Existence of symmetric positive solutions for a semipositone problem on time scales

S. Gulsan Topal and Arzu Denk *

Abstract

This paper studies the existence of symmetric positive solutions for a second order nonlinear semipositone boundary value problem with integral boundary conditions by applying the Krasnoselskii fixed point theorem. Emphasis is put on the fact that the nonlinear term f may take negative value. An example is presented to demonstrate the application of our main result.

Keywords: Positive solution, Symmetric solution, Semipositone problems, Fixed point theorems, Time scales.

2000 AMS Classification: 34B15, 39A10.

Received: 07.03.2013 Accepted : 16.12.2014 Doi: 10.15672/HJMS.20164512479

1. Introduction

We will be concerned with proving the existence of at least one symmetric positive solution to the semipositone second order nonlinear boundary value problem on a symmetric time scale T given by

$$
\begin{align*}
& {\left[g(t) u^{\Delta}(t)\right]^{\nabla}+\lambda f(t, u(t))=0, \quad t \in(a, b),} \tag{1.1}\\
& \alpha u(a)-\beta \lim _{t \rightarrow a^{+}} g(t) u^{\Delta}(t)=\int_{a}^{b} h_{1}(s) u(s) \nabla s, \tag{1.2}\\
& \alpha u(b)+\beta \lim _{t \rightarrow b^{-}} g(t) u^{\triangle}(t)=\int_{a}^{b} h_{2}(s) u(s) \nabla s, \tag{1.3}
\end{align*}
$$

where $\lambda>0$ is a parameter, $\alpha, \beta>0, \nabla$-differentiable function $g \in C([a, b],(0, \infty))$ is symmetric on $[a, b], h_{1}, h_{2} \in L^{1}([a, b])$ is nonnegative, symmetric on $[a, b]$ and the continuous function $f:[a, b] \times[0, \infty) \rightarrow R$ satisfies $f(b+a-t, u)=f(t, u)$.

[^0]A class of boundary value problems with integral boundary conditions arise naturally in thermal condition problems [4], semiconductor problems [7], and hydrodynamic problems [5]. Such problems include two, three and multi-point boundary conditions and have recently been investigated by many authors $[3,6,8,9]$.

The present work is motivated by recent paper [3]. In this paper, Boucherif considered the following second order boundary value problem with integral boundary conditions

$$
\begin{align*}
& x^{\prime \prime}(t)=f(t, x(t)), \quad 0<t<1, \tag{1.4}\\
& x(0)-c x^{\prime}(0)=\int_{0}^{1} g_{0}(s) x(s) d s, \tag{1.5}\\
& x(1)-d x^{\prime}(1)=\int_{0}^{1} g_{1}(s) x(s) d s, \tag{1.6}
\end{align*}
$$

where $f:[0,1] \times R \rightarrow R$ is continuous, $g_{0}, g_{1}:[0,1] \rightarrow[0, \infty)$ are continuous and positive, c and d are nonnegative real parameters. The author established some excellent results for the existence of positive solutions to problem (1.4) - (1.6) by using the fixed point theorem in cones.

Throughout this paper T is a symmetric time scale with a, b are points in T . By an interval (a, b), we always mean the intersection of the real interval (a, b) with the given time scale, that is $(a, b) \cap \mathrm{T}$. Other types of intervals are defined similarly. For the details of basic notions connected to time scales we refer to $[1,2]$.

Now, we present some symmetric definition.
1.1. Definition. A time scale T is said to be symmetric if for any given $t \in \mathrm{~T}$, we have $b+a-t \in \mathrm{~T}$.
1.2. Definition. A function $u: \mathrm{T} \rightarrow R$ is said to be symmetric on T if for any given $t \in \mathrm{~T}, u(t)=u(b+a-t)$.

2. The Preliminary Lemmas

In this section we collect some preliminary results that will be used in subsequent section.

Throughout the paper we will assume that the following conditions are satisfied:
$\left(H_{1}\right) \quad \alpha, \beta>0$,
$\left(H_{2}\right) \quad \nabla$-differentiable function $g \in C([a, b],(0, \infty))$ is symmetric on $[a, b]$,
$\left(H_{3}\right)$ the continuous function $f:[a, b] \times[0, \infty) \rightarrow R$ is semipositone, i.e., $f(t, u)$ needn't be positive for all $(t, u) \in[a, b] \times[0, \infty)$ and $f(., u)$ is symmetric on $[a, b]$ for all $u \geq 0$, $\left(H_{4}\right) \quad h_{1}, h_{2} \in L^{1}([a, b])$ is nonnegative, symmetric on $[a, b]$ and $A>0$, where $A=$ $\mu+(\beta-K) v_{1}-\beta v_{2}, \quad K=\frac{\mu}{\alpha}, \quad \mu=2 \alpha \beta+\alpha^{2} \int_{a}^{b} \frac{\Delta r}{g(r)}, \quad v_{1}=\int_{a}^{b} h_{1}(\tau) \nabla \tau, \quad v_{2}=$ $\int_{a}^{b} h_{2}(\tau) \nabla \tau$.

The lemmas in this section are based on the boundary value problem

$$
\begin{equation*}
-\left[g(t) u^{\triangle}(t)\right]^{\nabla}=p(t), \quad t \in(a, b) \tag{2.1}
\end{equation*}
$$

with boundary conditions (1.2) - (1.3).
To prove the main result, we will employ following lemmas.
2.1. Lemma. Let $\left(H_{1}\right),\left(H_{2}\right)$ hold and $A \neq 0$. Then for any $p \in C([a, b])$, the boundary value problem (2.1) - (1.2) - (1.3) has a unique solution u given by

$$
u(t)=\int_{a}^{b} H(t, s) p(s) \nabla s
$$

where

$$
\begin{align*}
& H(t, s)=G(t, s)+B_{1} \int_{a}^{b} G(s, \tau) h_{1}(\tau) \nabla \tau+B_{2} \int_{a}^{b} G(s, \tau) h_{2}(\tau) \nabla \tau \tag{2.2}\\
& G(t, s)=\frac{1}{\mu} \begin{cases}\left(\beta+\alpha \int_{a}^{s} \frac{\Delta r}{g(r)}\right)\left(\beta+\alpha \int_{t}^{b} \frac{\Delta r}{g(r)}\right), \quad a \leq s \leq t \leq b, \\
\left(\beta+\alpha \int_{a}^{t} \frac{\Delta r}{g(r)}\right)\left(\beta+\alpha \int_{s}^{b} \frac{\Delta r}{g(r)}\right), \quad a \leq t \leq s \leq b,\end{cases} \tag{2.3}
\end{align*}
$$

where $\mu=2 \alpha \beta+\alpha^{2} \int_{a}^{b} \frac{\Delta r}{g(r)}, B_{1}=\frac{K-\beta}{A}, B_{2}=\frac{\beta}{A}$.
2.2. Lemma. Assume that $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{4}\right)$ hold. Then we have
(i) $H(t, s)>0, \quad G(t, s)>0$, for $t, s \in[a, b]$,
(ii) $H(b+a-t, b+a-s)=H(t, s), \quad G(b+a-t, b+a-s)=G(t, s)$, for $t, s \in[a, b]$, (iii) $\frac{1}{\mu} \beta^{2} \gamma \leq H(t, s) \leq H(s, s) \leq \frac{1}{\mu} \gamma D$ and $\frac{1}{\mu} \beta^{2} \leq G(t, s) \leq G(s, s) \leq \frac{1}{\mu} D$, for $t, s \in[a, b]$,
where $D=\left(\beta+\alpha \int_{a}^{b} \frac{\Delta r}{g(r)}\right)^{2}, \gamma=1+B_{1} v_{1}+B_{2} v_{2}$.
Proof. It is clear that (i) hold. Now we prove that (ii) and (iii) hold. First, we consider (ii). If $t \leq s$, then $b+a-t \geq b+a-s$. Using (2.3) and the assumption (H_{2}), we get

$$
\begin{aligned}
G(b+a-t, b+a-s)= & \frac{1}{\mu}\left(\beta+\alpha \int_{a}^{b+a-s} \frac{\Delta r}{g(r)}\right)\left(\beta+\alpha \int_{b+a-t}^{b} \frac{\Delta r}{g(r)}\right) \\
& =\frac{1}{\mu}\left(\beta+\alpha \int_{b}^{s} \frac{\Delta(b+a-r)}{g(b+a-r)}\right)\left(\beta+\alpha \int_{t}^{a} \frac{\Delta(b+a-r)}{g(b+a-r)}\right) \\
& =\frac{1}{\mu}\left(\beta+\alpha \int_{s}^{b} \frac{\Delta r}{g(r)}\right)\left(\beta+\alpha \int_{a}^{t} \frac{\Delta r}{g(r)}\right)=G(t, s) .
\end{aligned}
$$

Similarly, we can prove that $G(b+a-t, b+a-s)=G(t, s)$, for $s \leq t$. Thus we have $G(b+a-t, b+a-s)=G(t, s)$, for $t, s \in[a, b]$. Now by (2.2), for $t, s \in[a, b]$, we have

$$
\begin{aligned}
H(b+a-t, b+a-s)= & G(b+a-t, b+a-s)+B_{1} \int_{a}^{b} G(b+a-s, \tau) h_{1}(\tau) \nabla \tau \\
& +B_{2} \int_{a}^{b} G(b+a-s, \tau) h_{2}(\tau) \nabla \tau \\
= & G(t, s)+B_{1} \int_{b}^{a} G(b+a-s, b+a-\tau) h_{1}(b+a-\tau) \nabla(b+a-\tau) \\
& +B_{2} \int_{b}^{a} G(b+a-s, b+a-\tau) h_{2}(b+a-\tau) \nabla(b+a-\tau) \\
= & G(t, s)+B_{1} \int_{a}^{b} G(s, \tau) h_{1}(\tau) \nabla \tau+B_{2} \int_{a}^{b} G(s, \tau) h_{2}(\tau) \nabla \tau \\
= & H(t, s) .
\end{aligned}
$$

So (ii) is established. Now we show that (iii) holds. In fact, if $t \leq s$, from (2.3) and the assumption $\left(\mathrm{H}_{2}\right)$, then we get

$$
\begin{aligned}
G(t, s) & =\frac{1}{\mu}\left(\beta+\alpha \int_{a}^{t} \frac{\Delta r}{g(r)}\right)\left(\beta+\alpha \int_{s}^{b} \frac{\Delta r}{g(r)}\right) \leq \frac{1}{\mu}\left(\beta+\alpha \int_{a}^{s} \frac{\Delta r}{g(r)}\right)\left(\beta+\alpha \int_{s}^{b} \frac{\Delta r}{g(r)}\right) \\
& =G(s, s) \\
& \leq \frac{1}{\mu}\left(\beta+\alpha \int_{a}^{b} \frac{\Delta r}{g(r)}\right)\left(\beta+\alpha \int_{a}^{b} \frac{\Delta r}{g(r)}\right)=\frac{1}{\mu}\left(\beta+\alpha \int_{a}^{b} \frac{\Delta r}{g(r)}\right)^{2}=\frac{1}{\mu} D .
\end{aligned}
$$

Similarly, we can prove that $G(t, s) \leq G(s, s) \leq \frac{1}{\mu} D$ for $s \leq t$.
Therefore $G(t, s) \leq G(s, s) \leq \frac{1}{\mu} D$, for $t, s \in[a, b]$. And then, by (2.2), we have

$$
\begin{aligned}
H(t, s) & =G(t, s)+B_{1} \int_{a}^{b} G(s, \tau) h_{1}(\tau) \nabla \tau+B_{2} \int_{a}^{b} G(s, \tau) h_{2}(\tau) \nabla \tau \\
& \leq G(s, s)+B_{1} \int_{a}^{b} G(\tau, \tau) h_{1}(\tau) \nabla \tau+B_{2} \int_{a}^{b} G(\tau, \tau) h_{2}(\tau) \nabla \tau \\
& \leq \frac{1}{\mu} D+\frac{1}{\mu} D B_{1} \int_{a}^{b} h_{1}(\tau) \nabla \tau+\frac{1}{\mu} D B_{2} \int_{a}^{b} h_{2}(\tau) \nabla \tau=\frac{1}{\mu} D\left(1+B_{1} v_{1}+B_{2} v_{2}\right) \\
& =\frac{1}{\mu} D \gamma .
\end{aligned}
$$

On the other hand, for $t, s \in[a, b]$, we have

$$
G(t, s) \geq \frac{1}{\mu}\left(\beta+\alpha \int_{a}^{a} \frac{\Delta r}{g(r)}\right)\left(\beta+\alpha \int_{b}^{b} \frac{\Delta r}{g(r)}\right)=\frac{1}{\mu} \beta^{2} .
$$

And then, we get

$$
\begin{aligned}
H(t, s)= & G(t, s)+B_{1} \int_{a}^{b} G(s, \tau) h_{1}(\tau) \nabla \tau+B_{2} \int_{a}^{b} G(s, \tau) h_{2}(\tau) \nabla \tau \\
& \geq \frac{1}{\mu} \beta^{2}+\frac{1}{\mu} \beta^{2} B_{1} \int_{a}^{b} h_{1}(\tau) \nabla \tau+\frac{1}{\mu} \beta^{2} B_{2} \int_{a}^{b} h_{2}(\tau) \nabla \tau=\frac{1}{\mu} \beta^{2} \gamma .
\end{aligned}
$$

Thus for $t, s \in[a, b]$, we have

$$
\frac{1}{\mu} \beta^{2} \gamma \leq H(t, s) \leq H(s, s) \leq \frac{1}{\mu} \gamma D \text { and } \frac{1}{\mu} \beta^{2} \leq G(t, s) \leq G(s, s) \leq \frac{1}{\mu} D
$$

This completes the proof.
2.3. Lemma. Let w be the unique positive solution of the boundary value problem

$$
\begin{equation*}
\left[g(t) u^{\Delta}(t)\right]^{\nabla}+1=0 \tag{2.4}
\end{equation*}
$$

with the boundary condition (1.2) - (1.3). Then,

$$
w(t) \leq C \delta, \quad t \in[a, b]
$$

where

$$
\begin{equation*}
\delta=\frac{\beta^{2}}{D}, \quad C=\frac{b-a}{\mu \beta^{2}} D^{2} \gamma \tag{2.5}
\end{equation*}
$$

Proof. Using Lemma 2.2, for all $t \in[a, b]$, we have

$$
w(t)=\int_{a}^{b} H(t, s) \nabla s \leq \frac{1}{\mu} \gamma D \int_{a}^{b} \nabla s=C \delta .
$$

The proof is complete.

Let E denote the Banach space $C[a, b]$ with the norm $\|u\|=\max _{t \in[a, b]}|u(t)|$. Define the cone $P \subset E$ by $P=\{u \in E: u(t)$ is symmetric and $u(t) \geq \delta\|u\|$ for $t \in[a, b]\}$.

To obtain the a positive solution of BVP (1.1) - (1.3), the following fixed point theorem is essential.
2.4. Theorem. Let $E=(E,\|\|$.$) be a Banach space, and let P \subset E$ be a cone in B. Assume Ω_{1}, Ω_{2} are bounded open subsets of E with $0 \in \Omega_{1}, \overline{\Omega_{1}} \subset \Omega_{2}$, and let $S: P \cap\left(\overline{\Omega_{2}} \backslash \Omega_{1}\right) \rightarrow P$
be a continuous and completely continuous operator such that, either
(a) $\|S u\| \leq\|u\|, u \in P \cap \partial \Omega_{1}$, and $\|S u\| \geq\|u\|, u \in P \cap \partial \Omega_{2}$, or
(b) $\|S u\| \geq\|u\|, u \in P \cap \partial \Omega_{1}$, and $\|S u\| \leq\|u\|, u \in P \cap \partial \Omega_{2}$.

Then S has a fixed point in $P \cap\left(\overline{\Omega_{2}} \backslash \Omega_{1}\right)$.

3. Main Results

In this section, we apply the Krasnoselskii fixed point theorem to obtain the existence of at least one symmetric positive solution for the nonlinear boundary value problem (1.1) - (1.3).

The main result of this paper is following:
3.1. Theorem. Let $\left(H_{1}\right)-\left(H_{4}\right)$ hold. Assume that
$\left(C_{1}\right)$ There exists a constant $M>0$ such that $f(t, u) \geq-M$ for all $(t, u) \in[a, b] \times$ $[0, \infty)$,
$\left(C_{2}\right)$ There $\lim _{u \rightarrow \infty}^{\operatorname{xist}} \frac{\boldsymbol{f}_{1}(t t u £ \in}{u}=(a, b)$ such that
uniformly on $\left[t_{1}, t_{2}\right]$,
$\left(C_{3}\right) r$ is a given positive real number and the parameter λ satisfies

$$
\begin{equation*}
0<\lambda \leq \eta:=\min \left\{\frac{r}{M_{1}\|w\|}, \frac{r}{2 M C}\right\} \tag{3.1}
\end{equation*}
$$

where $M_{1}=\max \{f(t, u)+M:(t, u) \in[a, b] \times[0, r]\}$.
Then the boundary value problem (1.1) - (1.3) has at least one symmetric positive solution u such that $\|u\| \geq \frac{r}{2}$.
Proof. Let $x(t)=\lambda M w(t)$, where w is the unique solution of the boundary value problem (2.4) - (1.2) - (1.3).

We shall show that the following boundary value problem

$$
\begin{gather*}
{\left[g(t) y^{\triangle}(t)\right]^{\nabla}+\lambda F(t, y(t)-x(t))=0, t \in(a, b)} \tag{3.2}\\
\alpha y(a)-\beta \lim _{t \rightarrow a^{+}} g(t) y^{\triangle}(t)=\int_{a}^{b} h_{1}(s) y(s) \nabla s \tag{3.3}\\
\alpha y(b)+\beta \lim _{t \rightarrow b^{-}} g(t) y^{\triangle}(t)=\int_{a}^{b} h_{2}(s) y(s) \nabla s \tag{3.4}
\end{gather*}
$$

where

$$
F(t, z)= \begin{cases}f(t, z)+M, & z \geq 0 \\ f(t, 0)+M, & z \leq 0\end{cases}
$$

has at least one positive solution. Thereafter we shall obtain at least one positive solution for the boundary value problem (1.1) - (1.3).

It is well known that the existence of positive solution to the boundary value problem (3.2) - (3.4) is equivalent to the existence of fixed point of the operator S. So we shall seek a fixed point of S in our cone P where the operator $S: E \rightarrow E$ is defined by

$$
S y(t)=\lambda \int_{a}^{b} H(t, s) F(s, y(s)-x(s)) \nabla s, \quad t \in[a, b] .
$$

First, it is obvious that S is continuous and completely continuous.
Now we shall prove that $S(P) \subseteq P$. Let $y \in P$. Then, using Lemma 2.2, we get for $t \in[a, b]$,

$$
S y(t)=\lambda \int_{a}^{b} H(t, s) F(s, y(s)-x(s)) \nabla s \leq \frac{\lambda}{\mu} \gamma D \int_{a}^{b} F(s, y(s)-x(s)) \nabla s,
$$

and so

$$
\begin{equation*}
\|S y\| \leq \frac{\lambda}{\mu} \gamma D \int_{a}^{b} F(s, y(s)-x(s)) \nabla s . \tag{3.5}
\end{equation*}
$$

Now, using Lemma 2.2 and (3.5), we obtain for $t \in[a, b]$,

$$
\begin{aligned}
S y(t) & =\lambda \int_{a}^{b} H(t, s) F(s, y(s)-x(s)) \nabla s \geq \frac{\lambda}{\mu} \beta^{2} \gamma \int_{a}^{b} F(s, y(s)-x(s)) \nabla s \\
& =\frac{\lambda}{\mu} \delta \gamma D \int_{a}^{b} F(s, y(s)-x(s)) \nabla s \geq \delta\|S y\| .
\end{aligned}
$$

On the other hand, noticing $y(t), x(t)$ and $f(t, u)$ are symmetric on $[a, b]$, we have

$$
\begin{aligned}
S y(b+a-t) & =\lambda \int_{a}^{b} H(b+a-t, s) F(s, y(s)-x(s)) \nabla s \\
& =\lambda \int_{a}^{b} H(b+a-t, s)(f(s, y(s)-x(s))+M) \nabla s \\
& =\lambda \int_{b}^{a} H(b+a-t, b+a-s)(f(s,(y-x)(b+a-s))+M) \nabla(b+a-s) \\
& =\lambda \int_{a}^{b} H(t, s)(f(s,(y-x)(s))+M) \nabla s \\
& =\lambda \int_{a}^{b} H(t, s) F(s,(y-x)(s)) \nabla s=S y(t)
\end{aligned}
$$

Therefore $S y$ is symmetric.
So, we get $S(P) \subseteq P$.
Let $\Omega_{1}=\{y \in E:\|y\|<r\}$. We shall prove that $\|S y\| \leq\|y\|$ for $y \in P \cap \partial \Omega_{1}$. If $y \in P \cap \partial \Omega_{1}$, then $\|y\|=r$. By definition and (3.1), we find for $t \in[a, b]$,

$$
S y(t)=\lambda \int_{a}^{b} H(t, s) F(s, y(s)-x(s)) \nabla s \leq \lambda M_{1} \int_{a}^{b} H(t, s) \nabla s \leq \lambda M_{1}\|w\| \leq r .
$$

Therefore, we get $\|S y\| \leq r=\|y\|$ for $y \in P \cap \partial \Omega_{1}$.
Let K be a positive real number such that

$$
\begin{equation*}
\frac{1}{2} \lambda K\left(t_{2}-t_{1}\right) \delta \frac{1}{\mu} \beta^{2} \gamma>1 \tag{3.6}
\end{equation*}
$$

In view of $\left(C_{2}\right)$, there exists $N>0$ such that for all $z \geq N$ and $t \in\left[t_{1}, t_{2}\right]$,

$$
\begin{equation*}
F(t, z)=f(t, z)+M \geq K z \tag{3.7}
\end{equation*}
$$

Now, set

$$
\begin{equation*}
R=r+\frac{2 N}{\delta} \tag{3.8}
\end{equation*}
$$

Let $\Omega_{2}=\{y \in E:\|y\|<R\}$. We shall prove that $\|S y\| \geq\|y\|$ for $y \in P \cap \partial \Omega_{2}$. If $y \in P \cap \partial \Omega_{2}$, then $\|y\|=R$. So from Lemma 2.3 and the fact that $y \in P$, we get for $t \in[a, b]$,

$$
x(t)=\lambda M w(t) \leq \lambda M C \delta \leq \lambda M C \frac{y(t)}{R}
$$

This implies for $t \in[a, b]$,

$$
y(t)-x(t) \geq\left(1-\frac{\lambda M C}{R}\right) y(t) \geq\left(1-\frac{\lambda M C}{R}\right) \delta R,
$$

and, from (3.1) and (3.8), we get for $t \in\left[t_{1}, t_{2}\right]$,

$$
\begin{equation*}
y(t)-x(t) \geq \frac{1}{2} R \delta \geq N \tag{3.9}
\end{equation*}
$$

Thus, by (3.7) and (3.9), we see that for $t \in\left[t_{1}, t_{2}\right]$,

$$
\begin{equation*}
F(t, y(t)-x(t)) \geq K(y(t)-x(t)) \geq \frac{1}{2} K R \delta . \tag{3.10}
\end{equation*}
$$

Considering Lemma 2.2 and (3.10), we get for $t \in[a, b]$,

$$
\begin{aligned}
S y(t) & =\lambda \int_{a}^{b} H(t, s) F(s, y(s)-x(s)) \nabla s \geq \lambda \frac{1}{\mu} \beta^{2} \gamma \int_{t_{1}}^{t_{2}} F(s, y(s)-x(s)) \nabla s \\
& \geq \frac{1}{2 \mu} \lambda K R \delta \beta^{2} \gamma \int_{t_{1}}^{t_{2}} \nabla s
\end{aligned}
$$

and so by (3.6),

$$
\|S y\| \geq \frac{1}{2 \mu} \lambda K R\left(t_{2}-t_{1}\right) \delta \beta^{2} \gamma \geq R .
$$

Therefore, we get $\|S y\| \geq R=\|y\|$ for $y \in P \cap \partial \Omega_{2}$.
Then it follows from Theorem 2.1 that S has a fixed point $y \in P$ such that

$$
\begin{equation*}
r \leq\|y\| \leq R \tag{3.11}
\end{equation*}
$$

Moreover, using (3.1), (3.11) and Lemma 2.3, we obtain for $t \in[a, b]$,

$$
\begin{equation*}
y(t) \geq \delta\|y\| \geq r \delta \geq 2 \lambda M C \delta \geq 2 \lambda M w(t)=2 x(t) \tag{3.12}
\end{equation*}
$$

Hence,

$$
u(t)=y(t)-x(t) \geq 0, \quad t \in[a, b]
$$

On the other hand, $u(t)$ is symmetric on $[a, b]$ since y and x are symmetric.
Now, we shall prove that u is a positive solution of the boundary value problem (1.1) (1.3). Since y is a fixed point of the operator S,

$$
S y(t)=y(t), \quad t \in[a, b],
$$

or

$$
\begin{aligned}
y(t) & =S y(t)=\lambda \int_{a}^{b} H(t, s) F(s, y(s)-x(s)) \nabla s \\
& =\lambda \int_{a}^{b} H(t, s)(f(s, y(s)-x(s))+M) \nabla s
\end{aligned}
$$

Noticing that,

$$
w(t)=\int_{a}^{b} H(t, s) \nabla s
$$

we have for $t \in[a, b]$,

$$
y(t)=\lambda \int_{a}^{b} H(t, s) f(s, y(s)-x(s)) \nabla s+\lambda M w(t)
$$

or

$$
y(t)-x(t)=\lambda \int_{a}^{b} H(t, s) f(s, y(s)-x(s)) \nabla s
$$

and hence

$$
u(t)=\lambda \int_{a}^{b} H(t, s) f(s, u(s)) \nabla s .
$$

This shows that u is a symmetric positive solution of the boundary value problem of (1.1) - (1.3). In addition, from (3.11) and (3.12), it follows that

$$
\|u\| \geq \frac{\|y\|}{2} \geq \frac{r}{2} .
$$

3.2. Example. Let $\mathrm{T}=Z$. Consider the following boundary value problem

$$
\begin{align*}
& {\left[\frac{100}{t^{2}+1} u^{\Delta}(t)\right]^{\nabla}+\lambda\left(b e^{u} \cos ^{2} t-t^{2}\right)=0, t \in(-3,3),} \tag{3.13}\\
& 25 u(-3)-5 \lim _{t \rightarrow-3^{+}} \frac{100}{t^{2}+1} u^{\triangle}(t)=\int_{-3}^{3} u(s) \cosh s \nabla s \tag{3.14}\\
& 25 u(3)+5 \lim _{t \rightarrow 3^{-}} \frac{100}{t^{2}+1} u^{\Delta}(t)=\int_{-3}^{3} u(s) \cosh s \nabla s, \tag{3.15}
\end{align*}
$$

where $b>0, \alpha=25, \beta=5, h_{1}(t)=h_{2}(t)=\cosh t, g(t)=\frac{100}{t^{2}+1}, f(t, u(t))=b e^{u} \cos ^{2} t-$ t^{2}. It is obvious that f satisfies the conditions $\left(C_{2}\right)$ and $\left(H_{3}\right)$.

Now we shall obtain the constants M and M_{1}. Clearly, for all $(t, u) \in[-3,3] \times[0, \infty)$, we get
$f(t, u)=b e^{u} \cos ^{2} t-t^{2} \geq-t^{2} \geq-9$ and so we can choose the constant $M=9$.

$$
M_{1}=\max _{(t, u) \in[-3,3] \times[0, r]} b e^{u} \cos ^{2} t-t^{2}+M=b e^{r}+M
$$

It follows from a direct calculation that
$v_{1}=v_{2}=\int_{-3}^{3} h_{1}(s) \nabla s \cong 21.5, \mu=2 \alpha \beta+\alpha^{2} \int_{-3}^{3} \frac{\Delta r}{g(r)} \cong 406.2$,
$D=\left(\beta+\alpha \int_{-3}^{3} \frac{\Delta r}{g(r)}\right)^{2} \cong 126.6, A=\mu+(\beta-K) v_{1}-\beta v_{2} \cong 56,87$,
$B_{1}=\frac{K-\beta}{A} \cong 0.198, B_{2}=\frac{\beta}{A} \cong 0.088, \gamma=1+B_{1} v_{1}+B_{2} v_{2} \cong 7.15$,
$C=\frac{6}{\mu \beta^{2}} D^{2} \gamma \cong 67.71$.
Then by Theorem 3.1, we see that the boundary value problem (3.13) - (3.15) has at least one symmetric positive solution u such that $\|u\| \geq \frac{r}{2}$ for any $\lambda \in(0, \eta]$ where $\eta:=\min \left\{\frac{r}{M_{1}\|w\|}, \frac{r}{2 M C}\right\}, r$ is a given positive number and w is the unique positive solution of the boundary value problem $\left[\frac{100}{t^{2}+1} u^{\Delta}(t)\right]^{\nabla}+1=0$ with the boundary condition (3.14) - (3.15).

References

[1] M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, Cambridge, MA (2001).
[2] M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, Cambridge, MA (2003).
[3] A. Boucherif, Second-order boundary value problems with integral boundary conditions, Nonlinear Anal. 70 (2009) 364-371.
[4] J. R. Cannon, The solution of the heat equation subject to the specification of energy, Quart. Appl. Math. 21 (2) (1963) 155-160.
[5] R. Yu. Chegis, Numerical solution of a heat conduction problem with an integral boundary condition, Litovsk. Math. Sb. 24 (1984) 209-215.
[6] J. Henderson, H. B. Thompson, Multiple symmetric positive solutions for a second order boundary value problem, Proc. Amer. Math. Soc. 128 (2000) 2373-2379.
[7] N. I. Ionkin, Solution of a boundary value problem in heat conduction theory with nonlocal boundary conditions, Differential Equations 13 (1977) 294-304.
[8] F. Li, Y. Zhang, Multiple symmetric nonnegative solutions of second-order ordinary differential equations, Appl. Math. Lett. 17 (2004) 261-267.
[9] Y. Sun, Optimal existence criteria for symmetric positive solutions to a three-point boundary value problem, Nonlinear Anal. 66 (2007) 1051-1063.

[^0]: *Department of Mathematics, Ege University, 35100 Bornova, Izmir-Turkey.
 Email : f.serap.topal@ege.edu.tr ; arzu.denk@hotmail.com

