\int Hacettepe Journal of Mathematics and Statistics Volume 45 (1) (2016), 23-31

Existence of symmetric positive solutions for a semipositone problem on time scales

S. Gulsan Topal and Arzu Denk *

Abstract

This paper studies the existence of symmetric positive solutions for a second order nonlinear semipositone boundary value problem with integral boundary conditions by applying the Krasnoselskii fixed point theorem. Emphasis is put on the fact that the nonlinear term f may take negative value. An example is presented to demonstrate the application of our main result.

Keywords: Positive solution, Symmetric solution, Semipositone problems, Fixed point theorems, Time scales.

2000 AMS Classification: 34B15, 39A10.

Received: 07.03.2013 Accepted: 16.12.2014 Doi: 10.15672/HJMS.20164512479

1. Introduction

We will be concerned with proving the existence of at least one symmetric positive solution to the semipositone second order nonlinear boundary value problem on a symmetric time scale T given by

(1.1)
$$[g(t)u^{\triangle}(t)]^{\nabla} + \lambda f(t, u(t)) = 0, \qquad t \in (a, b),$$

(1.2)
$$\alpha u(a) - \beta \lim_{t \to a^+} g(t) u^{\triangle}(t) = \int_a^b h_1(s) u(s) \nabla s,$$

(1.3)
$$\alpha u(b) + \beta \lim_{t \to b^-} g(t) u^{\triangle}(t) = \int_a^b h_2(s) u(s) \nabla s ds$$

where $\lambda > 0$ is a parameter, $\alpha, \beta > 0$, ∇ -differentiable function $g \in C([a, b], (0, \infty))$ is symmetric on [a, b], $h_1, h_2 \in L^1([a, b])$ is nonnegative, symmetric on [a, b] and the continuous function $f : [a, b] \times [0, \infty) \to R$ satisfies f(b + a - t, u) = f(t, u).

ah

^{*}Department of Mathematics, Ege University, 35100 Bornova, Izmir-Turkey. Email: f.serap.topal@ege.edu.tr ; arzu.denk@hotmail.com

A class of boundary value problems with integral boundary conditions arise naturally in thermal condition problems [4], semiconductor problems [7], and hydrodynamic problems [5]. Such problems include two, three and multi-point boundary conditions and have recently been investigated by many authors [3, 6, 8, 9].

The present work is motivated by recent paper [3]. In this paper, Boucherif considered the following second order boundary value problem with integral boundary conditions

(1.4)
$$x''(t) = f(t, x(t)), \qquad 0 < t < 1,$$

(1.5)
$$x(0) - cx'(0) = \int_0^1 g_0(s)x(s)ds,$$

(1.6)
$$x(1) - dx'(1) = \int_0^1 g_1(s)x(s)ds,$$

where $f:[0,1] \times R \to R$ is continuous, $g_0, g_1:[0,1] \to [0,\infty)$ are continuous and positive, c and d are nonnegative real parameters. The author established some excellent results for the existence of positive solutions to problem (1.4) - (1.6) by using the fixed point theorem in cones.

Throughout this paper T is a symmetric time scale with a, b are points in T. By an interval (a, b), we always mean the intersection of the real interval (a, b) with the given time scale, that is $(a, b) \cap T$. Other types of intervals are defined similarly. For the details of basic notions connected to time scales we refer to [1, 2].

Now, we present some symmetric definition.

1.1. Definition. A time scale T is said to be symmetric if for any given $t \in T$, we have $b + a - t \in T$.

1.2. Definition. A function $u : T \to R$ is said to be symmetric on T if for any given $t \in T$, u(t) = u(b + a - t).

2. The Preliminary Lemmas

In this section we collect some preliminary results that will be used in subsequent section.

Throughout the paper we will assume that the following conditions are satisfied: (H_1) $\alpha, \beta > 0$,

(H₂) ∇ -differentiable function $g \in C([a, b], (0, \infty))$ is symmetric on [a, b],

 (H_3) the continuous function $f:[a,b] \times [0,\infty) \to R$ is semipositone, i.e., f(t,u) needn't be positive for all $(t,u) \in [a,b] \times [0,\infty)$ and f(.,u) is symmetric on [a,b] for all $u \ge 0$, (H_4) $h_1, h_2 \in L^1([a,b])$ is nonnegative, symmetric on [a,b] and A > 0, where A =

$$\mu + (\beta - K)v_1 - \beta v_2, \qquad K = \frac{\mu}{\alpha}, \quad \mu = 2\alpha\beta + \alpha^2 \int_a^b \frac{\Delta r}{g(r)}, \quad v_1 = \int_a^b h_1(\tau)\nabla\tau, \quad v_2 = \int_a^b h_2(\tau)\nabla\tau.$$

The lemmas in this section are based on the boundary value problem

(2.1)
$$-[g(t)u^{\triangle}(t)]^{\nabla} = p(t), \qquad t \in (a,b)$$

with boundary conditions (1.2) - (1.3).

To prove the main result, we will employ following lemmas.

2.1. Lemma. Let $(H_1), (H_2)$ hold and $A \neq 0$. Then for any $p \in C([a, b])$, the boundary value problem (2.1) - (1.2) - (1.3) has a unique solution u given by

$$u(t) = \int_{a}^{b} H(t,s)p(s)\nabla s,$$

where

(2.2)
$$H(t,s) = G(t,s) + B_1 \int_a^b G(s,\tau)h_1(\tau)\nabla\tau + B_2 \int_a^b G(s,\tau)h_2(\tau)\nabla\tau$$

(2.3)
$$G(t,s) = \frac{1}{\mu} \begin{cases} (\beta + \alpha \int_{a}^{s} \frac{\Delta r}{g(r)})(\beta + \alpha \int_{t}^{b} \frac{\Delta r}{g(r)}), & a \le s \le t \le b, \\ (\beta + \alpha \int_{a}^{t} \frac{\Delta r}{g(r)})(\beta + \alpha \int_{s}^{b} \frac{\Delta r}{g(r)}), & a \le t \le s \le b, \end{cases}$$

where $\mu = 2\alpha\beta + \alpha^2 \int_a^b \frac{\Delta r}{g(r)}, B_1 = \frac{K - \beta}{A}, B_2 = \frac{\beta}{A}.$

2.2. Lemma. Assume that $(H_1), (H_2)$ and (H_4) hold. Then we have

(i) H(t,s) > 0, G(t,s) > 0, for $t, s \in [a,b]$, (ii) H(b+a-t,b+a-s) = H(t,s), G(b+a-t,b+a-s) = G(t,s), for $t, s \in [a,b]$, (iii) $\frac{1}{\mu}\beta^2\gamma \leq H(t,s) \leq H(s,s) \leq \frac{1}{\mu}\gamma D$ and $\frac{1}{\mu}\beta^2 \leq G(t,s) \leq G(s,s) \leq \frac{1}{\mu}D$, for $t, s \in [a,b]$,

where
$$D = (\beta + \alpha \int_{a}^{b} \frac{\Delta r}{g(r)})^{2}, \ \gamma = 1 + B_{1}v_{1} + B_{2}v_{2}.$$

Proof. It is clear that (i) hold. Now we prove that (ii) and (iii) hold. First, we consider (ii). If $t \leq s$, then $b + a - t \geq b + a - s$. Using (2.3) and the assumption (H_2) , we get

$$\begin{aligned} G(b+a-t,b+a-s) &= \frac{1}{\mu} (\beta + \alpha \int_{a}^{b+a-s} \frac{\Delta r}{g(r)}) (\beta + \alpha \int_{b+a-t}^{b} \frac{\Delta r}{g(r)}) \\ &= \frac{1}{\mu} (\beta + \alpha \int_{b}^{s} \frac{\Delta (b+a-r)}{g(b+a-r)}) (\beta + \alpha \int_{t}^{a} \frac{\Delta (b+a-r)}{g(b+a-r)}) \\ &= \frac{1}{\mu} (\beta + \alpha \int_{s}^{b} \frac{\Delta r}{g(r)}) (\beta + \alpha \int_{a}^{t} \frac{\Delta r}{g(r)}) = G(t,s). \end{aligned}$$

Similarly, we can prove that G(b + a - t, b + a - s) = G(t, s), for $s \le t$. Thus we have G(b+a-t,b+a-s) = G(t,s), for $t,s \in [a,b]$. Now by (2.2), for $t,s \in [a,b]$, we have

$$\begin{split} H(b+a-t,b+a-s) &= G(b+a-t,b+a-s) + B_1 \int_a^b G(b+a-s,\tau) h_1(\tau) \nabla \tau \\ &+ B_2 \int_a^b G(b+a-s,\tau) h_2(\tau) \nabla \tau \\ &= G(t,s) + B_1 \int_b^a G(b+a-s,b+a-\tau) h_1(b+a-\tau) \nabla (b+a-\tau) \\ &+ B_2 \int_b^a G(b+a-s,b+a-\tau) h_2(b+a-\tau) \nabla (b+a-\tau) \\ &= G(t,s) + B_1 \int_a^b G(s,\tau) h_1(\tau) \nabla \tau + B_2 \int_a^b G(s,\tau) h_2(\tau) \nabla \tau \\ &= H(t,s). \end{split}$$

So (*ii*) is established. Now we show that (*iii*) holds. In fact, if $t \leq s$, from (2.3) and the assumption (H_2) , then we get

$$G(t,s) = \frac{1}{\mu} (\beta + \alpha \int_a^t \frac{\Delta r}{g(r)}) (\beta + \alpha \int_s^b \frac{\Delta r}{g(r)}) \le \frac{1}{\mu} (\beta + \alpha \int_a^s \frac{\Delta r}{g(r)}) (\beta + \alpha \int_s^b \frac{\Delta r}{g(r)}) = G(s,s)$$
$$\le \frac{1}{\mu} (\beta + \alpha \int_a^b \frac{\Delta r}{g(r)}) (\beta + \alpha \int_a^b \frac{\Delta r}{g(r)}) = \frac{1}{\mu} (\beta + \alpha \int_a^b \frac{\Delta r}{g(r)})^2 = \frac{1}{\mu} D.$$

Similarly, we can prove that $G(t,s) \leq G(s,s) \leq \frac{1}{\mu}D$ for $s \leq t$. Therefore $G(t,s) \leq G(s,s) \leq \frac{1}{\mu}D$, for $t,s \in [a,b]$. And then, by (2.2), we have

$$\begin{split} H(t,s) &= G(t,s) + B_1 \int_a^b G(s,\tau) h_1(\tau) \nabla \tau + B_2 \int_a^b G(s,\tau) h_2(\tau) \nabla \tau \\ &\leq G(s,s) + B_1 \int_a^b G(\tau,\tau) h_1(\tau) \nabla \tau + B_2 \int_a^b G(\tau,\tau) h_2(\tau) \nabla \tau \\ &\leq \frac{1}{\mu} D + \frac{1}{\mu} D B_1 \int_a^b h_1(\tau) \nabla \tau + \frac{1}{\mu} D B_2 \int_a^b h_2(\tau) \nabla \tau = \frac{1}{\mu} D(1 + B_1 v_1 + B_2 v_2) \\ &= \frac{1}{\mu} D \gamma. \end{split}$$

On the other hand, for $t, s \in [a, b]$, we have

$$G(t,s) \ge \frac{1}{\mu} (\beta + \alpha \int_a^a \frac{\Delta r}{g(r)}) (\beta + \alpha \int_b^b \frac{\Delta r}{g(r)}) = \frac{1}{\mu} \beta^2.$$

And then, we get

$$H(t,s) = G(t,s) + B_1 \int_a^b G(s,\tau) h_1(\tau) \nabla \tau + B_2 \int_a^b G(s,\tau) h_2(\tau) \nabla \tau$$
$$\geq \frac{1}{\mu} \beta^2 + \frac{1}{\mu} \beta^2 B_1 \int_a^b h_1(\tau) \nabla \tau + \frac{1}{\mu} \beta^2 B_2 \int_a^b h_2(\tau) \nabla \tau = \frac{1}{\mu} \beta^2 \gamma$$

Thus for $t, s \in [a, b]$, we have

$$\frac{1}{\mu}\beta^2\gamma \le H(t,s) \le H(s,s) \le \frac{1}{\mu}\gamma D \text{ and } \frac{1}{\mu}\beta^2 \le G(t,s) \le G(s,s) \le \frac{1}{\mu}D.$$

This completes the proof.

2.3. Lemma. Let w be the unique positive solution of the boundary value problem

(2.4)
$$[g(t)u^{\triangle}(t)]^{\nabla} + 1 = 0$$

with the boundary condition (1.2) - (1.3). Then,

$$w(t) \le C\delta, \quad t \in [a, b],$$

where

(2.5)
$$\delta = \frac{\beta^2}{D}, \quad C = \frac{b-a}{\mu\beta^2}D^2\gamma$$

Proof. Using Lemma 2.2, for all $t \in [a, b]$, we have

26

$$w(t)=\int_a^b H(t,s)\nabla s\leq \frac{1}{\mu}\gamma D\int_a^b \nabla s=C\delta.$$
 The proof is complete.

Let *E* denote the Banach space C[a, b] with the norm $||u|| = \max_{t \in [a, b]} |u(t)|$. Define the cone $P \subset E$ by $P = \{u \in E : u(t) \text{ is symmetric and } u(t) \ge \delta ||u|| \text{ for } t \in [a, b]\}.$

To obtain the a positive solution of BVP (1.1)-(1.3), the following fixed point theorem is essential.

2.4. Theorem. Let $E = (E, \|.\|)$ be a Banach space, and let $P \subset E$ be a cone in B. Assume Ω_1, Ω_2 are bounded open subsets of E with $0 \in \Omega_1, \overline{\Omega_1} \subset \Omega_2$, and let $S : P \cap (\overline{\Omega_2} \setminus \Omega_1) \to P$

be a continuous and completely continuous operator such that, either

(a) $||Su|| \leq ||u||, u \in P \cap \partial\Omega_1$, and $||Su|| \geq ||u||, u \in P \cap \partial\Omega_2$, or

(b) $||Su|| \ge ||u||, u \in P \cap \partial\Omega_1$, and $||Su|| \le ||u||, u \in P \cap \partial\Omega_2$.

Then S has a fixed point in $P \cap (\overline{\Omega_2} \setminus \Omega_1)$.

3. Main Results

In this section, we apply the Krasnoselskii fixed point theorem to obtain the existence of at least one symmetric positive solution for the nonlinear boundary value problem (1.1) - (1.3).

The main result of this paper is following:

3.1. Theorem. Let $(H_1) - (H_4)$ hold. Assume that

(C₁) There exists a constant M > 0 such that $f(t, u) \ge -M$ for all $(t, u) \in [a, b] \times [0, \infty)$,

(C₂) There exist $\underset{u \to \infty}{\text{min}} \underbrace{f(t \ddagger u) \in (a, b)}_{u \to \infty}$ such that

uniformly on $[t_1, t_2]$,

 (C_3) r is a given positive real number and the parameter λ satisfies

$$(3.1) \qquad \qquad 0 < \lambda \le \eta := \min\{\frac{r}{M_1 \|w\|}, \frac{r}{2MC}\}$$

where $M_1 = \max\{f(t, u) + M : (t, u) \in [a, b] \times [0, r]\}.$

Then the boundary value problem (1.1) - (1.3) has at least one symmetric positive solution u such that $||u|| \ge \frac{r}{2}$.

Proof. Let $x(t) = \lambda M w(t)$, where w is the unique solution of the boundary value problem (2.4) - (1.2) - (1.3).

We shall show that the following boundary value problem

(3.2)
$$[g(t)y^{\Delta}(t)]^{\nabla} + \lambda F(t, y(t) - x(t)) = 0, \ t \in (a, b),$$

(3.3)
$$\alpha y(a) - \beta \lim_{t \to a^+} g(t) y^{\triangle}(t) = \int_a^b h_1(s) y(s) \nabla s,$$

(3.4)
$$\alpha y(b) + \beta \lim_{t \to b^-} g(t) y^{\triangle}(t) = \int_a^b h_2(s) y(s) \nabla s,$$

where

$$F(t,z) = \begin{cases} f(t,z) + M, & z \ge 0, \\ f(t,0) + M, & z \le 0, \end{cases}$$

has at least one positive solution. Thereafter we shall obtain at least one positive solution for the boundary value problem (1.1) - (1.3).

It is well known that the existence of positive solution to the boundary value problem (3.2) - (3.4) is equivalent to the existence of fixed point of the operator S. So we shall seek a fixed point of S in our cone P where the operator $S: E \to E$ is defined by

$$Sy(t) = \lambda \int_a^b H(t,s) F(s,y(s)-x(s)) \nabla s, \quad t \in [a,b].$$

First, it is obvious that S is continuous and completely continuous.

Now we shall prove that $S(P) \subseteq P$. Let $y \in P$. Then, using Lemma 2.2, we get for $t \in [a, b]$,

$$Sy(t)=\lambda\int_a^b H(t,s)F(s,y(s)-x(s))\nabla s\leq \frac{\lambda}{\mu}\gamma D\int_a^b F(s,y(s)-x(s))\nabla s,$$
 and so

(3.5)
$$||Sy|| \le \frac{\lambda}{\mu} \gamma D \int_{a}^{b} F(s, y(s) - x(s)) \nabla s$$

Now, using Lemma 2.2 and (3.5), we obtain for $t \in [a, b]$,

$$\begin{split} Sy(t) &= \lambda \int_{a}^{b} H(t,s)F(s,y(s)-x(s))\nabla s \geq \frac{\lambda}{\mu}\beta^{2}\gamma \int_{a}^{b} F(s,y(s)-x(s))\nabla s \\ &= \frac{\lambda}{\mu}\delta\gamma D \int_{a}^{b} F(s,y(s)-x(s))\nabla s \geq \delta \|Sy\|. \end{split}$$

On the other hand, noticing y(t), x(t) and f(t, u) are symmetric on [a, b], we have

$$\begin{split} Sy(b+a-t) &= \lambda \int_{a}^{b} H(b+a-t,s)F(s,y(s)-x(s))\nabla s \\ &= \lambda \int_{a}^{b} H(b+a-t,s)(f(s,y(s)-x(s))+M)\nabla s \\ &= \lambda \int_{b}^{a} H(b+a-t,b+a-s)(f(s,(y-x)(b+a-s))+M)\nabla(b+a-s) \\ &= \lambda \int_{a}^{b} H(t,s)(f(s,(y-x)(s))+M)\nabla s \\ &= \lambda \int_{a}^{b} H(t,s)F(s,(y-x)(s))\nabla s = Sy(t) \end{split}$$

Therefore Sy is symmetric.

So, we get $S(P) \subseteq P$.

Let $\Omega_1 = \{y \in E : ||y|| < r\}$. We shall prove that $||Sy|| \le ||y||$ for $y \in P \cap \partial \Omega_1$. If $y \in P \cap \partial \Omega_1$, then ||y|| = r. By definition and (3.1), we find for $t \in [a, b]$,

$$Sy(t) = \lambda \int_{a}^{b} H(t,s)F(s,y(s)-x(s))\nabla s \le \lambda M_{1} \int_{a}^{b} H(t,s)\nabla s \le \lambda M_{1} ||w|| \le r.$$

Therefore, we get $||Sy|| \le r = ||y||$ for $y \in P \cap \partial \Omega_1$.

Let K be a positive real number such that

(3.6)
$$\frac{1}{2}\lambda K(t_2 - t_1)\delta \frac{1}{\mu}\beta^2 \gamma > 1.$$

In view of (C₂), there exists N > 0 such that for all $z \ge N$ and $t \in [t_1, t_2]$,

$$(3.7) F(t,z) = f(t,z) + M \ge Kz$$

Now, set

$$(3.8) R = r + \frac{2N}{\delta}.$$

Let $\Omega_2 = \{y \in E : ||y|| < R\}$. We shall prove that $||Sy|| \ge ||y||$ for $y \in P \cap \partial \Omega_2$. If $y \in P \cap \partial \Omega_2$, then ||y|| = R. So from Lemma 2.3 and the fact that $y \in P$, we get for $t \in [a, b],$

$$x(t) = \lambda M w(t) \le \lambda M C \delta \le \lambda M C \frac{y(t)}{R}.$$

This implies for $t \in [a, b]$,

$$y(t) - x(t) \ge (1 - \frac{\lambda MC}{R})y(t) \ge (1 - \frac{\lambda MC}{R})\delta R,$$

and, from (3.1) and (3.8), we get for $t \in [t_1, t_2]$,

(3.9)
$$y(t) - x(t) \ge \frac{1}{2}R\delta \ge N.$$

Thus, by (3.7) and (3.9), we see that for $t \in [t_1, t_2]$,

(3.10)
$$F(t, y(t) - x(t)) \ge K(y(t) - x(t)) \ge \frac{1}{2} K R \delta.$$

Considering Lemma 2.2 and (3.10), we get for $t \in [a, b]$,

$$\begin{split} Sy(t) &= \lambda \int_{a}^{b} H(t,s) F(s,y(s)-x(s)) \nabla s \geq \lambda \frac{1}{\mu} \beta^{2} \gamma \int_{t_{1}}^{t_{2}} F(s,y(s)-x(s)) \nabla s \\ &\geq \frac{1}{2\mu} \lambda K R \delta \beta^{2} \gamma \int_{t_{1}}^{t_{2}} \nabla s \\ \text{d so by (3.6).} \end{split}$$

and (3.6),

$$||Sy|| \ge \frac{1}{2\mu} \lambda KR(t_2 - t_1)\delta\beta^2 \gamma \ge R.$$

Therefore, we get $||Sy|| \ge R = ||y||$ for $y \in P \cap \partial \Omega_2$.

Then it follows from Theorem 2.1 that S has a fixed point $y \in P$ such that

 $r \le \|y\| \le R.$ (3.11)

Moreover, using (3.1), (3.11) and Lemma 2.3, we obtain for $t \in [a, b]$,

(3.12)
$$y(t) \ge \delta \|y\| \ge r\delta \ge 2\lambda MC\delta \ge 2\lambda Mw(t) = 2x(t).$$

Hence,

 $u(t) = y(t) - x(t) \ge 0, \quad t \in [a, b].$

On the other hand, u(t) is symmetric on [a, b] since y and x are symmetric. Now, we shall prove that u is a positive solution of the boundary value problem (1.1) – (1.3). Since y is a fixed point of the operator S,

$$\begin{split} Sy(t) &= y(t), \quad t \in [a,b], \\ \text{or} \\ y(t) &= Sy(t) = \lambda \int_{a}^{b} H(t,s) F(s,y(s)-x(s)) \nabla s \\ &= \lambda \int_{a}^{b} H(t,s) (f(s,y(s)-x(s))+M) \nabla s \\ \text{Noticing that,} \end{split}$$

$$w(t) = \int_{a}^{b} H(t,s) \nabla s$$

we have for $t \in [a, b]$,

$$y(t) = \lambda \int_{a}^{b} H(t,s)f(s,y(s) - x(s))\nabla s + \lambda Mw(t)$$

or

$$y(t) - x(t) = \lambda \int_{a}^{b} H(t,s) f(s,y(s) - x(s)) \nabla s,$$
d hence

and

$$u(t) = \lambda \int_{a}^{b} H(t,s) f(s,u(s)) \nabla s.$$

This shows that u is a symmetric positive solution of the boundary value problem of (1.1) - (1.3). In addition, from (3.11) and (3.12), it follows that

$$|u|| \ge \frac{||y||}{2} \ge \frac{r}{2}.$$

3.2. Example. Let T = Z. Consider the following boundary value problem

(3.13)
$$\left[\frac{100}{t^2+1}u^{\triangle}(t)\right]^{\nabla} + \lambda(be^u\cos^2 t - t^2) = 0, \ t \in (-3,3),$$

(3.14)
$$25u(-3) - 5\lim_{t \to -3^+} \frac{100}{t^2 + 1} u^{\triangle}(t) = \int_{-3}^3 u(s) \cosh s \nabla s,$$

(3.15)
$$25u(3) + 5 \lim_{t \to 3^{-}} \frac{100}{t^2 + 1} u^{\triangle}(t) = \int_{-3}^{3} u(s) \cosh s \nabla s,$$

where b > 0, $\alpha = 25$, $\beta = 5$, $h_1(t) = h_2(t) = \cosh t$, $g(t) = \frac{100}{t^2 + 1}$, $f(t, u(t)) = be^u \cos^2 t - bu^2 \cos^2 t$ t^2 . It is obvious that f satisfies the conditions (C_2) and (H_3) .

Now we shall obtain the constants M and M_1 . Clearly, for all $(t, u) \in [-3, 3] \times [0, \infty)$, we get

 $f(t, u) = be^u \cos^2 t - t^2 \ge -t^2 \ge -9$ and so we can choose the constant M = 9.

$$M_1 = \max_{(t,u)\in[-3,3]\times[0,r]} be^u \cos^2 t - t^2 + M = be^r + M.$$

It follows from a direct calculation that

$$v_{1} = v_{2} = \int_{-3}^{3} h_{1}(s) \nabla s \cong 21.5, \mu = 2\alpha\beta + \alpha^{2} \int_{-3}^{3} \frac{\Delta r}{g(r)} \cong 406.2,$$

$$D = (\beta + \alpha \int_{-3}^{3} \frac{\Delta r}{g(r)})^{2} \cong 126.6, A = \mu + (\beta - K)v_{1} - \beta v_{2} \cong 56, 87,$$

$$B_{1} = \frac{K - \beta}{A} \cong 0.198, B_{2} = \frac{\beta}{A} \cong 0.088, \gamma = 1 + B_{1}v_{1} + B_{2}v_{2} \cong 7.15$$

$$C = \frac{6}{\mu\beta^{2}}D^{2}\gamma \cong 67.71.$$

Then by Theorem 3.1, we see that the boundary value problem (3.13) - (3.15) has at least one symmetric positive solution u such that $||u|| \ge \frac{r}{2}$ for any $\lambda \in (0, \eta]$ where $\eta := \min\{\frac{r}{M_1||w||}, \frac{r}{2MC}\}, r$ is a given positive number and w is the unique positive solution of the boundary value problem $[\frac{100}{t^2+1}u^{\triangle}(t)]^{\nabla} + 1 = 0$ with the boundary condition (3.14) - (3.15).

References

- M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, Cambridge, MA (2001).
- [2] M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, Cambridge, MA (2003).
- [3] A. Boucherif, Second-order boundary value problems with integral boundary conditions, Nonlinear Anal. 70 (2009) 364-371.
- [4] J. R. Cannon, The solution of the heat equation subject to the specification of energy, Quart. Appl. Math. 21 (2) (1963) 155-160.
- [5] R. Yu. Chegis, Numerical solution of a heat conduction problem with an integral boundary condition, Litovsk. Math. Sb. 24 (1984) 209-215.
- [6] J. Henderson, H. B. Thompson, Multiple symmetric positive solutions for a second order boundary value problem, Proc. Amer. Math. Soc. 128 (2000) 2373-2379.
- [7] N. I. Ionkin, Solution of a boundary value problem in heat conduction theory with nonlocal boundary conditions, Differential Equations 13 (1977) 294-304.
- [8] F. Li, Y. Zhang, Multiple symmetric nonnegative solutions of second-order ordinary differential equations, Appl. Math. Lett. 17 (2004) 261-267.
- [9] Y. Sun, Optimal existence criteria for symmetric positive solutions to a three-point boundary value problem, Nonlinear Anal. 66 (2007) 1051-1063.