\int Hacettepe Journal of Mathematics and Statistics Volume 45 (5) (2016), 1321 – 1328

On commutativity of prime gamma rings with derivation

Okan Arslan^{*†} and Hatice Kandamar[‡]

Abstract

Let M be a weak Nobusawa Γ -ring and γ be a nonzero element of Γ . In this paper, we find a relation between Γ -rings and rings, and give some commutativity conditions on Γ -rings by using this relation. Also, we prove that any Γ -ring M in the sense of Nobusawa with a nonzero element γ in the center of M-ring Γ is γ -prime if and only if M is Γ -prime. As a consequence, we show that the semiprimeness (semisimpleness) of the ring $(M, +, \cdot_{\gamma})$ for any $\gamma \in \Gamma$ implies the Γ -semiprimeness (Γ -semisimpleness) of the Γ -ring M.

Keywords: gamma ring, prime Γ -ring, k-derivation, commutativity, γ -radical. 2000 AMS Classification: AMS Primary 16N60; Secondary 16W25, 16Y99

Received: 10.03.2015 Accepted: 21.10.2015 Doi: 10.15672/HJMS.20164514286

1. Introduction

Let M and Γ be additive Abelian groups. M is said to be a Γ -ring in the sense of Barnes [3] if there exists a mapping $M \times \Gamma \times M \to M$ satisfying these two conditions for all $a, b, c \in M$, $\alpha, \beta \in \Gamma$:

(1) $(a+b)\alpha c = a\alpha c + b\alpha c$ $a(\alpha+\beta)c = a\alpha c + a\beta c$ $a\alpha (b+c) = a\alpha b + a\alpha c$

(2) $(a\alpha b)\beta c = a\alpha (b\beta c)$

In addition, if there exists a mapping $\Gamma \times M \times \Gamma \to \Gamma$ such that the following axioms hold for all $a, b, c \in M$, $\alpha, \beta \in \Gamma$:

(3) $(a\alpha b)\beta c = a(\alpha b\beta)c$

*Department of Mathematics, Adnan Menderes University, Aydın, Turkey, Email: oarslann@icloud.com

[†]Corresponding Author.

[‡]Department of Mathematics, Adnan Menderes University, Aydın, Turkey, Email: hkandamar@adu.edu.tr

(4) $a\alpha b = 0$ for all $a, b \in M$ implies $\alpha = 0$, where $\alpha \in \Gamma$

then M is called a Γ -ring in the sense of Nobusawa [17]. If a Γ -ring M in the sense of Barnes satisfies only the condition (3), then it is called weak Nobusawa Γ -ring [11].

We assume that all gamma rings in this paper are weak Nobusawa gamma ring unless otherwise specified.

Let M be a Γ -ring. M is said to be a Γ -prime gamma ring if $a\Gamma M\Gamma b = 0$ with $a, b \in M$ implies either a = 0 or b = 0 [15]. M is Γ -simple if $M\Gamma M \neq 0$ and M has no ideals (0) and M itself [15].

 $C_M = \{ \alpha \in \Gamma \mid \alpha m \beta = \beta m \alpha, \forall m \in M, \beta \in \Gamma \} \text{ is called the center of } M\text{-ring } \Gamma \text{ and } C_{\gamma} = \{ c \in M \mid c \gamma m = m \gamma c, \forall m \in M \} \text{ with } \gamma \in \Gamma \text{ is called the } \gamma\text{-center of } \Gamma\text{-ring } M.$

Recall that from [9], an additive mapping $d: M \to M$ is called a derivation on M if $d(a\alpha b) = d(a) \alpha b + a\alpha d(b)$ for all $a, b \in M$ and $\alpha \in \Gamma$. Note that d = 0 when d is defined on a prime weak Nobusawa Γ -ring M. So, in this paper we consider k-derivations that has been defined by Kandamar [10] on any gamma ring M.

In this work, we first obtain some commutativity conditions on the γ -prime Γ -ring M with k-derivations and prove that M is γ -prime if and only if M is Γ -prime where γ is a nonzero element in the center of M-ring Γ in the sense of Nobusawa. Then, we also show that if there exists a nonzero element γ in C_M in a Nobusawa Γ -ring M, then (0) is Γ -prime ideal if and only if (0) is γ -prime ideal. Finally, we study the relation between semiprimeness (semisimpleness) of the ring $(M, +, \cdot_{\gamma})$ and Γ -semiprimeness (Γ -semisimpleness) of the Γ -ring M where $\gamma \in \Gamma$.

2. Relation between Γ -rings and rings up to γ

We now give some definitions that have been firstly defined by Arslan and Kandamar in [1].

2.1. Definition. Let M be a Γ -ring, γ be a nonzero element of Γ and I be an additive subgroup of M.

- (i) M is said to be γ -commutative if $x\gamma y = y\gamma x$ for all $x, y \in M$.
- (ii) I is said to be a γ -subring of M if $x\gamma y \in I$ for all $x, y \in I$.
- (iii) I is said to be a γ -left ideal(resp. γ -right ideal) of M if $m\gamma a \in I(\text{resp. } a\gamma m \in I)$ for all $m \in M$, $a \in I$. If I is both γ -left and γ -right ideal then I is called a γ -ideal of M.
- (iv) I is said to be a γ -prime ideal if $A\gamma B$ implies $A \subseteq I$ or $B \subseteq I$ for any γ -ideals A and B of M.
- (v) I is said to be a γ -Lie ideal of M if $[x, m]_{\gamma} = x\gamma m m\gamma x \in I$ for all $x \in I$ and $m \in M$.

2.2. Definition. A Γ -ring M is called a γ -prime gamma ring if there exists a nonzero element γ in Γ such that $a\gamma M\gamma b = 0$ with $a, b \in M$ implies either a = 0 or b = 0.

2.3. Definition. A Γ -ring M is called a γ -simple if $M\gamma M \neq 0$ and M has no γ -ideal besides the (0) and itself.

2.4. Lemma. Let M be a Γ -ring. Then the following holds:

- (i) If M is a γ -prime gamma ring, then M is Γ -prime.
- (ii) If M is a γ -simple gamma ring, then M is Γ -simple.
- *Proof.* (i) Let M be a γ -prime gamma ring and $a\Gamma M\Gamma b = 0$ for any $a, b \in M$. Therefore, we have $a\gamma M\gamma b = 0$. Since M is a γ -prime gamma ring, we get a = 0 or b = 0. Hence, the γ -primeness of M implies the Γ -primeness of M.

(ii) It is clear from the definitions of γ -simple and Γ -simple gamma rings.

2.5. Proposition. Let M be a Γ -ring and γ be a nonzero element of Γ . Then the Abelian group M with a binary operation \cdot_{γ} defined by a $\cdot_{\gamma} b = a\gamma b$ for all $a, b \in M$ is a ring.

Proof. It is clear from the definition of the gamma ring.

According to the Proposition 2.5, the Abelian group M can be made into a ring by defining binary operations for all $\gamma \in \Gamma$. We denote this ring by $(M, +, \cdot_{\gamma})$.

It is obvious that a γ -ideal of a Γ -ring M is an ideal of the ring $(M, +, \cdot_{\gamma})$. Conversely, every ideal of the ring $(M, +, \cdot_{\gamma})$ is a γ -ideal of the Γ -ring M. Similarly γ -Lie ideals of the Γ -ring M and Lie ideals of the ring $(M, +, \cdot_{\gamma})$ is same. Also, if d is a k-derivation of the Γ -ring M and $k(\gamma) = 0$, then d is a derivation of the ring $(M, +, \cdot_{\gamma})$. Thus, we can adapt all of the known results for the ring $(M, +, \cdot_{\gamma})$ to the Γ -ring M. For instance, the commutativity of the ring $(M, +, \cdot_{\gamma})$ is equal to the γ -commutativity of the Γ -ring M. Similarly one can say the primeness (semiprimeness) of the ring $(M, +, \cdot_{\gamma})$ is the same as the γ -primeness (γ -semiprimeness) of the Γ -ring M. We give some results below.

2.6. Theorem. Let M be a γ -prime gamma ring and d_1 , d_2 be nonzero k_1 , k_2 -derivations of M such that $k_1(\gamma) = k_2(\gamma) = 0$ respectively. If char $M \neq 2$ and d_1d_2 is k_1k_2 -derivation of M, then $d_1 = 0$ or $d_2 = 0$.

Proof. By the hypothesis $d_1 \neq 0$, $d_2 \neq 0$ and d_1d_2 are derivations of the prime ring $(M, +, \cdot_{\gamma})$. Also the characteristic of the ring $(M, +, \cdot_{\gamma})$ is different from 2. Therefore by [18, Theorem 1] one of the derivations d_1 and d_2 is zero in the ring $(M, +, \cdot_{\gamma})$.

2.7. Corollary. Let M be a γ -prime gamma ring of characteristic not 2 and d be a 0-derivation of M such that $d^2 = 0$. Then d = 0.

Proof. Let M is a γ -prime gamma ring. Then M is a Γ -prime gamma ring by Lemma 2.4. Since $d^2 = 0$ is a derivation on M, we get d = 0 by Theorem 2.6.

2.8. Theorem. Let M be a gamma ring and d be a k-derivation of M such that $k(\gamma) = 0$ and $d^3 \neq 0$. Then the γ -subring generated by d(m) for all m in M contains a nonzero γ -ideal of M.

Proof. Since d is a derivation of the ring $(M, +, \cdot_{\gamma})$ and $d^3 \neq 0$, the subring generated by d(m) for all m in M contains a nonzero ideal of $(M, +, \cdot_{\gamma})$ by [6, Theorem 1]. Therefore the γ -subring generated by d(m) for all m in M contains a nonzero γ -ideal of M. \Box

2.9. Corollary. Let M be a Γ -ring, d be a nonzero 0-derivation on M such that $d^3 \neq 0$. Then, the subring A of M generated by all $d(a\alpha b)$, with $\alpha \in \Gamma$ and $a, b \in M$, contains a nonzero ideal of M.

Another proof of Corollary 2.9 can be found in [19].

2.10. Theorem. Let M be a γ -prime gamma ring and d be a nonzero k-derivation of M such that $k(\gamma) = 0$. Then M is γ -commutative if one of the following conditions holds:

- (i) $[a, d(a)]_{\gamma} \in C_{\gamma}$ for all $a \in M$.
- (ii) $charM \neq 2$ and $[d(M), d(M)]_{\gamma} \subset C_{\gamma}$.
- (iii) $charM \neq 2$ and $d^2(M) \subset C_{\gamma}$.
- (iv) d_1, d_2 are nonzero k_1, k_2 -derivations of M such that $k_1(\gamma) = k_2(\gamma) = 0$ respectively, char $M \neq 2$ and $d_1d_2(M) \subset C_{\gamma}$.

- **Proof.** (i) By the hypothesis d is a nonzero derivation of the prime ring $(M, +, \cdot_{\gamma})$. Since [a, d(a)] is in the center of the ring $(M, +, \cdot_{\gamma})$ for all $a \in M$, the ring $(M, +, \cdot_{\gamma})$ is commutative by [18, Theorem 2]. Therefore the gamma ring M is γ -commutative since commutativity of $(M, +, \cdot_{\gamma})$ requires γ -commutativity of Γ -ring M.
 - (ii) By the hypothesis d is a nonzero derivation of the prime ring (M, +, ·_γ), the characteristic of the ring M is different from 2 and [d (M), d (M)]_γ is contained in the center of the ring M. Hence M is commutative as a ring by [13, Theorem 2]. Therefore M is γ-commutative.
 - (iii) By the hypothesis d is a nonzero derivation of the prime ring $(M, +, \cdot_{\gamma})$, the characteristic of the ring M is different from 2 and $d^2(M)$ is contained in the center of the ring M. Hence M is commutative as a ring by [13, Theorem 3]. Therefore M is γ -commutative.
 - (iv) By the hypothesis d₁ and d₂ are nonzero derivations of the prime ring (M, +, ·_γ). Also the characteristic of the ring (M, +, ·_γ) is different from 2 and d₁d₂(M) is contained in the center of the ring M. Hence M is commutative as a ring by [13, Theorem 4]. Therefore M is γ-commutative.

2.11. Corollary. Let M be a γ -prime gamma ring for all nonzero elements γ in Γ and d be a nonzero 0-derivation on M. Then M is Γ -commutative if one of the following conditions holds:

- (i) $[a, d(a)]_{\gamma} \in C_{\gamma}$ for all $a \in M$ and $\gamma \in \Gamma$.
- (ii) $charM \neq 2$ and $[d(M), d(M)]_{\gamma} \subset C_{\gamma}$ for all $\gamma \in \Gamma$.
- (iii) $charM \neq 2$ and $d^2(M) \subset C_{\gamma}$ for all $\gamma \in \Gamma$.
- (iv) d_1, d_2 are nonzero 0-derivations of M, $charM \neq 2$ and $d_1d_2(M) \subset C_{\gamma}$ for all $\gamma \in \Gamma$.

2.12. Theorem. Let M be a γ -prime gamma ring of characteristic not 2 and U be a γ -Lie ideal of M. If $U \notin C_{\gamma}$, then there exists a γ -ideal K of M such that $[K, M]_{\gamma} \subseteq U$ but $[K, M]_{\gamma} \notin C_{\gamma}$.

Proof. U is a Lie ideal of the prime ring $(M, +, \cdot_{\gamma})$ that is not contained in the center of the ring M and the characteristic of the ring M is different from 2 by hypothesis. Hence, there exists an ideal K of $(M, +, \cdot_{\gamma})$ such that $[K, M] \subseteq U$ and [K, M] is not contained in the center of the $(M, +, \cdot_{\gamma})$ by [4, Lemma 1]. Therefore, there exists an ideal K of Γ -ring M such that $[K, M]_{\gamma} \subseteq U$ but $[K, M]_{\gamma} \notin C_{\gamma}$.

2.13. Theorem. Let M be a γ -prime gamma ring of characteristic not 2 and U be a γ -Lie ideal of M such that $U \notin C_{\gamma}$. If d_1 , d_2 are nonzero k_1 , k_2 -derivations of M such that $k_1(\gamma) = k_2(\gamma) = 0$ respectively and $d_1d_2(U) = 0$, then $d_1 = 0$ or $d_2 = 0$.

Proof. By the hypothesis, d_1 and d_2 are nonzero derivations of the prime ring $(M, +, \cdot_{\gamma})$ and U is a Lie ideal of M that is not contained in the center of the ring M. Also the characteristic of the ring $(M, +, \cdot_{\gamma})$ is different from 2 and $d_1d_2(U) = 0$. Hence $d_1 = 0$ or $d_2 = 0$ by [4, Theorem 4].

2.14. Theorem. Let M be a γ -prime gamma ring of characteristic not 2, U be a γ -Lie ideal of M and d be a k-derivation of M such that $k(\gamma) = 0$. Then U is contained in the γ -center of M if one of the following conditions holds:

- (i) $d^2(U) = 0$.
- (ii) $d \neq 0$ and $d^2(U) \subset C_{\gamma}$.

(iii) d_1, d_2 are nonzero k_1, k_2 -derivations of M such that $k_1(\gamma) = k_2(\gamma) = 0$ respectively and $d_1d_2(U) \subset C_{\gamma}$.

Proof. It is similar to the proof of Theorem 2.10.

2.15. Corollary. Let M be a γ -prime gamma ring of characteristic not 2 for all nonzero elements γ in Γ , U be a γ -Lie ideal of M and d be a 0-derivation of M. Then U is contained in the center of M if one of the following conditions holds:

- (i) $d^2(U) = 0$.
- (ii) $d \neq 0$ and $d^2(U) \subset C_{\gamma}$ for all $\gamma \in \Gamma$. (iii) d_1, d_2 are nonzero 0-derivations of M and $d_1d_2(U) \subset C_{\gamma}$ for all $\gamma \in \Gamma$.

2.16. Theorem. Let M be a γ -prime gamma ring of characteristic not 2 and U be a γ -Lie ideal of M such that $U \nsubseteq C_{\gamma}$. If d_1 and d_2 are nonzero k_1 and k_2 -derivations of M such that $k_1(\gamma) = k_2(\gamma) = 0$ respectively and $d_1d_2(U) \subset C_{\gamma}$, then $d_1 = 0$ or $d_2 = 0$.

Proof. By the hypothesis d_1 and d_2 are nonzero derivations of the prime ring $(M, +, \cdot_{\gamma})$ and U is a Lie ideal of M that is not contained in the center of M. Also the characteristic of the ring $(M, +, \cdot_{\gamma})$ is different from 2 and $d_1 d_2(U)$ is contained in the center of M. Hence $d_1 = 0$ or $d_2 = 0$ by [2, Theorem 6].

3. γ -Radicals of Gamma Rings

Radicals of Γ -rings has been investigated by a number of authors. Barnes [3] defined prime radicals and proved some properties for gamma rings by methods similar to those of McCoy[16]. Coppage and Luh [5] introduced the notions of Jacobson radical, Levitzki nil radical, nil radical and strongly nilpotent radical for Γ -rings and Barnes' prime radical was studied further. Kyuno [12] also studied prime radicals of gamma rings and showed relations between radicals of gamma rings and radicals of its operator rings.

We define γ -prime radical, strongly γ -nilpotent radical, γ -Levitzki nil radical and γ -Jacobson radical for Γ -rings and show their relations with the radicals of Γ -rings in the literature.

Let M be a gamma ring and $S \subseteq M$. S is said to be a γ -m-system if $S = \emptyset$ or $(a)_{\gamma}\gamma(b)_{\gamma} \cap S \neq \emptyset$ for any $a, b \in M$. Here, $(a)_{\gamma}$ is the set of all elements of the form $ka + m\gamma a + a\gamma x + \sum_{i=1}^{n} u_i \gamma a\gamma v_i$ for $k \in \mathbb{Z}$, $n \in \mathbb{N}$, $m, x, u_i, v_i \in M$. Proofs of the below results are obvious from the relation given in Section 2. So we

omit their proofs.

3.1. Proposition. Let M be a gamma ring and P be a γ -ideal of M. Then P is a γ -prime ideal if and only if the complement of P is a γ -m-system.

Let A be a γ -ideal of a Γ -ring M. Then the set of all elements m in M such that every γ -m-system in M which contains m meets A is called γ -prime radical of the γ -ideal A and is denoted by $\mathfrak{B}_{\gamma}(A)$. γ -prime radical of zero γ -ideal is called γ -prime radical of the Γ -ring M and is denoted by $\mathfrak{B}_{\gamma}(M)$. In fact, the prime radical of the ring $(M, +, \cdot_{\gamma})$ is equal to $\mathfrak{B}_{\gamma}(M)$.

3.2. Theorem. If A is a γ -ideal in the Γ -ring M, then $\mathfrak{B}_{\gamma}(A)$ coincides with the intersection of all the γ -prime ideals in M which contain A.

3.3. Corollary. γ -prime radical of a Γ -ring M is the intersection of all the γ -prime ideals in M.

An element a in M is called strongly γ -nilpotent if there exists a positive integer n such that $(a\gamma)^n a = 0$. A subset L of M is called strongly γ -nil if all of the elements in L are strongly γ -nilpotent. A subset S of M is called strongly γ -nilpotent if there exists a positive integer m such that $(S\gamma)^m S = 0$.

The strongly γ -nilpotent radical of M is the sum of all strongly γ -nilpotent ideals of M and is denoted by $\mathfrak{S}_{\gamma}(M)$.

3.4. Proposition. If A and B are any strongly γ -nilpotent ideals in a Γ -ring M, then A + B is also a strongly γ -nilpotent ideal in M.

3.5. Corollary. The strongly γ -nilpotent radical of a Γ -ring M is a strongly γ -nil ideal in M.

A subset S of M is called γ -locally nilpotent if for any finite subset F of S there exists a positive integer n such that $(F\gamma)^n F = 0$.

The γ -Levitzki nil radical of M is the sum of all γ -locally nilpotent ideals of M and is denoted by $\mathfrak{L}_{\gamma}(M)$.

An element a in M is called γ -right quasi regular if there exist $b \in M$ such that $a + b + a\gamma b = 0$. A subset S of M is called γ -right quasi regular if all of the elements in S are γ -right quasi regular.

The γ -Jacobson radical of M is the set of all $a \in M$ such that the principal γ -ideal generated by a is γ -right quasi regular and is denoted by $\mathfrak{J}_{\gamma}(M)$. In fact, the Jacobson radical of the ring $(M, +, \cdot_{\gamma})$ is equal to $\mathfrak{J}_{\gamma}(M)$.

4. Main Results

Not all of the properties of a ring holds for a gamma ring. For example, let d be a k-derivation of γ -prime gamma ring M of characteristic not 2. If $k(\gamma) \neq 0$, then the hypothesis $d^2 = 0$ does not imply d = 0.

4.1. Example. Let $M = \left\{ \begin{pmatrix} a & b & a \\ c & r & c \end{pmatrix} \mid a, b, c, r \in \mathbb{Z} \right\}$, Γ be the set of all 3×2 matrices over \mathbb{Z} and $\gamma = \begin{pmatrix} 0 & 0 \\ 0 & -1 \\ 1 & 0 \end{pmatrix} \in \Gamma$. Then, M is a γ -prime Γ -ring of characteristic not 2. Define $d : M \to M$, $d \begin{pmatrix} a & b & a \\ c & r & c \end{pmatrix} = \begin{pmatrix} -b & 0 & -b \\ -r & 0 & -r \end{pmatrix}$ and $k : \Gamma \to \Gamma$, $k \begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \\ u_{31} & u_{32} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ u_{11} + u_{31} & u_{12} + u_{32} \\ 0 & 0 \end{pmatrix}$. It can be shown that d is a h derivation and $k(z) \neq 0$. Moreover, M is a γ -prime Γ -respectively.

It can be shown that d is a k-derivation and $k(\gamma) \neq 0$. Moreover, it is easy to see that $d \neq 0$ but $d^2 = 0$.

This example also shows that if d is a k-derivation on the Γ -prime gamma ring of characteristic not 2 such that $d^2 = 0$, then d may not be the zero derivation. In such a case, k^2 must be equal to zero as proved in the next theorem.

4.2. Theorem. Let M be a γ -prime gamma ring in the sense of Nobusawa of characteristic not 2 and d be a k-derivation. If $d^2 = 0$, then either d = 0 or $k^2 = 0$.

Proof. Let $k(\gamma) = 0$. Then, the k-derivation d on M is also a derivation for the ring $(M, +, \cdot_{\gamma})$. Therefore, d = 0 by [18, Theorem 1]. Now, let $k(\gamma) \neq 0$. By hypothesis we have $d^2(d(x)\beta d(y)) = 0$ for all $x, y \in M$ and $\beta \in \Gamma$. Expanding this we get $d(x)k^2(\beta)d(y) = 0$. Replacing β by $\beta d(z)\alpha$ we have $d(x)k(\beta)d(z)k(\alpha)d(y) = 0$ since char $M \neq 2$. Replacing β by $\beta d(m)\delta$ we get $d(x)k(\beta)d(m) = 0$ since M is Γ -prime

Nobusawa Γ -ring by Lemma 2.4. If we replace x by $d(x)\alpha y$ in the last equation we have $d(x)k(\alpha)y = 0$ or $zk(\beta)d(m) = 0$. If $d(x)k(\alpha)y = 0$, then replacing α by $\alpha mk(\delta)$ we get $d(x)\alpha mk^2(\delta)y = 0$ for all $x, m, y \in M$ and $\alpha, \delta \in \Gamma$. Then, d = 0 or $k^2 = 0$ since M is a prime Nobusawa Γ -ring. If we consider the case $zk(\beta)d(m) = 0$, same result can be obtained similarly.

4.3. Theorem. Let M be a Γ -ring in the sense of Nobusawa and γ be a nonzero element of Γ . If $\gamma \in C_M$, then M is γ -prime gamma ring if and only if M is Γ -prime.

Proof. If M is γ -prime gamma ring then M is Γ -prime by Lemma 2.4. Let M is a Γ -prime gamma ring, $a\gamma M\gamma b = 0$ for any $a, b \in M$ and $a \neq 0$. Then we have $a\Gamma M\gamma M\gamma b = 0$. Since M is a Γ -prime $M\gamma M\gamma b = 0$. Thus $M\gamma M\Gamma b\gamma M = 0$. Hence we get b = 0 since M is a Γ -prime gamma ring and $\gamma \in C_M$. Therefore, M is γ -prime.

4.4. Theorem. The prime radical of a Γ -ring M is contained in γ -prime radical of M.

Proof. Let x be an element of $\mathfrak{B}(M)$, the prime radical of M. Suppose that $x \notin \mathfrak{B}_{\gamma}(M)$. Then, there is a γ -m-system S which contains x such that $0 \notin S$. Therefore, there is an m-system in M which contains x but not contains 0 since S is also an m-system. This contradicts with $x \in \mathfrak{B}(M)$. Hence, if x is an element of $\mathfrak{B}(M)$, then x must be in $\mathfrak{B}_{\gamma}(M)$.

4.5. Theorem. The strongly nilpotent radical of a Γ -ring M is contained in strongly γ -nilpotent radical of M.

Proof. It is easy to see that a strongly nilpotent ideal of M is also a strongly γ -nilpotent ideal. Therefore, $\mathfrak{S}(M)$, the strongly nilpotent radical of M, is contained in $\mathfrak{S}_{\gamma}(M)$. \Box

4.6. Theorem. The Levitzki nil radical of a Γ -ring M is contained in γ -Levitzki nil radical of M.

Proof. It is easy to see that a locally nilpotent ideal of M is also a γ -locally nilpotent ideal. Therefore, $\mathfrak{L}(M)$, the Levitzki nil radical of M, is contained in $\mathfrak{L}_{\gamma}(M)$.

4.7. Theorem. The Jacobson radical of a Γ -ring M is contained in γ -Jacobson radical of M.

Proof. It is easy to see that a right quasi regular element of M is also a γ -right quasi regular. Therefore, $\mathfrak{J}(M)$, the Jacobson radical of M, is contained in $\mathfrak{J}_{\gamma}(M)$.

4.8. Corollary. Let M be a Γ -ring.

- (i) If the ring $(M, +, \cdot_{\gamma})$ for any $\gamma \in \Gamma$ is semiprime, then the Γ -ring M is Γ -semiprime.
- (ii) If the ring $(M, +, \cdot_{\gamma})$ for any $\gamma \in \Gamma$ is semisimple, then the Γ -ring M is Γ -semisimple.

References

- Arslan, O., Kandamar, H., γ-Lie structures in γ-prime gamma rings with derivations, J. Algebra Comb. Discrete Appl. 2 (1), 25-37, 2015.
- [2] Awtar, R., Lie and Jordan structure in prime rings with derivations, Proc. Amer. Math. Soc. 41, 67-74, 1973.
- [3] Barnes, W. E., On the Γ-rings of Nobusawa, Pacific J. Math. 18 (3), 411-422, 1966.
- [4] Bergen, J., Kerr, J.W., Herstein, I.N., Lie ideals and derivations of prime rings, J. Algebra 71, 259-267, 1981.
- [5] Coppage, W.E., Luh, J., Radicals of gamma rings, J. Math. Soc. Japan 23 (1), 40-52, 1971.

- [6] Herstein, I. N., A note on derivations, Canad. Math. Bull. 21 (3), 369-370, 1978.
- [7] Herstein, I. N., A note on derivations II, Canad. Math. Bull. 22 (4), 509-511, 1979.
- [8] Herstein, I. N., Topics in Ring Theory, The Univ. of Chicago Press, 132p., Chicago, 1969.
- [9] Jing, F. J., On derivations of Γ-rings, Qu fu Shifan Daxue Xuebeo Ziran Kexue Ban 13 (4), 159-161, 1987.
- [10] Kandamar, H., The k-Derivation of a Gamma-Ring, Turk. J. Math. 23 (3), 221-229, 2000.
- [11] Kyuno, S., Gamma Rings, Hadronic Press, Palm Habor, 1991.
- [12] Kyuno, S., On the radicals of gamma rings, Osaka J. Math. 12, 639-645, 1975.
- [13] Lee, P. H., Lee T. K., On derivations of prime rings, Chinese J. Math. 9 (2), 107-110, 1981.
- [14] Lee, P. H., Lee T. K., Lie ideals of prime rings with derivations, Bull. Inst. Math. Acad. Sinica 11 (1), 75-80, 1983.
- [15] Luh, J., On the theory of simple Γ -rings, Michigan Math. J. 16 (1), 65-75, 1969.
- [16] McCoy, N.H., The Theory of Rings, Chelsea Publishing Company, New York, 1973.
- [17] Nobusawa, N., On a generalization of the ring theory, Osaka J. Math. 1, 81-89, 1964.
- [18] Posner, E. C., Derivations in prime rings, Proc. Amer. Math. Soc. 8, 1093-1100, 1957.
- [19] Rakhimov, I. S., Dey K. K., Paul A. C., On commutativity of completely prime gammarings, Malays. J. Math. Sci. 7 (2), 283-295, 2013.