g(Y,Z)g(X,W )− g(X,Z)g(Y,W )}+

+f2{g(X,ϕZ)g(ϕY,W )− g(Y, ϕZ)g(ϕX,W ) + 2g(X,ϕY )g(ϕZ,W )}+

+f3{η(X)η(Z)g(Y,W )−η(Y )η(Z)g(X,W )+η(Y )η(W )g(X,Z)−η(X)η(W )g(Y,Z)},

for any vector fields X,Y, Z,W on N , where
◦

R̃ denotes the curvature tensor of N with

respect to the Levi-Civita connection
◦

∇̃. In such a case, we will write N(f1, f2, f3). If
f1 = c+3

4
, f2 = f3 = c−1

4
, then N is a Sasakian space form.
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If N(f1, f2, f3) is a (2m+1)-dimensional generalized Sasakian space form with respect
to the semi-symmetric metric connection ∇̃. Then, from (2.6) and (5.1) the curvature
tensor R̃ of N(f1, f2, f3) can be written as follows

(5.2) R̃(X,Y, Z,W ) = f1{g(Y,Z)g(X,W )− g(X,Z)g(Y,W )}+

+f2{g(X,ϕZ)g(ϕY,W )− g(Y, ϕZ)g(ϕX,W ) + 2g(X,ϕY )g(ϕZ,W )}+

+f3{η(X)η(Z)g(Y,W )−η(Y )η(Z)g(X,W )+η(Y )η(W )g(X,Z)−η(X)η(W )g(Y,Z)}−

−α(Y,Z)g(X,W ) + α(X,Z)g(Y,W )− α(X,W )g(Y,Z) + α(Y,W )g(X,Z).

LetM , n ≥ 3, be an n-dimensional submanifold of a (2m+1)-dimensional generalized
Sasakian space form. We put

ϕX = PX + FX,

for any vector field X tangent to M , where PX and FX are tangential and normal
components of ϕX, respectively.

We also set

‖P‖2 =

n∑
i,j=1

g2(ϕei, ej).

Decompose

ξ = ξ> + ξ⊥,

where ξ> and ξ⊥ denote the tangential and normal components of ξ.
From [2], recall Θ2(π) = g2(Pe1, e2) = g2(ϕe1, e2), where {e1, e2} is an orthonormal

basis of a 2-plane section π, is a real number in [0, 1], independent of the choice of e1 and
e2.

Now, let begin with the following theorem which gives us a sharp inequality for sub-
manifolds of generalized Sasakian space forms with respect to the semi-symmetric metric
connection:

5.1. Theorem. LetM , n ≥ 3, be an n-dimensional submanifold of a (2m+1)-dimensional
generalized Sasakian space form N(f1, f2, f3) with respect to the semi-symmetric metric
connection ∇̃. Then we have:

τ(x)−K(π) ≤ (n− 2)

[
n2

2(n− 1)
‖H‖2 + (n+ 1)

f1
2
− λ

]
−

−
[
6Θ2(π)− 3 ‖P‖2

] f2
2

+ [‖ξπ‖
2 − (n− 1)

∥∥∥ξ>∥∥∥2]f3 −

−trace(α|π⊥),(5.3)

where π is a 2-plane section of TxM , x ∈M .

Proof. Let {e1, e2, ...en} be an orthonormal basis of TxM and {en+1, ..., e2m+1} be an
orthonormal basis of T⊥x M , x ∈M , where en+1 is parallel to the mean curvature vector
H.
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For X = W = ei and Y = Z = ej such that i 6= j, the equation (5.2) can be written
as

(5.4) R̃(ei, ej , ej , ei) = f1 + 3f2g
2(ϕei, ej)− f3[η(ei)

2 + η(ej)
2]− α(e1, e1)− α(e2, e2).

Comparing the right hand sides of the equations (3.5) and (5.4) we can write

f1 + 3f2g
2(ϕei, ej)− f3[η(ei)

2 + η(ej)
2]− α(e1, e1)− α(e2, e2)

= R(ei, ej , ej , ei) + g(σ(ei, ej), σ(ei, ej))− g(σ(ei, ei), σ(ej , ej)).

Then, by summation over 1 ≤ i, j ≤ n, the above relation reduces to

(5.5) 2τ + ‖σ‖2 − n2 ‖H‖2 = n(n− 1)f1 + 3f2 ‖P‖2 − 2(n− 1)f3

∥∥∥ξ>∥∥∥2 − 2(n− 1)λ.

If we put

(5.6) δ = 2τ − n
2(n− 2)

n− 1
‖H‖2 + 2(n−1)λ−n(n−1)f1−3f2 ‖P‖2 + 2(n−1)f3

∥∥∥ξ>∥∥∥2 ,
the equation (5.5) turns into

(5.7) n2 ‖H‖2 = (n− 1)
(
‖σ‖2 + δ

)
.

For a chosen orthonormal basis, the relation (5.7) takes the following form(
n∑
i=1

σn+1
ii

)2

= (n− 1)

 n∑
i=1

(σn+1
ii )2 +

∑
i6=j

(σn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(σrij)
2 + δ

 .
So, by the use of Chen’s Lemma, we have

2σn+1
11 σn+1

22 =
∑

1≤i 6=j≤n

(σn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(σrij)
2 + δ.

Let π be a 2-plane section of TxM at a point x, where π = sp{e1, e2}. We need to denote
ξπ = prπξ for the later use as follows

‖ξπ‖
2 = η(e1)2 + η(e2)2.

Then, from the Gauss equation for X = Z = e1 and Y = W = e2 we get

K(π) = f1+3f2g
2(Pe1, e2)−f3 ‖ξπ‖

2−α(e1, e1)−α(e2, e2)+

2m+1∑
r=n+1

[σr11σ
r
22−(σr12)2] ≥

≥ f1 + 3f2g
2(Pe1, e2)− f3 ‖ξπ‖

2 − α(e1, e1)− α(e2, e2)+

+
1

2

 ∑
1≤i6=j≤n

(σn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(σrij)
2 + δ

+

2m+1∑
r=n+2

σr11σ
r
22 −

2m+1∑
r=n+1

(σr12)2

= f1 + 3f2g
2(Pe1, e2)− f3 ‖ξπ‖

2 − α(e1, e1)− α(e2, e2)+

+
1

2

∑
1≤i 6=j≤n

(σn+1
ij )2 +

1

2

2m+1∑
r=n+2

n∑
i,j>2

(σrij)
2+

+
1

2

2m+1∑
r=n+2

(σr11 + σr22)2 +
∑
j>2

[(σn+1
1j )2 + (σn+1

2j )2] +
1

2
δ ≥

≥ f1 + 3f2g
2(Pe1, e2)− f3 ‖ξπ‖

2 − α(e1, e1)− α(e2, e2) +
1

2
δ,
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which implies

K(π) ≥ f1 + 3f2g
2(Pe1, e2)− f3 ‖ξπ‖

2 − α(e1, e1)− α(e2, e2) +
1

2
δ.

From (5.6), it easy to see that

K(π) ≥ τ − (n− 2)

[
n2

2(n− 1)
‖H‖2 + (n+ 1)

f1
2
− λ

]
−

−
[
6Θ2(π)− 3 ‖P‖2

] f2
2
− [‖ξπ‖

2 − (n− 1)
∥∥∥ξ>∥∥∥2]f3 +

+trace(α|π⊥),

which gives us (5.3). Hence, we complete the proof of the theorem.

5.2. Corollary. Let M , n ≥ 3, be an n-dimensional submanifold of a (2m + 1)-
dimensional generalized Sasakian space form N(f1, f2, f3) with respect to the semi-
symmetric metric connection ∇̃.

If the structure vector field ξ is tangent to M , we have

τ(x)−K(π) ≤ (n− 2)

[
n2

2(n− 1)
‖H‖2 + (n+ 1)

f1
2
− λ

]
−

−
[
6Θ2(π)− 3 ‖P‖2

] f2
2

+ [‖ξπ‖
2 − (n− 1)]f3 −

−trace(α|π⊥).(5.8)

If the structure vector field ξ is normal to M , we have

τ(x)−K(π) ≤ (n− 2)

[
n2

2(n− 1)
‖H‖2 + (n+ 1)

f1
2
− λ

]
−

−
[
6Θ2(π)− 3 ‖P‖2

] f2
2
− trace(α|π⊥).(5.9)

As a consequence of Proposition 3.2, for both submanifolds of generalized Sasakian
space forms, we can give the following corollary:

5.3. Corollary. Under the same assumptions as in the Theorem 5.1, if the vector field
U is tangent to M , then we have:

τ(x)−K(π) ≤ (n− 2)

[
n2

2(n− 1)

∥∥∥∥ ◦H∥∥∥∥2 + (n+ 1)
f1
2
− λ

]
−

−
[
6Θ2(π)− 3 ‖P‖2

] f2
2

+ [‖ξπ‖
2 − (n− 1)]f3 −

−trace(α|π⊥).

5.4. Theorem. The equality case of (5.3) holds at a point x ∈M if and only if there exist
an orthonormal basis {e1, e2, ...en} of TxM and an orthonormal basis {en+1, ..., e2m+1} of
T⊥x M such that the shape operators of M in N(f1, f2, f3) at x have the following forms:

Aen+1 =



a 0 0 · · · 0

0 b 0 · · · 0

0 0 µ · · · 0
...

...
...

. . .
...

0 0 0 · · · µ


, a+ b = µ
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and

Aer =



σr11 σr12 0 · · · 0

σr12 −σr11 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0


, n+ 2 ≤ i ≤ 2m+ 1,

where we denote by σrij = g(σ(ei, ej), er), 1 ≤ i, j ≤ n and n+ 2 ≤ r ≤ 2m+ 1.

Proof. Equality case holds at a point x ∈ M if and only if the equality holds in each of
the previous inequalities and hence the Lemma yields equality.

σn+1
ij = 0, ∀i 6= j, i, j > 2,

σrij = 0, ∀i 6= j, i, j > 2, r = n+ 1, ..., 2m+ 1,

σr11 + σr22 = 0, ∀r = n+ 2, ..., 2m+ 1,

σn+1
1j = σn+1

2j = 0, ∀j > 2,

σn+1
11 + σn+1

22 = σn+1
33 = ... = σn+1

nn .

If we choose {e1, e2} such that σn+1
12 = 0 and denote by a = σr11, b = σr22, µ = σn+1

33 =

... = σn+1
nn , then the shape operators take the mentioned forms.

6. Ricci curvature for submanifolds of generalized Sasakian space
forms

In this section we establish relationship between the Ricci curvature of a submani-
fold M of a generalized Sasakian space form N(f1, f2, f3) with a semi-symmetric metric
connection and the squared mean curvature ‖H‖2.

Now, let begin with the following theorem:

6.1. Theorem. LetM , n ≥ 3, be an n-dimensional submanifold of a (2m+1)-dimensional
generalized Sasakian space form N(f1, f2, f3) with respect to the semi-symmetric metric
connection ∇̃. Then we have:

‖H‖2 ≥ 2τ

n(n− 1)
+

2

n
λ− f1 −

3f2
n(n− 1)

‖P‖2 +

+
2

n
f3

∥∥∥ξ>∥∥∥2 .(6.1)

Proof. Let {e1, e2, ..., en} be an orthonormal basis of TxM and {en+1, ..., e2m+1} be an
orthonormal basis of T⊥x M , x ∈M , where en+1 is parallel to the mean curvature vector
H . Then, the equation (5.5) can be written as follows

n2 ‖H‖2 = 2τ + ‖σ‖2 + 2(n− 1)λ− n(n− 1)f1

−3f2 ‖P‖2 + 2(n− 1)f3.(6.2)
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For a choosen orthonormal basis, let e1, e2, ..., en diagonalize the shape operator Aen+1 .
Then, the shape operators take the forms

Aen+1 =


a1 0 · · · 0

0 a2 · · · 0
...

...
. . .

...
0 0 · · · an


and

Aer = (σrij), i, j = 1, ..., n; r = n+ 2, ..., 2m+ 1, traceAer = 0.

By the use of (6.2), we obtain

n2 ‖H‖2 = 2τ +

n∑
i=1

a2i +

2m+1∑
r=n+2

n∑
i,j=1

(σrij)
2 +

+2(n− 1)λ− n(n− 1)f1 − 3f2 ‖P‖2 + 2(n− 1)f3.(6.3)

On the other hand, we know that

(6.4)
n∑
i=1

a2i ≥ n ‖H‖2 .

Hence, by the use of (6.4) in (6.3), we obtain (6.1).

In view of Theorem 6.1, we can give the following theorem:

6.2. Theorem. LetM , n ≥ 3, be an n-dimensional submanifold of a (2m+1)-dimensional
generalized Sasakian space form N(f1, f2, f3) with respect to the semi-symmetric metric
connection ∇̃ such that the vector field U is tangent to M . Then, for any integer k,
2 ≤ k ≤ n and for any point x ∈M , we have:

(6.5) ‖H‖2 (x) ≥ Θk(π) +
2

n
λ− f1 −

3f2
n(n− 1)

‖P‖2 +
2

n
f3

∥∥∥ξ>∥∥∥2 .
Proof. Similar to the proof of the Theorem 4.2, we easily get (6.5).
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