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1. Introduction

A. Friedmann and J. A. Schouten introduced the idea of a semi-symmetric linear
connection on a Riemannian manifold in [10]. Later, H. A. Hayden [11] gave the definition
of a semi-symmetric metric connection. In 1970, K. Yano [19] studied semi-symmetric
metric connection and proved that a Rimannian manifold admits a semi-symmetric metric
connection with vanishing curvature tensor if and only if the manifold is conformally
flat. Then, in [12], [13] and [16] T. Imai and Z. Nakao considered some properties of a
Riemannian manifold admitting a semi-symmetric metric connection and they studied
submanifolds of a Riemannian manifold with a semi-symmetric metric connection.

On the other hand, B. Y. Chen introduced Chen inequality and he gave the definition

of new types of curvature invariants (called extrinsic and intrinsic invariants) in [6]. Then,
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in [7], [8] and [9], he established sharp inequalities for different submanifolds in various
ambient spaces.

In [3] and [4], K. Arslan, R. Ezentag, I. Mihai, C. Murathan and C. Ozgiir studied
Chen inequalities for submanifolds in locally conformal almost cosymplectic manifolds
and (k, u)-contact space forms, respectively. Later, P. Alegre, A. Carriazo, Y. H. Kim
and D. W. Yoon considered same inequalities for submanifolds of generalized space forms
in [2].

Recently, in [14], A. Mihai and C. Ozgiir proved Chen inequalities for submanifolds
of real space forms admitting a semi-symmetric metric connection. They also studied
same problems for submanifolds of complex space forms and Sasakian space forms with
a semi-symmetric metric connection in [15]. As a generalization of the results of [15],
in tis study, we prove similar inequalities for submanifolds of generalized complex space
forms and generalized Sasakian space forms with respect to a semi-symmetric metric

connection.

2. Preliminaries

Let N be an (n+p)-dimensional Riemannian manifold with a Riemannian metric g. A
linear connection V on a Riemannian manifold IV is called a semi-symmetric connection

if the torsion tensor T of the connection V
(21) T(R.¥)= V¥ - ¥y X - [X.7]

satisfies

(22) T(X,Y)=w)X —w(X)Y,

for any vector fields X and Y on N, where w is a 1-form associated with the vector field
U on N defined by

(23)  w(X)=g(X,U).
V is called a semi-symmetric metric connection if

Vg=0.

If V is the Levi-Civita connection of a Riemannian manifold N , the semi-symmetric
metric connection V is given by
o
(24) ViV =ViY4+wlY)X —g(X,Y)U,
(see [19)).
Let M be an n-dimensional submanifold of an (n + p)-dimensional Riemannian man-
ifold N. We will consider the induced semi-symmetric metric connection by V and the

induced Levi-Civita connection by V on the submanifold M.

Let R and R be curvature tensors of V and V of a Riemannian manifold N , Tre-

]
spectively. We also denote by R the curvature tensor of M with respect to V and R the
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o
curvature tensor of M with respect to V. Then the Gauss formulas with a semi-symmetric

metric connection V and the Levi-Civita connection %, respectively, are given by
VxY = VxY +0(X,Y)

and
TY = UxY 8,1,

for any vector fields X, Y tangent to M, where o is the second fundamental form of M in
N and o is a (0,2)-tensor on M. Also, the mean curvature vector of M in N is denoted
by ﬁ] .

The equation of Gauss for an n-dimensional submanifold M in an (n+ p)-dimensional

Riemannian manifold N is given by

o
~ o °

(2.5)  R(X,Y,Z,W)=R(X,Y,Z,W) +g(6(X,2),6(Y,W)) — g(c(Y, Z),5(X,W))

Then, R and R are related by

)

R(X,Y,Z,W) = R(X,Y,Z,W)—a(Y,2)g(X,W) + a(X, Z)g(Y,W) —
(2.6) —a(X, W)g(Y, Z) + (Y, W)g(X, Z),

for any vector fields X,Y, Z,W on N [19], where (0, 2)-tensor field « is given by
a(X,Y) = (%;) Y —w(X)w(Y) + %w(U)g(X, Y),

for X,Y € x(M), where the trace of « is denoted by
tracea = .

Denote by K () or K(u,v) the sectional curvature of M associated with a 2-plane
section m C T, M with respect to the induced semi-symmetric non-metric connection V,
where {u,v} is an orthonormal basis of m. The scalar curvature 7 at « € M is denoted
by

@)= > Kleine),

1<i<j<n

where {e1,...,en} is any orthonormal basis of T, M [§].

We will need the following Chen’s lemma for later use:

2.1. Lemma. [6] Let n > 2 and a1, ag, ..., an, b be real numbers such that

(2.7) (Zm) =(n-1) <Zaf + b) .

Then 2a1a2 > b, with equality holding if and only if

a1 +a2 =a3 = ... = an.
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Let M be an n-dimensional Riemannian manifold, L a k-plane section of T, M, x € M
and X a unit vector in L.

For an orthonormal basis {e1,...,ex} of L such that e; = X, the Ricci curvature (or
k-Ricci curvature) of L at X is defined by

Ricp(X) = K12 + K13 + ... + Kk,

where K;; denotes the sectional curvature of the 2-plane section spanned by e; and e;.

For any integer k, 2 < k < n, the Riemannian invariant ©, of M is denoted by

Ok (x) = ﬁ%n)f(RicL(X), e M,

where L runs over all k-plane sections in 7, M and X runs over all unit vectors in L.

3. Chen inequality for submanifolds of generalized complex space

forms

We consider as an ambient space a generalized complex space form with a semi-
symmetric metric connection.

A 2m-dimensional almost Hermitian manifold (N, J,g) is said to be a generalized
complex space form (see [17] and [18]) if there exist two functions F} and F» on N such
that

o

(3.1) RX,)Y,ZW)=FlgY,2)g(X,W)—g(X,Z)g(Y,W)]+

+Flg(X, JZ)g(JY, W) — g(Y, JZ)g(JX, W) + 29(X, JY )g(J Z, W)],
for any vector fields X, Y, Z, W on N, where R is the curvature tensor of N with respect
to the Levi-Civita connection V. In such a case, we will write N (F}, Fb).
If N(Fi, F>) is a generalized complex space form with a semi-symmetric metric con-
nection V, then by the use of (2.6) and (3.1), the curvature tensor R of N(F, F») can

be written as

(3'2) R(X7 Y7 Z7 W) = Fl[g(Y7 Z)g(Xv W) - g(X7 Z)g(Y, W)}"'
+F[9(X, JZ)g(JY, W) — g(Y, JZ)g(J X, W) + 29(X, JY)g(J Z, W)]—

g(Yv W) - a(X7 W)g(Yv Z) + a(Yrv W)g(Xv Z)

~—

—a(Y, 2)g(X, W)+ a(X, Z
Let M be an n-dimensional, n > 3, submanifold of a 2m-dimensional generalized
complex space form N (Fi, F>). We put
JX = PX + FX,

for any vector field X tangent to M, where PX and F'X are tangential and normal
components of JX, respectively.

We also set

IPI? =" g*(Jeis ;).

1,j=1
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On the other hand, ©%(7) is denoted by ©2(n) = g?(Pe1, e2) = g*(Je1, e2) in [2], where
{e1, ez} is an orthonormal basis of a 2-plane section 7. ©2(7) is a real number in [0, 1],
independent of the choice of e; and es.

For submanifolds of generalized complex space forms with respect to the semi-symmetric

metric connection we establish the following sharp inequality:

3.1. Theorem. Let M, n > 3, be an n-dimensional submanifold of a 2m-dimensional
generalized complex space form N(Fi, Fz) with respect to the semi-symmetric metric

connection V. Then we have:

-9 2
@) = K(m) < P | HI 4 (e DF - 23] -
o2 P2 Fy
(3.3) — [6 (m) = 3||P| ] - = trace(a,1 ),

where 7 is a 2-plane section of T, M, x € M.

Proof. Let {e1,ea,...en} be an orthonormal basis of T, M and {en+1, ..., e2m } be an or-
thonormal basis of T M, € M, where en41 is parallel to the mean curvature vector
H.

Taking X =W =e; and Y = Z = e; such that i # j and by the use of (3.2), we get

(34)  Rles ej,e5,e:) = i+ 3F2g”(Jei, e5) — ales, &) — aley, e).

From [16], the Gauss equation with respect to the semi-symmetric metric connection can

be written as

(3.5)  Rlei,ej,ej,ei) = Rei e5,¢5,€:) + g(o(ei, €5), 0(eis e5)) — g(o(ei, €i), 0(ej, €5)).
Comparing the right hand sides of the equations (3.4) and (3.5), we obtain
Fi 4 3Fsg%(Jei, e5) — alei, e) — ale;, ej)
= Rlei,ej,e5,e) +g(o(ei e5),0(eis€5)) — glo(ei, ei), (e, €5)).

Then, by summation over 1 < 4,5 < n, the above equation turns into
(3.6) 27 + |lo|* —n* | H|*

= n(n—1)F +3F Zn: g (Jei,ej) —2(n — 1)\,

ij=1

where

n

loll* = > g(o(eies), o(eire;))

ij=1
and

1
H = —traceo.
n

We set
n*(n —2)

p— IH|?> 4+ 2(n — )X —n(n — 1)F1 — 3F ||P||*.

(3.7 d=27-
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Then, the equation (3.6) can be written as follows
(38) 0’ |H|* = (n—1)(llo]* +0).
For a chosen orthonormal basis, the relation (3.8) takes the following form

n

(Za”“> (n=1) [D (652 +> (o) Z Z o) 48

i=1 i#£] r=n+2 i,j=1
So, by the use of Chen’s Lemma, we have
y DY
+1 1 1
201 Mol = D0 | "++ZZ%
1<i#j<n r=n+2 i,j=1

Let m be a 2-plane section of T, M at a point x, where m = sp{e1,ea}. Then, the
Gauss equation for X = Z =e; and Y = W = ez gives us

2m
K(r) = Fi + 3F:g*(Jer,2) — alen, 1) — ales,ea) + 3 01105 — (07)7] >
r=n+1
>+ 3F292(J€1,€2) —aler,er) — ales, e2)+
2m

1

A e 3 S eres)+ 3 ohen 3 ey
1<i#j<n r=n+2 i,j=1 r=n+2 r=n+1

=F + 3F292(Je1, 62) — a(el, e1) — a(ez, e2)+

1 n+1
+5 > Z > (a3

1<'L7£j<n 'r n+2 i,7>2
1
n+1 n+1 2

+ Z (011 + 032) +Z[ 2j )]+§5Z

7‘ n+2 j>2
1
>+ SFQQQ(.]€17€2) —afer,e1) — alez, e2) + 56
which implies
1
K(m) > F1 + SFQgQ(Jehez) —afer,e1) — alez,e2) + 56.

From (3.7), it is easy to see that

-2
K(r) > T—n2

r(n4+1)F -2\ +

+ [6@2( ) — 3P ] — +trace(aj;1),
where trace(o 1) is denoted by
aler,e1) + alez, e2) = A — trace(a,1 )
(see [15]). Hence, we finish the proof of the theorem. |

3.2. Proposition. The mean curvature H of M admitting semi-symmetric metric con-
o

nection coincides with the mean curvature H of M admitting Levi-Civita connection if

and only if the vector field U is tangent to M.

As a consequence of Proposition 3.2 we can give the following result:
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3.3. Theorem. If the vector field U is tangent to M, then the equality case of (3.3)
holds at a point z € M if and only if there exist an orthonormal basis {e1, ez, ...en} of
T, M and an orthonormal basis {€n+1, ..., €2m } of Taf‘M such that the shape operators of
M in N(F1, F2) at « have the following forms:

a 0 0 --- O
0O b 0 --- 0
Aen+1: 00 p - 0 , a+b=p
0 0 O m
and
0'71‘1 0"{2 0 0
ol —o11 O 0
A, =0 0 0 - 0f n42<i<2m,
0 0 o --- 0

where we denote by o; = g(o(ei,ej),er), 1 <i,j <nandn+2 < r < 2m.

Proof. Equality case holds at a point x € M if and only if the equality holds in each of

the previous inequalities and hence the Lemma yields equality.

O'Z-‘Fl = 0, vl #],17] > 27
o5, =0, Vi#j,i,7>2r=n+1,..2m,
UI1+U£2:07 VT:n+27~"72m7

U?fl = 03;1 =0, Vj>2,

n+1 n+l _ n4+1l _ _ n+1
011 T 020 =033 = ..=0pp .
If we choose {e1, ez} such that 05" = 0 and denote by a = o1y, b = 05y, u = aggl =

... = o™ then the shape operators take the desired forms. I

4. Ricci curvature for submanifolds of generalized complex space

forms

In this section we establish relationship between the Ricci curvature of a submani-
fold M in a generalized complex space form N (Fi, F>) with a semi-symmetric metric
connection, and the squared mean curvature || H||°.

Now, let begin with the following theorem:

4.1. Theorem. Let M, n > 3, be an n-dimensional submanifold of a 2m-dimensional
generalized complex space form N(Fi, F») with respect to the semi-symmetric metric

connection V. Then we have:

2
4. H|? >
( ]-) H H =

T 3F2
(n—1)

mllpll :

2
+ —A—F; —
n
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Proof. Let {e1,eq,...,en} be an orthonormal basis of T, M and {ent1,...,€2m} be an
orthonormal basis of T;-M at 2 € M, where eni1 is parallel to the mean curvature
vector H.

Then, the equation (3.7) can be written as follows
(4.2)  nP|H|? =274 ||lo]|> +2(n — DA —n(n — 1)Fy — 3F: ||P|]>.

For a choosen orthonormal basis, let e1, ez, ..., e, diagonalize the shape operator A, ;.

Then, the shape operators take the forms

al 0 0

0 az 0
A5n+1

0 0 . an

and

A, =(03;), 4j=1,..,n r=n+2,..2m, traceA., =0.

By the use of (4.2), we obtain

n 2m n
P |HIP = 204> ai+ > > (on)+
i=1 r=n+2 i,j=1
(4.3) +2(n — DA —n(n — 1)F1 — 3F:|P|)*.

On the other hand, since

0< Z(ai —a;)’ =(n— 1)5:(1? - ZZaiaj,
i=1

i<j i<j
we get

n

n 2 n
n®||H|* = (Zaz) = Za? +2 Zaiaj < nZa?,
i=1 i=1

i<j i=1

which means
n
(44) > ai >n|H|.
i=1
Thus, in view of (4.4) in (4.3) we get (4.1), which completes the proof of the theorem. i

In view of Theorem 4.1, we can give the following theorem:

4.2. Theorem. Let M, n > 3, be an n-dimensional submanifold of a 2m-dimensional
generalized complex space form N(Fi, F>) with respect to the semi-symmetric metric
connection V such that the vector field U is tangent to M. Then, for any integer k,
2 < k < n and for any point z € M, we have:

3F,

(4.5)  [IH|* (z) > ©x(m) + %A Ry

1PII*.
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Proof. Let {e1, ez, ...,e,} be an orthonormal basis of T, M at € M. The k-plane section

spanned by e;,, ..., e;, is denoted by L;,...s,. Then, by the definitions, we can write
1 .
(4.6) T(Liy.ip) = 5 Z Ricr,, ., (e:)
i€{it...ip}
and
1
4.7 T(z)= o2 Z T(Liy..ip,)-

n—21<i1<...<ip<n
By making use of (4.6) and (4.7) in (4.1), we obtain

n(n —1)
@)z =5

which gives us (4.5). 1

O (),

5. Chen inequality for submanifolds of generalized Sasakian space
forms

Let N be a (2m + 1)-dimensional almost contact metric manifold [5] with an almost
contact metric structure (¢, &, 7, g) consisting of a (1, 1)-tensor field ¢, a vector field &, a

1-form 7 and a Riemannian metric g on N satisfying
X =X +nX)E, n€)=1 ¢£=0, nop=0,

9(e X, 9Y) = g(X,Y) = n(X)n(Y), g(X,&) = n(X),
for all vector fields X,Y on N. Such a manifold is said to be a contact metric manifold
if dn = @, where ®(X,Y) = g(X, ¢Y) is called the fundamental 2-form of N [5].
On the other hand, the almost contact metric structure of N is said to be normal if
[0, 0l(X,Y) = =2dn(X, Y)g,
for any vector fields X, Y on N, where [p, ¢] denotes the Nijenhuis torsion of ¢, given by
[0, @](X,Y) = @[X, Y] + [pX, Y] — 0[pX, Y] — ¢[X, pY].

A normal contact metric manifold is called a Sasakian manifold [5].

Given an almost contact metric manifold N with an almost contact metric structure
(p,€,m,9), N is called a generalized Sasakian space form [1] if there exist three functions
fi1, f2 and fs on N such that

o

(5'1) R(X7 Y’ Zv W) = fl{g(x Z)g(X7 W) - g(X7 Z)g(Yv W)}+
+2{9(X, 02)g(eY, W) — g(Y, 0 Z)g(p X, W) 4 29(X, Y )g(0Z, W)} +
+f3{n(X)n(2)g(Y, W)—n(Y)n(Z2)g(X, W)+n(Y)n(W)g(X, Z)—n(X)n(W)g(Y, Z)},

o
for any vector fields X, Y, Z, W on N, where R denotes the curvature tensor of N with

respect to the Levi-Civita connection V. In such a case, we will write N(f1, f2, f3). If

fi =3 fo = fs = <51, then N is a Sasakian space form.
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If N(f1, f2, f3) is a (2m+1)-dimensional generalized Sasakian space form with respect
to the semi-symmetric metric connection V. Then, from (2.6) and (5.1) the curvature

tensor R of N(f1, f2, f3) can be written as follows

(5'2) R(X7 Y7 Z7 W) = fl{g(x Z)g(X7 W) - g(X7 Z)g(Y7 W)}+
+2{9(X, 02)g(eY, W) — g(Y,0Z)g(p X, W) 4 29(X, Y )g(Z, W)} +
+f3{n(X)n(2)g(Y, W) —n(Y)n(Z2)g(X, W)+n(Y )n(W)g(X, Z)—n(X)n(W)g(Y, Z)} -

_O‘(K Z)g(Xv W) +a(X7 Z)g(Yv W) - a(X, W)g(Y, Z) + O‘(K W)g(X7 Z)

Let M, n > 3, be an n-dimensional submanifold of a (2m + 1)-dimensional generalized

Sasakian space form. We put
©X = PX + FX,

for any vector field X tangent to M, where PX and FX are tangential and normal
components of X, respectively.

We also set

P> =" g*(veire)).

ij=1
Decompose

E=¢"+¢,
where ¢7 and ¢+ denote the tangential and normal components of £.

From [2], recall ©2(7) = g*(Pe1,e2) = ¢g*(pe1, e2), where {e1, ez} is an orthonormal
basis of a 2-plane section 7, is a real number in [0, 1], independent of the choice of e; and
€9.

Now, let begin with the following theorem which gives us a sharp inequality for sub-

manifolds of generalized Sasakian space forms with respect to the semi-symmetric metric

connection:

5.1. Theorem. Let M, n > 3, be an n-dimensional submanifold of a (2m+1)-dimensional
generalized Sasakian space form N(f1, f2, f3) with respect to the semi-symmetric metric
connection V. Then we have:

2

n 2 fi
_ < _ _ JL ] =
O R b e CRACERIE AR
2
~[607(m) ~ 31PIP) 2 + (a2 — o — 1) 7|15 -

(5.3) —trace(a),L),

where 7 is a 2-plane section of T, M, x € M.

Proof. Let {e1,e2,...en} be an orthonormal basis of T, M and {en+1,...,e2m+1} be an
orthonormal basis of T M, & € M, where en41 is parallel to the mean curvature vector
H.
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For X =W =e; and Y = Z = ¢; such that ¢ # j, the equation (5.2) can be written
as
(5.4)  Rleisej,e5,e:) = fi+3fag” (vei,e5) = faln(en)” +1(e;)?] — aler, e1) — ales, e2).

Comparing the right hand sides of the equations (3.5) and (5.4) we can write

fi+3f2g%(pei e5) — faln(e)” +m(e;)’] — aler, er) — afes, e2)
= R(ei,ej,€5,ei) +g(o(eise5),0(ei, e5)) — g(o(es, ei), 0(ej, €5)).
Then, by summation over 1 < 4,5 < n, the above relation reduces to
(55) 27+ [0l —n? [HIP = n(n— 0fi + 35 PP 20— 05 €7 — 2t —

If we put

2(7’1,

(5.6) 6:w—ﬁ;5§MHW+%m4»—mW4wrsﬁwwﬂam—nﬁkﬂﬁ

the equation (5.5) turns into
6.7 nH|* = (1) (lo]* +9) .

For a chosen orthonormal basis, the relation (5.7) takes the following form

n 2 n 2m—+1 n

=1 i= 1 z;ﬁ] r=n+2 i,j=1

So, by the use of Chen’s Lemma, we have

2m+41 n

2a_n+1 n+1 Z n+1 Z Z o)

1<i#j<n r=n+2 i,j=1
Let 7 be a 2-plane section of T M at a point =, where m = sp{e1,e2}. We need to denote

&, = prx§ for the later use as follows

€117 = m(er)? + nle2)”.
Then, from the Gauss equation for X =Z =e; and Y = W = ez we get

2m—+1
K(r) = fi+3f2g" (Pe1,e2)—f3 ||, |I°—aler, e1)—ales, e2)+ Y [o1105,—(072)"] >
r=n-+1
> fi+3f29%(Pe1,e2) — f3 [|€,]17 — aler, e1) — alez, e2)+
1 2m—+1 n 2m—+1 2m+1
A e 3 Sere] e 3 a3 e
1<i#j<n r=n+2 i,j=1 r=n+2 r=n+1
= f1 +3f20°(Per,e2) — fs |€, 1> — aler, e1) — afea, e2)+
1 2m—+1 n
n+1
+5 2 DD NCHE
1<i#j<n 'r n+2 4,5>2
2m+1 1
+ Z (011 + 032) +Z[ 071?1 U;L;rl) ]+§5Z
r n+2 j>2

1
> f1+3f2g”(Pe1,e2) — fs l€, 117 — aler, e1) — afez, e2) + 59



822

which implies
1
K(7) > f1 +3fag’(Pex, e2) — fs [|€,]° — aler, e1) — alea, e2) + 50

From (5.6), it easy to see that

K(m) > 71-(n-2) ﬁnﬂnu(nm%_x}_

J2 2
— [60°(m) = 3IIPIP] 2 = [, 1” = (n = 1) ||¢7 [ 14 +
ttrace(o),1),
which gives us (5.3). Hence, we complete the proof of the theorem. i

5.2. Corollary. Let M, n > 3, be an n-dimensional submanifold of a (2m + 1)-
dimensional generalized Sasakian space form N(fi, f2, f3) with respect to the semi-
symmetric metric connection V.

If the structure vector field £ is tangent to M, we have
2

T(x) ~ K(r) < (n-2) [2( =

2 fi
S NI+ (k02 -] -

~ [60%(m) = 3IPIF) 2 + [l 1P — (0 — 1)1fs -
(5.8) —trace( 1)

If the structure vector field £ is normal to M, we have

@) -Km < (-2 |5 I+ k0D -] -

(5.9) — [602(r) — 3||P] % — trace(ay.).

As a consequence of Proposition 3.2, for both submanifolds of generalized Sasakian

space forms, we can give the following corollary:

5.3. Corollary. Under the same assumptions as in the Theorem 5.1, if the vector field
U is tangent to M, then we have:

() - K(r) < (n—2) [2(71

o

H

n—1)

+(n+1)%— ]—

~ [60*(r) ~ 3IPIP] £+ [l I — (n — )]s -
—trace(a; 1 ).

5.4. Theorem. The equality case of (5.3) holds at a point © € M if and only if there exist
an orthonormal basis {e1, €2, ...en} of T, M and an orthonormal basis {en+1, ..., €2m+1} of
T M such that the shape operators of M in N(f1, f2, f3) at & have the following forms:

a 0 0 --- O
0O b 0 --- 0
Aen+1: 00 p - 0 , a+b=p
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and
o1 O12 o - 0
oz —o1p 0 -+ 0
A= [0 00 o Of o <i<om,
0 0 o --- 0

where we denote by o7; = g(o(ei,ej),e.), 1 <i,j<nandn+2<r<2m+ 1.

Proof. Equality case holds at a point x € M if and only if the equality holds in each of

the previous inequalities and hence the Lemma yields equality.
n+l _ . Lo
Uij 707 V’L#],Z,]>2,

o} =0, Vi#ji,j>2,r=n+1,.,2m+1,

011 +0% =0, VYr=n+2,..,2m+1,

n+l _ _n+1 _ -
oy =03 =0, Vj>2
n+1 n+l _ n4+1 _ n+1
011 t 020 =033 = ..=0np .
If we choose {e1,e2} such that o5 = 0 and denote by @ = 071, b = 05y, p = 0hs ' =

... = o™ then the shape operators take the mentioned forms. I

6. Ricci curvature for submanifolds of generalized Sasakian space
forms

In this section we establish relationship between the Ricci curvature of a submani-

fold M of a generalized Sasakian space form N(f1, f2, f3) with a semi-symmetric metric
. 2
connection and the squared mean curvature ||H||".

Now, let begin with the following theorem:

6.1. Theorem. Let M, n > 3, be an n-dimensional submanifold of a (2m+1)-dimensional
generalized Sasakian space form N(f1, f2, f3) with respect to the semi-symmetric metric
connection V. Then we have:

2’7’ 3f2

2
HP > — 12— -2 _p?
e R (e 1
92 2
o il
n
Proof. Let {e1,ea,...,en} be an orthonormal basis of T M and {en+1, ..., €2m+1} be an

orthonormal basis of T2 M, & € M, where en41 is parallel to the mean curvature vector

H . Then, the equation (5.5) can be written as follows

n’ |H|* = 2r+|o)’ +2(n— DA —n(n—1)fi
(6.2) —3f2||P|I® +2(n — 1) fs.
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For a choosen orthonormal basis, let e1, e, ..., e, diagonalize the shape operator A, ;.

Then, the shape operators take the forms

ag 0 - 0
0 as . 0
Aen+1 =
0 0 an

and
Aer = (O'zrj)v Lwi=1,..,n r=n+2,..2m+1, t'r’a,ceAeT =0.
By the use of (6.2), we obtain

2m+1 n

nH|? = 2r4) ai+ YD (0h)+
i=1

r=n+2 i,j=1
(6.3) +2(n — DA —n(n—1)fi =3 ||P|> + 2(n — 1) f5.

On the other hand, we know that
64) > a?>n|lH|.
i=1
Hence, by the use of (6.4) in (6.3), we obtain (6.1). I

In view of Theorem 6.1, we can give the following theorem:

6.2. Theorem. Let M, n > 3, be an n-dimensional submanifold of a (2m+1)-dimensional
generalized Sasakian space form N(f1, f2, f3) with respect to the semi-symmetric metric
connection V such that the vector field U is tangent to M. Then, for any integer k,
2 < k < n and for any point z € M, we have:

©5) 1 @) 2 0um + 2a- 5 - BB p s 2|

Proof. Similar to the proof of the Theorem 4.2, we easily get (6.5).
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