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On one problem of a cusped elastic prismatic shells

in case of the third model of Vekua’s hierarchical
model

Natalia Chinchaladze*

Abstract

In the present paper hierarchical model for cusped, in general, elastic
prismatic shells is considered, when on the face surfaces a normal to
the projection of the prismatic shell component of a traction vector
and parallel to the projection of the prismatic shell components of a
displacement vector are known.
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1. Introduction

Investigations of cusped elastic prismatic shells actually takes its origin from the fifties
of the last century, namely, in 1955 I.Vekua raised the problem of investigation of elastic
cusped prismatic shells, whose thickness on the prismatic shell entire boundary or on its
part vanishes (see [15], [16], [9] and references therein).

Let Ozjzoxs be an anticlockwise-oriented rectangular Cartesian frame of origin O.
We conditionally assume the x3-axis vertical. The elastic body is called a prismatic shell
if it is bounded above and below by, respectively, the surfaces

) )
x3 = h (z1,22) and x3 = h (z1,22), (21, 22) € W,
laterally by a cylindrical surface I" of generatrix parallel to the x3-axis and its vertical
dimension is sufficiently small compared with other dimensions of the body. @ := w U dw
is the so-called projection of the prismatic shell on xz3 = 0.

The main difference between the prismatic shell of a constant thickness and the stan-

dard shell of a constant thickness is the following: the lateral boundary of the standard
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shell is orthogonal to the "middle surface” of the shell, while the lateral boundary of the
prismatic shell is orthogonal to the prismatic shell’s projection on x3 = 0.
Let the thickness of the prismatic shell be

(+) (=) > 0 for (z1,22) € w,
s ) =1 a2) = ) {2 o (o012 €

If the thickness of the prismatic shell vanishes on 9 C Ow, it is called cusped one.
Below we consider symmetric prismatic shell, i.e. the case when

with the thickness as follows
(1.1)  2h:= hoz5, ho,» = const, hg, 3> 0.

I. Vekua [15], [16] constructed hierarchical models for elastic prismatic shells, in par-
ticular, plates of variable thickness, when on the face surfaces either es (the first model)
or displacements (the second model) are known. The updated survey of results concern-
ing cusped elastic prismatic shells in the cases of the first and second models is given
in [9] (see also [1], [5], [6], [10], [12], [14] and references therein). In the present paper
the third hierarchical model for cusped elastic prismatic shells is analyzed. It means
that on the face surfaces a normal to the projection of the prismatic shell component
Q<§>3 of a traction vector and parallel to the projection of the prismatic shell components

Ua(z1, 22, (#, t) of a displacement vector are known. The third model was first suggested
in [8].

In what follows the usual notations are used: X;; and e;; are the stress and strain
tensors, respectively, u; are the displacements, F; are the volume force components, p is
the density, A and p are the Lamé constants, J;; is the Kronecker delta, subscripts pre-
ceded by a comma mean partial derivatives with respect to the corresponding variables.
Moreover, repeated indices imply summation (Greek letters run from 1 to 2 and Latin
letters run from 1 to 3).

In the fifties of the twentieth century, I.Vekua ([9], [15], [16]) introduced a new
mathematical model for elastic prismatic shells which was based on expansions of the
three—dimensional displacement vector fields and the strain and stress tensors in linear
elasticity into orthogonal Fourier-Legendre series with respect to the variable of plate
thickness. By taking only the first NV 4+ 1 terms of the expansions, he introduced the
so—called N—th approximation. Each of these approximations for N = 0,1,... can be
considered as an independent mathematical model of plates. In particular, in case of the
first model the approximations for N = 0 and N = 1 correspond to the plane deformation
and classical Kirchhoff-Love plate model, respectively (see [9]).

For the sake of simplicity we consider zero approximation of the hierarchical model.
Basic equation system can be written as follows (see e.g. [8], [3])

p(hvao),s8 +(A + 1) (AV40) 1ya
(1.2) —(Inh),s {Adap(hv10) 5 + 1 [(hva0),8 +(hvso),a ]} + Pao = phiiao,

(1.3) w(hvso,g),s +P30 = phiizo,
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where

Xapo(z1,72,t) = Aap [(hvwo)w +‘Pw] + N[(hvao)vﬁ +(hvgo)a +2‘I’a[3] :
Xago(w1,T2,t) = phvso,s, Xzz0 = A[(hvvo),ﬂ, +\I/W],

1 1
a0 = 5 [(hvao),ﬁ +(hvﬁ0)7a] + Waos, €30 = §h'U3O,ﬁ, e330 = 0,

a0 =20 Wap,g + AWqy.a — (I0h) g [AoapWqyy + 20 Vas] + Fao,

(+) 5 (+) 5 (=) 9 (=) 5
4)305:@(2-)3 (h,l) +(h72) +1+Q(;)3 (h,l) +(h,2) +1+F307
(=) () ()

1 (=)
Vo = 5 [ug(a?1,$2, h,t) ha—us(z1,z2, h,t) h a

(=) (=) + (D
+ua(1’1,$2, h 7t) h 8 —Ua($17I2, h 7t) h 75]7

Xijo, €ijo, io and Fjo are the zeroth order moments of X;;, e;5, u; and Fj, respectively;
vio := h ™ tu,o are called weighted moments of the function wu;.

The case of cylindrical bending of the plates with the thickness (1.1) is considered in
[8]. In this case the system (1.2)-(1.3) can be rewritten as follows

w(h(z2)vio(z2)),22 —p(In h(z2)),2 (h(z2)vio(z2)),2 +P10(x2) =0
A+ 2u) (h(z2)v20(22))522 — (A + 2)(In A(x2)),2 (h(x2)v20(T2)),2 + P20 (22) = 0,
p(h(z2)vso,2(x2)),2 +P30(x2) = 0.

In [8] it is shown that vao can not be prescribed in cusped edge (i.e., Dirichlet problem
are not satisfied) if » > 0, and vz can not be prescribed in cusped edge if » > 1.
The weak setting of the homogeneous Dirichlet problem of the following system

w(hvao),s8 +(A + 1) (hv40) 1ya
—(In k)5 {Adap(hvy0) 5 + 1t [(hva0),5 +(hvs0)sa |} + Pao =0,
wu(hvso )8 +P30 = 0,

is considered in [3].

2. Vibration problem
We will consider the case of harmonic vibration
0
vio(z,t) := e_"ﬁtlg]io(a:), Bio(x,t) == e W Dyo(z), 12 =—1,
¥ =const >0, z:= (r1,22) Ew, 1=1,2,3.

Taking into account of (1.1), (1.2), and (1.3) for i (z) we get the following system
(the overscript index 0 is omitted below)

—p9hvio — ps (hvio) — (A + p) [(hvlo),u +(hv2o),21 ]
+u(lnh) 2 [(hvio),2 +(hv2o),1] = P10,

—Pl92h1120 — nAs(hvao) — (A + 1) [(fwlo),lz +(h7}20),22}
+(nh) 2 {A[(hvio),1 + (hvo),2] + 2p(hv2o),2 } = Poo,

—p9huzo — p [(hvso,1),1 +(hvso,2),2 ] = P30,



1668

where A is a two dimensional Laplace operator.
We can rewrite obtained system in the following vector form

(2.1)  Av(z)=9(z), z€w,

where
All A12 A13
A= || Ay Ay A |,
As1 Az Ass

Avr = —p9°h — (A + 2u)hdi1 — p[hdas + 2h,2 Os + hyoo ] + p(Inh),, [RO2 + hy2 ],
Avz = —(A+ p) [hO12 + hy2 O1] + p(Inh),, ko1,
Aoy i= — (A + p) [hdr2 + 2 1] + A(In h),, ho1,
Aoy i= —p0®h — phdin — (A + 2u) [hDa2 + 2h,2 82 + hyao ] + (A + 2u)(InR),, [h01 + h,2 ],
Az = Aoz = Az1 = A3y =0, Asg := —p0°h — ph(811 + 822) + ph,2 2,

v = (Ulo,U207U30)T7 D := (P10, P20, P30),
the symbol ()T means transposition.
Let
* 2 1/— * * * ®* \ T
v,V € C (UJ) nc (w)> v o= (’1)10,1}20,1]30) )
where v and v™ are arbitrary vectors of the above class. We obtain the following Green’s
formula

(2.2) / Av-v'dw = J(v,v") — Xnvlv*daw:/ - v dw.

Ow w

Here n := (n1,n2) is the inward normal to dw:
X = {Xn10, Xn20, Xn30},

with

Xnio = Xijong,

* * A * *
J(w,v") = / —hpﬁ%ioviodw +/ % [(h'UlO)al (hv1o)s1 +(hv2o),2 (hvgg),2

w

+(hvio),1 (hvao),2 +(hv2o),2 (tho),l]dw +/ %[Zf(hvlo)»l (hvio) st
—|—(h’l}10),2 (}Wfo)a —|—(h’020),1 (hvfo)ﬂ —|—(h’020),1 (hv>2k0)71 —|—(h’010),2 (hvgo)ﬂ
+2(h1}20),2 (hvgo),z +h1)3071h1);0’1 =+ h1)3072h1)§0’2:| dw

= / —hp9*viovjpdw +/ %(hvao),a (hvgo),p dw

[ 00a0)us o). ] (i) s+ ] + (hos ) i) o

= / a[*thﬁzviovfo + Aeiko(”)eim(v*) + 2ﬂegjo(v)€%jo(v*)]dwa

where
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1 )
5 [(hvio)aj +(h‘fl}jo)ﬂ']? i, =1,2,

1 Pyp—

eijo(v) = %hvio,j, i=3,j=12
0, i=j=3.

If we consider BVPs for system (2.1) with homogeneous boundary conditions for which
the curvilinear integralalong Ow in (2.2) disappears, we arrive at the equation

J(v,v*):/tI%v*dw.

Denote by D(w) a space of infinity differentiable functions with compact support in
w and introduce the linear form [D(w)]® by the formula:

* * * 1
(v,v )x :/ [h2p192viov¢o +e}j0(v)egj0(v )] Edw,
1

||U||§<§f :/[hpﬂzviovio t (4[(hv1o),1 )?

+4[(hv2o),2 ]2 + 2((hv1o),2 +(hvao),1 )2 + 2(hvzo,1 ) + 2(hvso,2 )2” dw.

X is a Hilbert space.
The classical and weak setting of the homogeneous Dirichlet problem can be formu-
lated as follows:

2.1. Problem. Find a 3-dimensional vector v in w satisfying the system of differential
equations (2.1) in w and the homogeneous Dirichlet boundary condition

(2.3)  [@)]T =0, x€duw.
2.2. Problem. Find a vector v € Xj satisfying the equality
(2.4)  J(v,v") ={(®,v") for all v" € X7,

here, the vector ® belongs to the adjoint space [X7]*, and (-,-) denotes duality brackets
between the spaces [X§]* and Xj.

Further, we construct the vectors in Q := {(z;x3) : ¢ € w, —h(x) < z3 < h(z)}:

wi(z, z3) = %Um(ﬂﬁ), i=1,2,3,

* 1 * .
wj (mam3) = ivio(m)a 1=1,2,3.
It can be shown that

(2.5)  J(w,w"):= /Q[—pﬁQwiwf + i (w)ei; (w*)]dQ = J(v,v"),

where w(z, z3) := (w1, w2, ws3) and w*(z,x3) := (wi,ws,w3) are vectors and J(w,w™)
is the bilinear form corresponding to the three-dimensional potential energy for the dis-
placement vector w.

In view of the homogeneous Dirichlet boundary condition (2.3), if 5 > 1, the following
Hardy inequality holds (see [13], p. 69; [11])

1 l
x— 4 >
(26) / Ty 2Uiodl’2 S (% — 1)2 / To (’Uao72 )Qd:l,‘Q, x> 1.
€ €
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Replacing in (2.6) > by 3 + 2, we obtain

1 1
2.7 aiviodas < S 252 (00,2 )2dxa, for any > 0.
( ( )2 2 y

x+1

Now, considering the limit procedure as € — 0+, since the limits of the integrals in (2.7)
exist for vao € X3, we immediately get the following

1 l
(2.8) /0 zZviodrs < ﬁ/ 252 (Va0,2 )2daa, for any s > 0.
Integrating by =1 both side of (2.8) over ]z?, z1], we get

4
(2.9) / zFvlodw < Gr1e / 252 (Va0,2 )2dw, for any s > 0.

2.3. Lemma. The bilinear form J(-,-) is bounded and strictly coercive in the space
X5 (w), i.e., there are positive constant Co and C1 such that

(210)  [I(v,v") < Cullvllxz v llxs

(211)  I(v,v) > Collollks

for all v,v* € X5 and 9* < “(fg:l? .

Proof. In view of (2.5) we have
I (0, 0")[* = | (w, w") ?

2
= [/ —pP?wsw! + (2ues;(w) + Aéijekk(w))ei]’(w*)dﬁ]
Q

2 2
< ‘ / p192w¢w:d9‘ + 03‘ / (ZHeij(w) + A(;ijekk(w))eij (w*)dQ‘
Q Q
) 3 3
S ’/hp’l?21}7;01};0dw' +02 Z / 67,2]'( Z / 61]
w i,j=17% j=1
2 « 2 1< 2 dw 1< 9
< ‘ . hpd UiOUiOdw‘ +Cs ; B Z ejo(v 7 : 3 Z eijo(v
i,j=1 i,j=1
3
/hpﬂ Zvlodw/hpﬂQZv*?odw

=1
+C'2/ Z eijo(v / Z eijo(v’) =7
3,7=1 i,5=1

2
< Cillollxs v |5,
where
C1 = rnax{l,Cz}.

Whence (2.10) follows.
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Further, taking into account of (2.9) and of the fact that 2A 4+ 3u > 0, u > 0 we get
J(v,v) 92 pho J(v,v) 492 phy
2 . < ) / 4 2 d < ) / x+2 ’ 2d
||UHX,0 < 72“ + 7# wa vipdw < oM + MOESIE wxg (vio,2) dw
J(v,v) . 49%phol® 5 2 J(v,v) 492 pl® / (hvio2)?
< i dw < ——d,
= 2 p(e+1)? /xQ (Vo) d < =5 = e 1) o
4 2 72 h 2 h 2 h 2
_Jy) 407l / [( vi02)” | (hvao2)” | (hvso) }dw

2u (e +1)2 h h h
S J(’Uﬂ)) 2192pl2 / |:2(h1110,2)2 + 4(h1}2072)2 + Q(hU30’2)2:|dw
2u (e +1)2 h h h
< J(v,v) 202 pl? / [2[(%10)7212 n 4[(hv20),2]? n 2(h030,2)2]dw
2u (s +1)2 h h h
J(v,v) 892 pl? 2
< P
S 7o TGy et
from here we have
1692 pl* 2
. > - .
(212) 30,02 (2 - Bl
If we assume 92 < £CHD? inequality (2.11) immediately follows from (2.12). B

16p12

2.4. Remark. If J(v,v) =0, then v =0 by (2.12).

2.5. Theorem. Let F' € [X§]*. Then the variational problem (2.4) has a unique solution
v € X for an arbitrary value of the parameter > and ||v||xx < %0|‘F|‘[X,§]*-

Proof. The proof can be realized by means of Lax-Milgram theorem (see Appendix
Al). m
It can be easily shown that if ® € [L(w)]® and supp ® N 7, = @, then ® € [XZ]* and

1= o @

since v* € [H'(we)]®, where ¢ is sufficiently small positive number such that supp ® C
we = w N {x2 > e}. Therefore,

(@, v = ]/ *(@) doo| < 190z s 110 gy

<Nl gy 1 a1 ey < Cell®lipg @y v ]Ixz -
In this case, we obtain the estimate
vl xz < FZ NP[l1Ly (w3 -

For establishing a representation of the space X as a weighted Sobolev space, we
introduce the following space:

0 2
Yo i= (Wh )]
0
where Wy _,(w) is a completion D(w) by means of the norm

1%, o= [ a5(90P)de, V= (F. )

EIIC
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The norm in the space Y5* for a vector (vio, v20,v30) reads as
2

H’UH%/O% :=/w§(2|Vvao\2)dw.
w a=1

Using Korn’s and Hardy’s inequalities (see Appendix) the following theorem can be
proved (similarly, to the Theorem 5.1 of [4])

2.6. Theorem. The linear spaces X§ and Y5 as sets of vector functions coincide and

pGAD? 2 }
16pl2 ° hgpl2J-

the norms || - Hxé” II - H”o" are equivalent if » = 0 and ¥* < min{

2.7. Remark. Note that if v € X}, then all the components of v posses the zero traces
on part 71 of the boundary dw for arbitrary » due to the well-known trace theorem in
the Sobolev space W?'. This follows, on the one hand, from the fact that the elliptic
system under consideration is non-degenerated at the curve 41 and, on the other hand,
from the construction of the space Xj.

3. Appendix

A.1l. The Lax-Milgram theorem. Let V be a real Hilbert space and let J(w,v)
be a bilinear form defined on V' x V. Let this form be continuous, i.e., let there exist a
constant K > 0 such that

|J(w,v)| < Kjw]y [[v]ly
holds Vw,v € V and V-elliptic, i.e., let there exist a constant o > 0 such that
Tw, w) > allw]?

holds Vw € V. Further let F' be a bounded linear functional from V* dual of V. Then
there exists one and only one element z € V' such that
J(z,v) =(F,v)=Fv YveV
and
Izlly <™ Fly .
Let w be as in Section 1 and let D(w) be a space of infinitely differentiable functions

with compact support in w.

A.2. Hardy’s inequality. For every f € D(w) and v # 1 there holds the inequality

(A1) /x;* fA(x)dw < Cy /xz IV f ()] do,

where the positive constant C, is independent of f.
By completion of D(w) with the norm

WG, = [ w1V s

w

IO

we conclude that the inequality (A.1) holds for arbitrary f € I/(Y)/é,j(w)
For proof see [7].

o
A.3. Korn’s weighted inequality. Let ¢ = (1, ¢2) € [W3,(w)]? and v # 1. Then

/xs [V o1 (@) + |V 0 (2)]?] deo

w
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< G 231911 (2) + 932(2) + (p1.2(2) + 92.(2))* ] dw,
where the positive constant C), is independent of .
The proof can be found in [7], [17].
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