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On commutativity of prime gamma rings with
derivation

Okan Arslan∗† and Hatice Kandamar‡

Abstract

Let M be a weak Nobusawa Γ-ring and γ be a nonzero element of
Γ. In this paper, we �nd a relation between Γ-rings and rings, and
give some commutativity conditions on Γ-rings by using this relation.
Also, we prove that any Γ-ring M in the sense of Nobusawa with a
nonzero element γ in the center of M -ring Γ is γ-prime if and only
if M is Γ-prime. As a consequence, we show that the semiprimeness
(semisimpleness) of the ring (M,+, ·γ) for any γ ∈ Γ implies the Γ-
semiprimeness(Γ-semisimpleness) of the Γ-ring M .
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1. Introduction

Let M and Γ be additive Abelian groups. M is said to be a Γ-ring in the sense of
Barnes [3] if there exists a mapping M ×Γ×M →M satisfying these two conditions for
all a, b, c ∈M , α, β ∈ Γ:

(1) (a+ b)αc = aαc+ bαc
a(α+ β)c = aαc+ aβc
aα (b+ c) = aαb+ aαc

(2) (aαb)βc = aα (bβc)

In addition, if there exists a mapping Γ×M × Γ→ Γ such that the following axioms
hold for all a, b, c ∈M , α, β ∈ Γ:

(3) (aαb)βc = a (αbβ) c
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(4) aαb = 0 for all a, b ∈M implies α = 0, where α ∈ Γ

then M is called a Γ-ring in the sense of Nobusawa [17]. If a Γ-ring M in the sense of
Barnes satis�es only the condition (3), then it is called weak Nobusawa Γ-ring [11].

We assume that all gamma rings in this paper are weak Nobusawa gamma ring unless
otherwise speci�ed.

LetM be a Γ-ring. M is said to be a Γ-prime gamma ring if aΓMΓb = 0 with a, b ∈M
implies either a = 0 or b = 0 [15]. M is Γ-simple if MΓM 6= 0 and M has no ideals (0)
and M itself [15].
CM = {α ∈ Γ | αmβ = βmα,∀m ∈M,β ∈ Γ} is called the center of M -ring Γ and

Cγ = {c ∈M | cγm = mγc, ∀m ∈M} with γ ∈ Γ is called the γ-center of Γ-ring M .
Recall that from [9], an additive mapping d : M → M is called a derivation on M if

d (aαb) = d (a)αb+aαd (b) for all a, b ∈M and α ∈ Γ. Note that d = 0 when d is de�ned
on a prime weak Nobusawa Γ-ring M . So, in this paper we consider k-derivations that
has been de�ned by Kandamar [10] on any gamma ring M .

In this work, we �rst obtain some commutativity conditions on the γ-prime Γ-ring
M with k-derivations and prove that M is γ-prime if and only if M is Γ-prime where
γ is a nonzero element in the center of M -ring Γ in the sense of Nobusawa. Then, we
also show that if there exists a nonzero element γ in CM in a Nobusawa Γ-ring M , then
(0) is Γ-prime ideal if and only if (0) is γ-prime ideal. Finally, we study the relation
between semiprimeness (semisimpleness) of the ring (M,+, ·γ) and Γ-semiprimeness (Γ-
semisimpleness) of the Γ-ring M where γ ∈ Γ.

2. Relation between Γ-rings and rings up to γ

We now give some de�nitions that have been �rstly de�ned by Arslan and Kandamar
in [1].

2.1. De�nition. Let M be a Γ-ring, γ be a nonzero element of Γ and I be an additive
subgroup of M .

(i) M is said to be γ-commutative if xγy = yγx for all x, y ∈M .
(ii) I is said to be a γ-subring of M if xγy ∈ I for all x, y ∈ I.
(iii) I is said to be a γ-left ideal(resp. γ-right ideal) of M if mγa ∈ I(resp. aγm ∈ I)

for all m ∈ M , a ∈ I. If I is both γ-left and γ-right ideal then I is called a
γ-ideal of M .

(iv) I is said to be a γ-prime ideal if AγB implies A ⊆ I or B ⊆ I for any γ-ideals
A and B of M .

(v) I is said to be a γ-Lie ideal of M if [x,m]γ = xγm−mγx ∈ I for all x ∈ I and
m ∈M .

2.2. De�nition. A Γ-ring M is called a γ-prime gamma ring if there exists a nonzero
element γ in Γ such that aγMγb = 0 with a, b ∈M implies either a = 0 or b = 0.

2.3. De�nition. A Γ-ring M is called a γ-simple if MγM 6= 0 and M has no γ-ideal
besides the (0) and itself.

2.4. Lemma. Let M be a Γ-ring. Then the following holds:

(i) If M is a γ-prime gamma ring, then M is Γ-prime.

(ii) If M is a γ-simple gamma ring, then M is Γ-simple.

Proof. (i) Let M be a γ-prime gamma ring and aΓMΓb = 0 for any a, b ∈ M .
Therefore, we have aγMγb = 0. SinceM is a γ-prime gamma ring, we get a = 0
or b = 0. Hence, the γ-primeness of M implies the Γ-primeness of M .
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(ii) It is clear from the de�nitions of γ-simple and Γ-simple gamma rings.
�

2.5. Proposition. LetM be a Γ-ring and γ be a nonzero element of Γ. Then the Abelian

group M with a binary operation ·γ de�ned by a ·γ b = aγb for all a, b ∈M is a ring.

Proof. It is clear from the de�nition of the gamma ring. �

According to the Proposition 2.5, the Abelian group M can be made into a ring by
de�ning binary operations for all γ ∈ Γ. We denote this ring by (M,+, ·γ).

It is obvious that a γ-ideal of a Γ-ringM is an ideal of the ring (M,+, ·γ). Conversely,
every ideal of the ring (M,+, ·γ) is a γ-ideal of the Γ-ring M . Similarly γ-Lie ideals of
the Γ-ring M and Lie ideals of the ring (M,+, ·γ) is same. Also, if d is a k-derivation of
the Γ-ring M and k(γ) = 0, then d is a derivation of the ring (M,+, ·γ). Thus, we can
adapt all of the known results for the ring (M,+, ·γ) to the Γ-ring M . For instance, the
commutativity of the ring (M,+, ·γ) is equal to the γ-commutativity of the Γ-ring M .
Similarly one can say the primeness (semiprimeness) of the ring (M,+, ·γ) is the same
as the γ-primeness (γ-semiprimeness) of the Γ-ring M . We give some results below.

2.6. Theorem. LetM be a γ-prime gamma ring and d1, d2 be nonzero k1, k2-derivations
ofM such that k1 (γ) = k2 (γ) = 0 respectively. If charM 6= 2 and d1d2 is k1k2-derivation
of M , then d1 = 0 or d2 = 0.

Proof. By the hypothesis d1 6= 0, d2 6= 0 and d1d2 are derivations of the prime ring
(M,+, ·γ). Also the characteristic of the ring (M,+, ·γ) is di�erent from 2. Therefore by
[18, Theorem 1] one of the derivations d1 and d2 is zero in the ring (M,+, ·γ). �

2.7. Corollary. Let M be a γ-prime gamma ring of characteristic not 2 and d be a

0-derivation of M such that d2 = 0. Then d = 0.

Proof. Let M is a γ-prime gamma ring. Then M is a Γ-prime gamma ring by Lemma
2.4. Since d2 = 0 is a derivation on M , we get d = 0 by Theorem 2.6. �

2.8. Theorem. Let M be a gamma ring and d be a k-derivation of M such that k(γ) = 0
and d3 6= 0. Then the γ-subring generated by d (m) for all m in M contains a nonzero

γ-ideal of M .

Proof. Since d is a derivation of the ring (M,+, ·γ) and d3 6= 0, the subring generated by
d (m) for all m in M contains a nonzero ideal of (M,+, ·γ) by [6, Theorem 1]. Therefore
the γ-subring generated by d (m) for all m in M contains a nonzero γ-ideal of M . �

2.9. Corollary. Let M be a Γ-ring, d be a nonzero 0-derivation on M such that d3 6= 0.
Then, the subring A of M generated by all d (aαb), with α ∈ Γ and a, b ∈M , contains a

nonzero ideal of M .

Another proof of Corollary 2.9 can be found in [19].

2.10. Theorem. Let M be a γ-prime gamma ring and d be a nonzero k-derivation of M
such that k(γ) = 0. Then M is γ-commutative if one of the following conditions holds:

(i) [a, d (a)]γ ∈ Cγ for all a ∈M .

(ii) charM 6= 2 and [d (M) , d (M)]γ ⊂ Cγ .
(iii) charM 6= 2 and d2 (M) ⊂ Cγ .
(iv) d1, d2 are nonzero k1, k2-derivations of M such that k1 (γ) = k2 (γ) = 0 respec-

tively, charM 6= 2 and d1d2 (M) ⊂ Cγ .
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Proof. (i) By the hypothesis d is a nonzero derivation of the prime ring (M,+, ·γ).
Since [a, d (a)] is in the center of the ring (M,+, ·γ) for all a ∈ M , the ring
(M,+, ·γ) is commutative by [18, Theorem 2]. Therefore the gamma ring M
is γ-commutative since commutativity of (M,+, ·γ) requires γ-commutativity of
Γ-ring M .

(ii) By the hypothesis d is a nonzero derivation of the prime ring (M,+, ·γ), the
characteristic of the ring M is di�erent from 2 and [d (M) , d (M)]γ is contained

in the center of the ring M . Hence M is commutative as a ring by [13, Theorem
2]. Therefore M is γ-commutative.

(iii) By the hypothesis d is a nonzero derivation of the prime ring (M,+, ·γ), the
characteristic of the ring M is di�erent from 2 and d2 (M) is contained in the
center of the ring M . Hence M is commutative as a ring by [13, Theorem 3].
Therefore M is γ-commutative.

(iv) By the hypothesis d1 and d2 are nonzero derivations of the prime ring (M,+, ·γ).
Also the characteristic of the ring (M,+, ·γ) is di�erent from 2 and d1d2 (M) is
contained in the center of the ring M . Hence M is commutative as a ring by
[13, Theorem 4]. Therefore M is γ-commutative.

�

2.11. Corollary. Let M be a γ-prime gamma ring for all nonzero elements γ in Γ and

d be a nonzero 0-derivation on M . Then M is Γ-commutative if one of the following

conditions holds:

(i) [a, d (a)]γ ∈ Cγ for all a ∈M and γ ∈ Γ.

(ii) charM 6= 2 and [d (M) , d (M)]γ ⊂ Cγ for all γ ∈ Γ.

(iii) charM 6= 2 and d2 (M) ⊂ Cγ for all γ ∈ Γ.
(iv) d1, d2 are nonzero 0-derivations of M , charM 6= 2 and d1d2 (M) ⊂ Cγ for all

γ ∈ Γ.

2.12. Theorem. Let M be a γ-prime gamma ring of characteristic not 2 and U be a

γ-Lie ideal of M . If U * Cγ , then there exists a γ-ideal K of M such that [K,M ]γ ⊆ U
but [K,M ]γ * Cγ .

Proof. U is a Lie ideal of the prime ring (M,+, ·γ) that is not contained in the center of
the ring M and the characteristic of the ring M is di�erent from 2 by hypothesis. Hence,
there exists an ideal K of (M,+, ·γ) such that [K,M ] ⊆ U and [K,M ] is not contained
in the center of the (M,+, ·γ) by [4, Lemma 1]. Therefore, there exists an ideal K of
Γ-ring M such that [K,M ]γ ⊆ U but [K,M ]γ * Cγ . �

2.13. Theorem. Let M be a γ-prime gamma ring of characteristic not 2 and U be a

γ-Lie ideal of M such that U * Cγ . If d1, d2 are nonzero k1, k2-derivations of M such

that k1 (γ) = k2 (γ) = 0 respectively and d1d2 (U) = 0, then d1 = 0 or d2 = 0.

Proof. By the hypothesis, d1 and d2 are nonzero derivations of the prime ring (M,+, ·γ)
and U is a Lie ideal of M that is not contained in the center of the ring M . Also the
characteristic of the ring (M,+, ·γ) is di�erent from 2 and d1d2 (U) = 0. Hence d1 = 0
or d2 = 0 by [4, Theorem 4]. �

2.14. Theorem. Let M be a γ-prime gamma ring of characteristic not 2, U be a γ-Lie
ideal of M and d be a k-derivation of M such that k (γ) = 0. Then U is contained in the

γ-center of M if one of the following conditions holds:

(i) d2 (U) = 0.
(ii) d 6= 0 and d2 (U) ⊂ Cγ .
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(iii) d1, d2 are nonzero k1, k2-derivations of M such that k1 (γ) = k2 (γ) = 0 respec-

tively and d1d2 (U) ⊂ Cγ .

Proof. It is similar to the proof of Theorem 2.10.
�

2.15. Corollary. Let M be a γ-prime gamma ring of characteristic not 2 for all nonzero

elements γ in Γ, U be a γ-Lie ideal of M and d be a 0-derivation of M . Then U is

contained in the center of M if one of the following conditions holds:

(i) d2 (U) = 0.
(ii) d 6= 0 and d2 (U) ⊂ Cγ for all γ ∈ Γ.
(iii) d1, d2 are nonzero 0-derivations of M and d1d2 (U) ⊂ Cγ for all γ ∈ Γ.

2.16. Theorem. Let M be a γ-prime gamma ring of characteristic not 2 and U be a

γ-Lie ideal of M such that U * Cγ . If d1 and d2 are nonzero k1 and k2-derivations of

M such that k1 (γ) = k2 (γ) = 0 respectively and d1d2 (U) ⊂ Cγ , then d1 = 0 or d2 = 0.

Proof. By the hypothesis d1 and d2 are nonzero derivations of the prime ring (M,+, ·γ)
and U is a Lie ideal ofM that is not contained in the center ofM . Also the characteristic
of the ring (M,+, ·γ) is di�erent from 2 and d1d2 (U) is contained in the center of M .
Hence d1 = 0 or d2 = 0 by [2, Theorem 6]. �

3. γ-Radicals of Gamma Rings

Radicals of Γ-rings has been investigated by a number of authors. Barnes [3] de�ned
prime radicals and proved some properties for gamma rings by methods similar to those
of McCoy[16]. Coppage and Luh [5] introduced the notions of Jacobson radical, Levitzki
nil radical, nil radical and strongly nilpotent radical for Γ-rings and Barnes' prime radical
was studied further. Kyuno [12] also studied prime radicals of gamma rings and showed
relations between radicals of gamma rings and radicals of its operator rings.

We de�ne γ-prime radical, strongly γ-nilpotent radical, γ-Levitzki nil radical and γ-
Jacobson radical for Γ-rings and show their relations with the radicals of Γ-rings in the
literature.

Let M be a gamma ring and S ⊆ M . S is said to be a γ-m-system if S = ∅ or
(a)γγ(b)γ ∩ S 6= ∅ for any a, b ∈ M . Here, (a)γ is the set of all elements of the form

ka+mγa+ aγx+
n∑
i=1

uiγaγvi for k ∈ Z, n ∈ N, m,x, ui, vi ∈M .

Proofs of the below results are obvious from the relation given in Section 2. So we
omit their proofs.

3.1. Proposition. Let M be a gamma ring and P be a γ-ideal of M . Then P is a

γ-prime ideal if and only if the complement of P is a γ-m-system.

Let A be a γ-ideal of a Γ-ringM . Then the set of all elements m inM such that every
γ-m-system in M which contains m meets A is called γ-prime radical of the γ-ideal A
and is denoted by Bγ(A). γ-prime radical of zero γ-ideal is called γ-prime radical of the
Γ-ring M and is denoted by Bγ(M). In fact, the prime radical of the ring (M,+, ·γ) is
equal to Bγ(M).

3.2. Theorem. If A is a γ-ideal in the Γ-ring M , then Bγ(A) coincides with the inter-

section of all the γ-prime ideals in M which contain A.

3.3. Corollary. γ-prime radical of a Γ-ring M is the intersection of all the γ-prime

ideals in M .
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An element a in M is called strongly γ-nilpotent if there exists a positive integer n
such that (aγ)na = 0. A subset L of M is called strongly γ-nil if all of the elements in L
are strongly γ-nilpotent. A subset S of M is called strongly γ-nilpotent if there exists a
positive integer m such that (Sγ)mS = 0.

The strongly γ-nilpotent radical of M is the sum of all strongly γ-nilpotent ideals of
M and is denoted by Sγ(M).

3.4. Proposition. If A and B are any strongly γ-nilpotent ideals in a Γ-ring M , then

A+B is also a strongly γ-nilpotent ideal in M .

3.5. Corollary. The strongly γ-nilpotent radical of a Γ-ring M is a strongly γ-nil ideal
in M .

A subset S ofM is called γ-locally nilpotent if for any �nite subset F of S there exists
a positive integer n such that (Fγ)nF = 0.

The γ-Levitzki nil radical of M is the sum of all γ-locally nilpotent ideals of M and
is denoted by Lγ(M).

An element a in M is called γ-right quasi regular if there exist b ∈ M such that
a+ b+ aγb = 0. A subset S of M is called γ-right quasi regular if all of the elements in
S are γ-right quasi regular.

The γ-Jacobson radical of M is the set of all a ∈ M such that the principal γ-ideal
generated by a is γ-right quasi regular and is denoted by Jγ(M). In fact, the Jacobson
radical of the ring (M,+, ·γ) is equal to Jγ(M).

4. Main Results

Not all of the properties of a ring holds for a gamma ring. For example, let d be a
k-derivation of γ-prime gamma ring M of characteristic not 2. If k (γ) 6= 0, then the
hypothesis d2 = 0 does not imply d = 0.

4.1. Example. Let M =

{(
a b a
c r c

)
| a, b, c, r ∈ Z

}
, Γ be the set of all 3× 2

matrices over Z and γ =

 0 0
0 −1
1 0

 ∈ Γ. Then,M is a γ-prime Γ-ring of characteristic

not 2. De�ne d : M → M, d

(
a b a
c r c

)
=

(
−b 0 −b
−r 0 −r

)
and k : Γ → Γ,

k

 u11 u12

u21 u22

u31 u32

 =

 0 0
u11 + u31 u12 + u32

0 0

.

It can be shown that d is a k-derivation and k(γ) 6= 0. Moreover, it is easy to see that
d 6= 0 but d2 = 0.

This example also shows that if d is a k-derivation on the Γ-prime gamma ring of
characteristic not 2 such that d2 = 0, then d may not be the zero derivation. In such a
case, k2 must be equal to zero as proved in the next theorem.

4.2. Theorem. Let M be a γ-prime gamma ring in the sense of Nobusawa of charac-

teristic not 2 and d be a k-derivation. If d2 = 0, then either d = 0 or k2 = 0.

Proof. Let k(γ) = 0. Then, the k-derivation d on M is also a derivation for the ring
(M,+, ·γ). Therefore, d = 0 by [18, Theorem 1]. Now, let k(γ) 6= 0. By hypothe-
sis we have d2(d(x)βd(y)) = 0 for all x, y ∈ M and β ∈ Γ. Expanding this we get
d(x)k2(β)d(y) = 0. Replacing β by βd(z)α we have d(x)k(β)d(z)k(α)d(y) = 0 since
charM 6= 2. Replacing β by βd(m)δ we get d(x)k(β)d(m) = 0 since M is Γ-prime
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Nobusawa Γ-ring by Lemma 2.4. If we replace x by d(x)αy in the last equation we have
d(x)k(α)y = 0 or zk(β)d(m) = 0. If d(x)k(α)y = 0, then replacing α by αmk(δ) we get
d(x)αmk2(δ)y = 0 for all x,m, y ∈ M and α, δ ∈ Γ. Then, d = 0 or k2 = 0 since M is
a prime Nobusawa Γ-ring. If we consider the case zk(β)d(m) = 0, same result can be
obtained similarly.

�

4.3. Theorem. Let M be a Γ-ring in the sense of Nobusawa and γ be a nonzero element

of Γ. If γ ∈ CM , then M is γ-prime gamma ring if and only if M is Γ-prime.

Proof. IfM is γ-prime gamma ring thenM is Γ-prime by Lemma 2.4. LetM is a Γ-prime
gamma ring, aγMγb = 0 for any a, b ∈ M and a 6= 0. Then we have aΓMγMγb = 0.
Since M is a Γ-prime MγMγb = 0. Thus MγMΓbγM = 0. Hence we get b = 0 since M
is a Γ-prime gamma ring and γ ∈ CM . Therefore, M is γ-prime. �

4.4. Theorem. The prime radical of a Γ-ring M is contained in γ-prime radical of M .

Proof. Let x be an element of B(M), the prime radical of M . Suppose that x /∈ Bγ(M).
Then, there is a γ-m-system S which contains x such that 0 /∈ S. Therefore, there is
an m-system in M which contains x but not contains 0 since S is also an m-system.
This contradicts with x ∈ B(M). Hence, if x is an element of B(M), then x must be in
Bγ(M). �

4.5. Theorem. The strongly nilpotent radical of a Γ-ring M is contained in strongly

γ-nilpotent radical of M .

Proof. It is easy to see that a strongly nilpotent ideal of M is also a strongly γ-nilpotent
ideal. Therefore, S(M), the strongly nilpotent radical of M , is contained in Sγ(M). �

4.6. Theorem. The Levitzki nil radical of a Γ-ring M is contained in γ-Levitzki nil

radical of M .

Proof. It is easy to see that a locally nilpotent ideal of M is also a γ-locally nilpotent
ideal. Therefore, L(M), the Levitzki nil radical of M , is contained in Lγ(M). �

4.7. Theorem. The Jacobson radical of a Γ-ring M is contained in γ-Jacobson radical

of M .

Proof. It is easy to see that a right quasi regular element of M is also a γ-right quasi
regular. Therefore, J(M), the Jacobson radical of M , is contained in Jγ(M). �

4.8. Corollary. Let M be a Γ-ring.

(i) If the ring (M,+, ·γ) for any γ ∈ Γ is semiprime, then the Γ-ring M is Γ-
semiprime.

(ii) If the ring (M,+, ·γ) for any γ ∈ Γ is semisimple, then the Γ-ring M is Γ-
semisimple.
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