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Existence of symmetric positive solutions for a
semipositone problem on time scales

S. Gulsan Topal and Arzu Denk ∗

Abstract
This paper studies the existence of symmetric positive solutions for a
second order nonlinear semipositone boundary value problem with in-
tegral boundary conditions by applying the Krasnoselskii fixed point
theorem. Emphasis is put on the fact that the nonlinear term f may
take negative value. An example is presented to demonstrate the ap-
plication of our main result.
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1. Introduction
We will be concerned with proving the existence of at least one symmetric posi-

tive solution to the semipositone second order nonlinear boundary value problem on a
symmetric time scale T given by

[g(t)u4(t)]∇ + λf(t, u(t)) = 0, t ∈ (a, b),(1.1)

αu(a)− β lim
t→a+

g(t)u4(t) =

∫ b

a

h1(s)u(s)∇s,(1.2)

αu(b) + β lim
t→b−

g(t)u4(t) =

∫ b

a

h2(s)u(s)∇s,(1.3)

where λ > 0 is a parameter, α, β > 0, ∇-differentiable function g ∈ C([a, b], (0,∞))
is symmetric on [a, b], h1, h2 ∈ L1([a, b]) is nonnegative, symmetric on [a, b] and the
continuous function f : [a, b]× [0,∞)→ R satisfies f(b+ a− t, u) = f(t, u).
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A class of boundary value problems with integral boundary conditions arise naturally
in thermal condition problems [4], semiconductor problems [7], and hydrodynamic prob-
lems [5]. Such problems include two, three and multi-point boundary conditions and
have recently been investigated by many authors [3, 6, 8, 9].

The present work is motivated by recent paper [3]. In this paper, Boucherif considered
the following second order boundary value problem with integral boundary conditions

x′′(t) = f(t, x(t)), 0 < t < 1,(1.4)

x(0)− cx′(0) =

∫ 1

0

g0(s)x(s)ds,(1.5)

x(1)− dx′(1) =

∫ 1

0

g1(s)x(s)ds,(1.6)

where f : [0, 1]×R→ R is continuous, g0, g1 : [0, 1]→ [0,∞) are continuous and positive,
c and d are nonnegative real parameters. The author established some excellent results
for the existence of positive solutions to problem (1.4) − (1.6) by using the fixed point
theorem in cones.

Throughout this paper T is a symmetric time scale with a, b are points in T. By an
interval (a, b), we always mean the intersection of the real interval (a, b) with the given
time scale, that is (a, b)∩T. Other types of intervals are defined similarly. For the details
of basic notions connected to time scales we refer to [1, 2].

Now, we present some symmetric definition.

1.1. Definition. A time scale T is said to be symmetric if for any given t ∈ T, we have
b+ a− t ∈ T.

1.2. Definition. A function u : T → R is said to be symmetric on T if for any given
t ∈ T, u(t) = u(b+ a− t).

2. The Preliminary Lemmas
In this section we collect some preliminary results that will be used in subsequent

section.
Throughout the paper we will assume that the following conditions are satisfied:

(H1) α, β > 0,
(H2) ∇-differentiable function g ∈ C([a, b], (0,∞)) is symmetric on [a, b],
(H3) the continuous function f : [a, b]× [0,∞)→ R is semipositone, i.e., f(t, u) needn’t
be positive for all (t, u) ∈ [a, b]× [0,∞) and f(., u) is symmetric on [a, b] for all u ≥ 0,
(H4) h1, h2 ∈ L1([a, b]) is nonnegative, symmetric on [a, b] and A > 0, where A =

µ + (β −K)v1 − βv2, K =
µ

α
, µ = 2αβ + α2

∫ b

a

∆r

g(r)
, v1 =

∫ b

a

h1(τ)∇τ , v2 =∫ b

a

h2(τ)∇τ .

The lemmas in this section are based on the boundary value problem

−[g(t)u4(t)]∇ = p(t), t ∈ (a, b)(2.1)

with boundary conditions (1.2)− (1.3).
To prove the main result, we will employ following lemmas.

2.1. Lemma. Let (H1), (H2) hold and A 6= 0. Then for any p ∈ C([a, b]), the boundary
value problem (2.1)− (1.2)− (1.3) has a unique solution u given by
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u(t) =

∫ b

a

H(t, s)p(s)∇s,

where

H(t, s) = G(t, s) +B1

∫ b

a

G(s, τ)h1(τ)∇τ +B2

∫ b

a

G(s, τ)h2(τ)∇τ(2.2)

G(t, s) =
1

µ


(β + α

∫ s

a

∆r

g(r)
)(β + α

∫ b

t

∆r

g(r)
), a ≤ s ≤ t ≤ b,

(β + α

∫ t

a

∆r

g(r)
)(β + α

∫ b

s

∆r

g(r)
), a ≤ t ≤ s ≤ b,

(2.3)

where µ = 2αβ + α2

∫ b

a

∆r

g(r)
, B1 =

K − β
A

,B2 =
β

A
.

2.2. Lemma. Assume that (H1), (H2) and (H4) hold. Then we have
(i) H(t, s) > 0, G(t, s) > 0, for t, s ∈ [a, b],
(ii) H(b+ a− t, b+ a− s) = H(t, s), G(b+ a− t, b+ a− s) = G(t, s), for t, s ∈ [a, b],

(iii)
1

µ
β2γ ≤ H(t, s) ≤ H(s, s) ≤ 1

µ
γD and

1

µ
β2 ≤ G(t, s) ≤ G(s, s) ≤ 1

µ
D, for

t, s ∈ [a, b],

where D = (β + α

∫ b

a

∆r

g(r)
)2, γ = 1 +B1v1 +B2v2.

Proof. It is clear that (i) hold. Now we prove that (ii) and (iii) hold. First, we consider
(ii). If t ≤ s, then b+ a− t ≥ b+ a− s. Using (2.3) and the assumption (H2), we get

G(b+ a− t, b+ a− s) =
1

µ
(β + α

∫ b+a−s

a

∆r

g(r)
)(β + α

∫ b

b+a−t

∆r

g(r)
)

=
1

µ
(β + α

∫ s

b

∆(b+ a− r)
g(b+ a− r) )(β + α

∫ a

t

∆(b+ a− r)
g(b+ a− r) )

=
1

µ
(β + α

∫ b

s

∆r

g(r)
)(β + α

∫ t

a

∆r

g(r)
) = G(t, s).

Similarly, we can prove that G(b+ a− t, b+ a− s) = G(t, s), for s ≤ t. Thus we have
G(b+ a− t, b+ a− s) = G(t, s), for t, s ∈ [a, b]. Now by (2.2), for t, s ∈ [a, b], we have

H(b+ a− t, b+ a− s) = G(b+ a− t, b+ a− s) +B1

∫ b

a

G(b+ a− s, τ)h1(τ)∇τ

+B2

∫ b

a

G(b+ a− s, τ)h2(τ)∇τ

= G(t, s)+B1

∫ a

b

G(b+a−s, b+a−τ)h1(b+a−τ)∇(b+a−τ)

+B2

∫ a

b

G(b+ a− s, b+ a− τ)h2(b+ a− τ)∇(b+ a− τ)

= G(t, s) +B1

∫ b

a

G(s, τ)h1(τ)∇τ +B2

∫ b

a

G(s, τ)h2(τ)∇τ

= H(t, s).

So (ii) is established. Now we show that (iii) holds. In fact, if t ≤ s, from (2.3) and
the assumption (H2), then we get
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G(t, s) =
1

µ
(β + α

∫ t

a

∆r

g(r)
)(β + α

∫ b

s

∆r

g(r)
) ≤ 1

µ
(β + α

∫ s

a

∆r

g(r)
)(β + α

∫ b

s

∆r

g(r)
)

= G(s, s)

≤ 1

µ
(β + α

∫ b

a

∆r

g(r)
)(β + α

∫ b

a

∆r

g(r)
) =

1

µ
(β + α

∫ b

a

∆r

g(r)
)2 =

1

µ
D.

Similarly, we can prove that G(t, s) ≤ G(s, s) ≤ 1

µ
D for s ≤ t.

Therefore G(t, s) ≤ G(s, s) ≤ 1

µ
D, for t, s ∈ [a, b]. And then, by (2.2), we have

H(t, s) = G(t, s) +B1

∫ b

a

G(s, τ)h1(τ)∇τ +B2

∫ b

a

G(s, τ)h2(τ)∇τ

≤ G(s, s) +B1

∫ b

a

G(τ, τ)h1(τ)∇τ +B2

∫ b

a

G(τ, τ)h2(τ)∇τ

≤ 1

µ
D +

1

µ
DB1

∫ b

a

h1(τ)∇τ +
1

µ
DB2

∫ b

a

h2(τ)∇τ =
1

µ
D(1 +B1v1 +B2v2)

=
1

µ
Dγ.

On the other hand, for t, s ∈ [a, b], we have

G(t, s) ≥ 1

µ
(β + α

∫ a

a

∆r

g(r)
)(β + α

∫ b

b

∆r

g(r)
) =

1

µ
β2.

And then, we get

H(t, s) = G(t, s) +B1

∫ b

a

G(s, τ)h1(τ)∇τ +B2

∫ b

a

G(s, τ)h2(τ)∇τ

≥ 1

µ
β2 +

1

µ
β2B1

∫ b

a

h1(τ)∇τ +
1

µ
β2B2

∫ b

a

h2(τ)∇τ =
1

µ
β2γ.

Thus for t, s ∈ [a, b], we have

1

µ
β2γ ≤ H(t, s) ≤ H(s, s) ≤ 1

µ
γD and

1

µ
β2 ≤ G(t, s) ≤ G(s, s) ≤ 1

µ
D.

This completes the proof.

2.3. Lemma. Let w be the unique positive solution of the boundary value problem

[g(t)u4(t)]∇ + 1 = 0(2.4)

with the boundary condition (1.2)− (1.3). Then,

w(t) ≤ Cδ, t ∈ [a, b],

where

δ =
β2

D
, C =

b− a
µβ2

D2γ(2.5)

Proof. Using Lemma 2.2, for all t ∈ [a, b], we have
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w(t) =

∫ b

a

H(t, s)∇s ≤ 1

µ
γD

∫ b

a

∇s = Cδ.

The proof is complete.

Let E denote the Banach space C[a, b] with the norm ‖u‖ = max
t∈[a,b]

|u(t)|. Define the

cone P ⊂ E by P = {u ∈ E : u(t) is symmetric and u(t) ≥ δ‖u‖ for t ∈ [a, b]}.

To obtain the a positive solution of BVP (1.1)−(1.3), the following fixed point theorem
is essential.

2.4. Theorem. Let E = (E, ‖.‖) be a Banach space, and let P ⊂ E be a cone in B.
Assume Ω1,Ω2 are bounded open subsets of E with 0 ∈ Ω1,Ω1 ⊂ Ω2, and let
S : P ∩ (Ω2\Ω1)→ P

be a continuous and completely continuous operator such that, either
(a) ‖Su‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Su‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or
(b) ‖Su‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Su‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then S has a fixed point in P ∩ (Ω2\Ω1).

3. Main Results
In this section, we apply the Krasnoselskii fixed point theorem to obtain the exis-

tence of at least one symmetric positive solution for the nonlinear boundary value problem
(1.1)− (1.3).

The main result of this paper is following:

3.1. Theorem. Let (H1)− (H4) hold. Assume that
(C1) There exists a constant M > 0 such that f(t, u) ≥ −M for all (t, u) ∈ [a, b] ×

[0,∞),
(C2) There exist t1, t2 ∈ (a, b) such that

lim
u→∞

f(t, u)

u
=∞

uniformly on [t1, t2],
(C3) r is a given positive real number and the parameter λ satisfies

0 < λ ≤ η := min{ r

M1‖w‖
,

r

2MC
}(3.1)

where M1 = max{f(t, u) +M : (t, u) ∈ [a, b]× [0, r]}.
Then the boundary value problem (1.1) − (1.3) has at least one symmetric positive

solution u such that ‖u‖ ≥ r

2
.

Proof. Let x(t) = λMw(t), where w is the unique solution of the boundary value problem
(2.4)− (1.2)− (1.3).
We shall show that the following boundary value problem

[g(t)y4(t)]∇ + λF (t, y(t)− x(t)) = 0, t ∈ (a, b),(3.2)

αy(a)− β lim
t→a+

g(t)y4(t) =

∫ b

a

h1(s)y(s)∇s,(3.3)

αy(b) + β lim
t→b−

g(t)y4(t) =

∫ b

a

h2(s)y(s)∇s,(3.4)

where
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F (t, z) =

{
f(t, z) +M, z ≥ 0,
f(t, 0) +M, z ≤ 0,

has at least one positive solution. Thereafter we shall obtain at least one positive solution
for the boundary value problem (1.1)− (1.3).

It is well known that the existence of positive solution to the boundary value problem
(3.2) − (3.4) is equivalent to the existence of fixed point of the operator S. So we shall
seek a fixed point of S in our cone P where the operator S : E → E is defined by

Sy(t) = λ

∫ b

a

H(t, s)F (s, y(s)− x(s))∇s, t ∈ [a, b].

First, it is obvious that S is continuous and completely continuous.
Now we shall prove that S(P ) ⊆ P . Let y ∈ P . Then, using Lemma 2.2, we get for

t ∈ [a, b],

Sy(t) = λ

∫ b

a

H(t, s)F (s, y(s)− x(s))∇s ≤ λ

µ
γD

∫ b

a

F (s, y(s)− x(s))∇s,

and so

‖Sy‖ ≤ λ

µ
γD

∫ b

a

F (s, y(s)− x(s))∇s.(3.5)

Now, using Lemma 2.2 and (3.5), we obtain for t ∈ [a, b],

Sy(t) = λ

∫ b

a

H(t, s)F (s, y(s)− x(s))∇s ≥ λ

µ
β2γ

∫ b

a

F (s, y(s)− x(s))∇s

=
λ

µ
δγD

∫ b

a

F (s, y(s)− x(s))∇s ≥ δ‖Sy‖.

On the other hand, noticing y(t), x(t) and f(t, u) are symmetric on [a, b], we have

Sy(b+ a− t) = λ

∫ b

a

H(b+ a− t, s)F (s, y(s)− x(s))∇s

= λ

∫ b

a

H(b+ a− t, s)(f(s, y(s)− x(s)) +M)∇s

= λ

∫ a

b

H(b+ a− t, b+ a− s)(f(s, (y−x)(b+ a− s)) +M)∇(b+ a− s)

= λ

∫ b

a

H(t, s)(f(s, (y − x)(s)) +M)∇s

= λ

∫ b

a

H(t, s)F (s, (y − x)(s))∇s = Sy(t)

Therefore Sy is symmetric.
So, we get S(P ) ⊆ P .

Let Ω1 = {y ∈ E : ‖y‖ < r}. We shall prove that ‖Sy‖ ≤ ‖y‖ for y ∈ P ∩ ∂Ω1. If
y ∈ P ∩ ∂Ω1, then ‖y‖ = r. By definition and (3.1), we find for t ∈ [a, b],

Sy(t) = λ

∫ b

a

H(t, s)F (s, y(s)− x(s))∇s ≤ λM1

∫ b

a

H(t, s)∇s ≤ λM1‖w‖ ≤ r.
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Therefore, we get ‖Sy‖ ≤ r = ‖y‖ for y ∈ P ∩ ∂Ω1.

Let K be a positive real number such that

1

2
λK(t2 − t1)δ

1

µ
β2γ > 1.(3.6)

In view of (C2), there exists N > 0 such that for all z ≥ N and t ∈ [t1, t2],

F (t, z) = f(t, z) +M ≥ Kz(3.7)

Now, set

R = r +
2N

δ
.(3.8)

Let Ω2 = {y ∈ E : ‖y‖ < R}. We shall prove that ‖Sy‖ ≥ ‖y‖ for y ∈ P ∩ ∂Ω2. If
y ∈ P ∩ ∂Ω2, then ‖y‖ = R. So from Lemma 2.3 and the fact that y ∈ P , we get for
t ∈ [a, b],

x(t) = λMw(t) ≤ λMCδ ≤ λMC
y(t)

R
.

This implies for t ∈ [a, b],

y(t)− x(t) ≥ (1− λMC

R
)y(t) ≥ (1− λMC

R
)δR,

and, from (3.1) and (3.8), we get for t ∈ [t1, t2],

y(t)− x(t) ≥ 1

2
Rδ ≥ N.(3.9)

Thus, by (3.7) and (3.9), we see that for t ∈ [t1, t2],

F (t, y(t)− x(t)) ≥ K(y(t)− x(t)) ≥ 1

2
KRδ.(3.10)

Considering Lemma 2.2 and (3.10), we get for t ∈ [a, b],

Sy(t) = λ

∫ b

a

H(t, s)F (s, y(s)− x(s))∇s ≥ λ 1

µ
β2γ

∫ t2

t1

F (s, y(s)− x(s))∇s

≥ 1

2µ
λKRδβ2γ

∫ t2

t1

∇s

and so by (3.6),

‖Sy‖ ≥ 1

2µ
λKR(t2 − t1)δβ2γ ≥ R.

Therefore, we get ‖Sy‖ ≥ R = ‖y‖ for y ∈ P ∩ ∂Ω2.

Then it follows from Theorem 2.1 that S has a fixed point y ∈ P such that

r ≤ ‖y‖ ≤ R.(3.11)

Moreover, using (3.1), (3.11) and Lemma 2.3, we obtain for t ∈ [a, b],
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y(t) ≥ δ‖y‖ ≥ rδ ≥ 2λMCδ ≥ 2λMw(t) = 2x(t).(3.12)

Hence,
u(t) = y(t)− x(t) ≥ 0, t ∈ [a, b].

On the other hand, u(t) is symmetric on [a, b] since y and x are symmetric.
Now, we shall prove that u is a positive solution of the boundary value problem (1.1)−
(1.3). Since y is a fixed point of the operator S,

Sy(t) = y(t), t ∈ [a, b],
or

y(t) = Sy(t) = λ

∫ b

a

H(t, s)F (s, y(s)− x(s))∇s

= λ

∫ b

a

H(t, s)(f(s, y(s)− x(s)) +M)∇s

Noticing that,

w(t) =

∫ b

a

H(t, s)∇s

we have for t ∈ [a, b],

y(t) = λ

∫ b

a

H(t, s)f(s, y(s)− x(s))∇s+ λMw(t),

or

y(t)− x(t) = λ

∫ b

a

H(t, s)f(s, y(s)− x(s))∇s,

and hence

u(t) = λ

∫ b

a

H(t, s)f(s, u(s))∇s.

This shows that u is a symmetric positive solution of the boundary value problem of
(1.1)− (1.3). In addition, from (3.11) and (3.12), it follows that

‖u‖ ≥ ‖y‖
2
≥ r

2
.

3.2. Example. Let T = Z. Consider the following boundary value problem

[
100

t2 + 1
u4(t)]∇ + λ(beu cos2 t− t2) = 0, t ∈ (−3, 3),(3.13)

25u(−3)− 5 lim
t→−3+

100

t2 + 1
u4(t) =

∫ 3

−3

u(s) cosh s∇s,(3.14)

25u(3) + 5 lim
t→3−

100

t2 + 1
u4(t) =

∫ 3

−3

u(s) cosh s∇s,(3.15)

where b > 0, α = 25, β = 5, h1(t) = h2(t) = cosh t, g(t) =
100

t2 + 1
, f(t, u(t)) = beu cos2 t−

t2. It is obvious that f satisfies the conditions (C2) and (H3).
Now we shall obtain the constants M and M1. Clearly, for all (t, u) ∈ [−3, 3]× [0,∞),

we get
f(t, u) = beu cos2 t− t2 ≥ −t2 ≥ −9 and so we can choose the constant M = 9.
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M1 = max
(t,u)∈[−3,3]×[0,r]

beu cos2 t− t2 +M = ber +M .

It follows from a direct calculation that

v1 = v2 =

∫ 3

−3

h1(s)∇s ∼= 21.5, µ = 2αβ + α2

∫ 3

−3

∆r

g(r)
∼= 406.2,

D = (β + α
∫ 3

−3

∆r

g(r)
)2 ∼= 126.6, A = µ+ (β −K)v1 − βv2 ∼= 56, 87,

B1 =
K − β
A

∼= 0.198, B2 =
β

A
∼= 0.088, γ = 1 +B1v1 +B2v2 ∼= 7.15,

C =
6

µβ2
D2γ ∼= 67.71.

Then by Theorem 3.1, we see that the boundary value problem (3.13) − (3.15) has
at least one symmetric positive solution u such that ‖u‖ ≥ r

2
for any λ ∈ (0, η] where

η := min{ r

M1‖w‖
,

r

2MC
}, r is a given positive number and w is the unique positive

solution of the boundary value problem [
100

t2 + 1
u4(t)]∇ + 1 = 0 with the boundary

condition (3.14)− (3.15).
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