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Semiprime and weakly compressible modules

N. Dehghani ∗ and M. R. Vedadi †

Abstract
An R-moduleM is called semiprime (resp. weakly compressible) if it is
cogenerated by each of its essential submodules (resp. HomR(M,N)N
is nonzero for every 0 6= N ≤ MR). We carry out a study of weakly
compressible (semiprime) modules and show that there exist semiprime
modules which are not weakly compressible. Weakly compressible mod-
ules with enough critical submodules are characterized in different ways.
For certain rings R, including prime hereditary Noetherian rings, it
is proved that MR is weakly compressible (resp. semiprime) if and
only if M ∈ Cog(Soc(M) ⊕ R) and M/Soc(M) ∈ Cog(R) (resp. M ∈
Cog(Soc(M)⊕R)). These considerations settle two questions, namely
Qu 1, and Qu 2, in [6, p 92].
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1. Introduction
Throughout this paper rings will have a nonzero identity, modules will be right and

unitary. In [2], a module MR is called prime if HomR(M,K)N 6= 0 for all nonzero sub-
modules K,N ≤MR and it is shown that MR is prime if and only if it is cogenerated by
each of its nonzero submodules. A semiprime notion for modules is then obtained in [4]
by setting K = N in the above definition of prime modules. These semiprime modules
are precisely weakly compressible modules in the sense of [1]; see for example Theorem 2.5
below. Following [6], a module MR is called weakly compressible if HomR(M,N)N 6= 0
for all nonzero N ≤MR. We also call MR semiprime if every essential submodule of MR

cogenerates MR. In this paper, prime module means the prime module in the sense of
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[2]; see [11, Sections 13, 14] for an excellent reference on the subject. Weakly compress-
ible modules have applied in different situations. For example, in the study of weakly
semisimple modules [12] and modules which have semiprime right Goldie endomorphism
rings [3, Theorem 2.6]. They have also been appeared in the Cohen-Fishman’s question
about the semiprimeness of the smash product A#H when H is a semisimple Hopf alge-
bra and A is a semiprime H-module algebra. In [6, Corollary 7.6] for certain semisimple
Hopf algebra H, it is shown that A#H is a semiprime ring if and only if the A#H-module
A is weakly compressible.
In the present work, we carry out a study of weakly compressible (semiprime) modules
and show that there are semiprime modules which are not weakly compressible (Exam-
ples and Remarks 2.8). Weakly compressible modules with enough critical submodules
are characterized in different ways (Theorems 3.4 and 3.7). For certain rings R, includ-
ing prime hereditary Noetherian rings, it is shown that MR is weakly compressible (resp.
semiprime) if and only if M ∈ Cog(Soc(M)⊕R) and M/Soc(M) ∈ Cog(R) (resp. M ∈
Cog(Soc(M) ⊕ R)). Furthermore, if R is a PID then MR is weakly compressible if and
only if M/Soc(M) ∈ Cog(R) (Corollary 4.6). These considerations settle two questions,
namely Qu 1, and qu 2, in [6, p 92] where it is asked whether there exists a weakly com-
pressible module M which is not a subdirect product of prime modules. Such a module
M cannot satisfy the conditions of Theorem 3.4 or 3.7 or 4.1 because of Remark 4.2. Any
unexplained terminology and all the basic results on rings and modules that are used in
the sequel can be found in [5] and [7].

2. General properties of weakly compressible modules
In this section, we investigate weakly compressible (semiprime) modules over any ring

and show that semiprime modules are not necessarily weakly compressible. We give a
characterization of weakly compressible modules and using this we state our main results
in the next sections. Let M be an R-module and N be a submodule of MR. We say
that M is N -weakly compressible if for each nonzero submodule K of N , there exists an
R-homomorphism f : M → K such that f(K) 6= 0. Thus MR is weakly compressible if
and only if M is M -weakly compressible if and only if M is N -weakly compressible for
any 0 6= N ≤MR. We use the notation N ≤ess M to denote N is an essential submodule
of M . Also, if X and Y are R-modules, then ∩{ker f | f : XR → YR} is denoted by
Rej(X,Y ). The module X is cogenerated by Y (write X ∈ Cog(Y )) if Rej(X,Y ) = 0. In
the following, some properties of weakly compressible (semiprime) modules are collected.

2.1. Lemma. (a) Let M be a semiprime R-module. If N is either an essential or fully
invariant submodule of MR, then N is a semiprime R-module.
(b) The class of weakly compressible modules is closed under co-products and taking sub-
modules.
(c) The class of semiprime modules is closed under products and co-products.
(d) Let Λ be a non-empty set. Then MR is semiprime if and only if M (Λ)

R is so.
(e) Every weakly compressible module is semiprime.
(f) Let M be a nonzero R-module and M1,M2 be submodules of MR such that there is
no nonzero R-module X which embeds in M1 and M2. Then M is (M1 ⊕M2)-weakly
compressible if and only if M is Mi-weakly compressible for i = 1, 2.
(g) If MR is semiprime then annR(M) is a semiprime ideal of R.
(h) MR is weakly compressible (resp. semiprime) if and only if MR/I is weakly compress-
ible (resp. semiprime) where MI = 0 and I B R.
(i) If MR is weakly compressible and N is a fully invariant closed submodule of MR, then
M/N is a weakly compressible R-module.
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Proof. (a) If N ≤ess MR, then it is easy to see that NR is semiprime. Let N be a fully
invariant of MR and K ≤ess N . There exists a submodule L of MR such that N ∩L = 0
and N ⊕ L ≤ess M . Thus K ⊕ L ≤ess M . By our assumption M ∈ Cog(K ⊕ L). Hence
there exists an injective homomorphism θ : M → KI ⊕ LI for some set I. Since N
is fully invariant of MR, it is easy to see πθ(N) = 0, where π : KI ⊕ LI → LI is the
natural projection. It follows that θ(N), and hence N embeds in KI , proving that NR
is semiprime.
(b) We only prove the co-product case. Let {Mi}i∈I be a family of weakly compressible
R-modules and N be any nonzero submodule of ⊕i∈IMi. It is easy to verify that there
exists subset J of I such that the canonical projection π : ⊕i∈IMi → ⊕j∈JMj =: W
is one to one on N and π(N) ∩ Mj 6= 0 for each j ∈ J ; see also [9, Lemma 2.1].
Because Mj is weakly compressible for each j ∈ J , there are homomorphisms fj ∈
HomR(Mj , π(N)∩Mj) such that fj(π(N)∩Mj) 6= 0. Now let f =

∑
j∈J fj : W → π(N)

and θ = π−1fπ. Then θ : M → N such that θ|N 6= 0, as desired.
(c) Let N be an essential submodule of product

∏
i∈IMi where each Mi is a semiprime

module (the co-product case has a similar proof). Note that for each i ∈ I we have
(N ∩Mi) ≤ess Mi. Thus by our assumption, Mi ∈ Cog (N) for each i ∈ I. It follows
that

∏
i∈IMi ∈ Cog(N).

(d) The necessity follows by part (c). Conversely, let M (Λ) be semiprime and N ≤ess M .
Then N (Λ) ≤ess M (Λ). Thus M (Λ) ∈ Cog(N (Λ)). This shows that M ∈ Cog(N), as
desired.
(e) This is obtained by [6, Theorem 5.1(b)].
(f) Just note that if N is a nonzero submodule of M1 ⊕M2, then by our assumption,
either N ∩M1 6= 0 or N ∩M2 6= 0.
(g) This follows by [6, Proposition 5.5(viii)].
(h) This has a routine argument.
(i) Let N be a fully invariant closed submodule of MR. By [5, Proposition 6.32], there
exists K ≤ MR such that N is a complement to K in M . It follows that K ⊕ N/N is
an essential submodule of M/N . Hence, it is enough to show that M/N is (K ⊕N/N)-
weakly compressible. Now let (x + N) ∈ (K ⊕ N/N) for some nonzero element x ∈ K.
Since MR is weakly compressible, there exists a homomorphism f : M → xR such that
f(x) 6= 0. We have f(N) = 0 because N is a fully invariant submodule of M . Thus f
induces a homomorphism f̄ : M/N → xR ⊕N/N such that f̄(x+N) 6= 0. The proof is
complete. �

An R-module M is called torsionless if it is cogenerated by R. The following result
may be already in the literature, but we cannot spot it, we give a proof for the sake of
the reader.

2.2. Proposition. Every torsionless module over a semiprime ring is weakly compress-
ible.

Proof. Let R be a semiprime ring and M be an R-submodule of RI for some set I.
Suppose that N is a nonzero submodule of M . Thus πi(N) 6= 0 for some i ∈ I, where
πi is the canonical projection from RI to R. Since R is a semiprime ring, (πi(N))2 6= 0.
Hence there exists x ∈ N such that xπi(N) 6= 0. Now let f = ιxπ where πi|M = π and
ιx : R→ xR is left multiplication by x. Then f : M → N is a homomorphism such that
f(N) 6= 0, proving that MR is weakly compressible. �

2.3. Corollary. Let R be a ring and {Ii}i∈A be a family of semiprime ideals in R. Then
⊕i∈A(R/Ii)

Λi is a weakly compressible R-module, where each Λi is a set.

Proof. This follows by Proposition 2.2 and Lemma 2.1(b),(h). �
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2.4. Lemma. Every nonsingular R-module M contains an essential submodule isomor-
phic to ⊕iIi where each Ii is a right ideal of R.

Proof. Let x be any nonzero element ofMR. Then annR(x) is not an essential right ideal
of R by our assumption on MR. Thus there exists a nonzero right ideal Ix of R such
that annR(x) ∩ Ix = 0. Note that Ix ' xIx. Therefore every nonzero submodule of M
contains a nonzero submodule that is isomorphic to a right ideal of R. Now suppose that
Ω = {N ≤MR| there is I ≤ RR such that I ' N}. If {Nλ}λ∈Λ is a maximal independent
family of submodules in Ω, then by what we have already proved, ⊕λ∈ΛNλ is an essential
submodule of MR. �

In [6, Theorem 5.1], it is shown that an R-module M is weakly compressible if and
only if HomR(M,N)2 6= 0 for all nonzero N ≤ M if and only if N∩ Rej(M,N) = 0
for any nonzero N ≤ MR. In the following we give more equivalent conditions for a
nonzero module M to be weakly compressible. We should note that in [1], a module MR

is called “weakly compressible" if for every 0 6= N ≤ MR there exists f ∈ HomR(M,N)
with f2 6= 0. Such a module M is clearly weakly compressible (in the sense of [6]), but
we have been unable to find in the literature a proof to show the converse is true. A
proof of this is given below for completeness. Recall that for any R-module M the set
{m ∈M | annR(m) ≤ess RR} is denoted by Z(M).

2.5. Theorem. The following conditions are equivalent for a nonzero R-module M .
(a) MR is weakly compressible.
(b) For every nonzero N ≤M , there exists f ∈ HomR(M,N) such that f2 6= 0.
(c) N 6↪→ Rej(M,N), for every nonzero N ≤MR.
(d) M1 6↪→ Rej(M,M2) for all nonzero isomorphic R-modules M1 and M2.
(e) There exists an essential submodule N of MR such that M is N-weakly compressible.
(f) There exists submodule N of MR such that M is N-weakly compressible and M/N is
weakly compressible.
(g) There exists a semiprime ideal I of R such that MI = 0 and M is Rej(M,R/I)-
weakly compressible.
(h) M is Z(M)-weakly compressible and M/Z2(M) ∈ Cog(R/I) for some semiprime
ideal I ⊆ annR(M).

Proof. (a)⇒ (b). Let N be a nonzero submodule ofMR and for every f ∈ HomR(M,N),
f2 = 0. It is easy to verify that fg = −gf for all f, g ∈ HomR(M,N) (note that
(f + g)2 = 0). By (a), there exist f ∈ HomR(M,N) and g ∈ HomR(M, f(M)) such that
f(N) 6= 0 and g(f(M)) 6= 0. Since gf = −fg, we have fg 6= 0. If follows that f2(M) 6= 0
because g(M) ⊆ f(M). This contradicts our assumption.
(b) ⇒ (c). Let N be any nonzero submodule of MR. Suppose that there exists an injec-
tive homomorphism θ : N → Rej(M,N). Since N ' θ(N), Rej(M, θ(N)) = Rej(M,N).
Hence, if f ∈ HomR(M, θ(N)) then Imf ⊆ Rej(M, θ(N)). This shows that f2 = 0 for
every f ∈ HomR(M, θ(N)). This contradicts (b).
(c) ⇒ (d). Just note that if M1 ↪→ Rej(M,M2), then M1 is isomorphic to a submodule
N of M such that N ↪→ Rej(M,N).
(d) ⇒ (a), (a) ⇔ (e) and (a) ⇒ (f) are clear.
(a)⇒ (g). This is hold because annR(M) is a semiprime ideal of R by Lemma 2.1.
(g) ⇒ (f). Let N = Rej(M,R/I). Then M/N ∈ Cog(R/I). Now apply Proposition 2.2
and Lemma 2.1(h).
(f) ⇒ (a). Suppose (f) holds and K is a nonzero submodule of MR. We shall show that
there exists g ∈ HomR(M,K) with g(K) 6= 0. Now if K ∩N 6= 0, then we are done by
our assumption on N . If K ∩N = 0, then consider the submodule (N ⊕K)/N of M/N .
Since M/N is weakly compressible, we can deduce such g exists.
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(a) ⇒ (h). First note that for any R-module M , we have M/Z2(M) is a nonsingular
R-module. Let I = annR(M). Thus M/Z2(M) ∈ Cog(R/I) by Lemmas 2.1(i) and 2.4,
the proof is complete.
(h) ⇒ (f). Since Z(M) ≤ess Z2(M), it is clear that MR is also Z2(M)-weakly compress-
ible. The result is now obtained by Proposition 2.2. �

2.6. Corollary. (a) If R is a right self injective ring, then MR is weakly compressible if
and only if MR is Z(M)-weakly compressible.
(b) If R is a right V-ring (i.e., simple R-modules are injective) and M/Soc(M) is a
weakly compressible R-module, then MR is weakly compressible.

Proof. (a) Let R be a right self injective ring. For the sufficiency, let N be complement to
Z(M) inMR. By Theorem 2.5(e), we shall show thatM is Z(M)⊕N -weakly compressible.
Since R is right self injective, every nonsingular cyclic R-module is isomorphic to a direct
summand of RR and hence it is an injective R-module. It follows that M is N -weakly
compressible. The proof is now completed by Lemma 2.1(f). The converse is clear.
(b) By Theorem 2.5(f). �

2.7. Proposition. The following statements hold for an extending module MR.
(a) MR is weakly compressible if and only if Z2(M) and M/Z2(M) are weakly compress-
ible R-modules.
(b) If Soc(RR) ≤ess RR, then MR is semiprime if and only if Z2(M) and M/Z2(M) are
semiprime R-modules.

Proof. Let N = Z2(M). Since M is extending, it is known that M ' N ⊕M/N .
(a) Apply Theorem 2.5(f) and note that N is weakly compressible if and only if M is
N -weakly compressible.
(b) Since Soc(RR) ≤ess RR, it is easy to verify that Z(V Λ) = (Z(V))Λ for any R-module V
and any set Λ. Now let MR be semiprime. By Lemma 2.1(a), NR is semiprime. Suppose
that K/N ≤ess M/N . Then K ≤ess M and so there exists an injective homomorphism
θ : M → KΛ. Define α : M/N → KΛ/NΛ by α(m + N) = θ(m) + NΛ. Clearly α
is a homomorphism. If α(m + N) = 0 then θ(m) = {nλ}λ∈Λ ∈ NΛ. For each λ, we
have nλJλ ⊆ Z(M) where Jλ ≤ess RR. Thus θ(mJ) ⊆ (Z(M))Λ where ∩λJλ = J . By
our assumption on R, J ≤ess RR and θ(mJ) ⊆ Z(KΛ). It follows that mJ ⊆ Z(M)
because θ is one to one. Hence m ∈ N , proving that α is injective and so M/N is weakly
compressible. �

For every module MR the intersection of all maximal submodule of M is denoted by
Rad(M). If M does not have maximal submodules, we put Rad(M) = M .

2.8. Examples and Remarks. (a) There are modules N such that Rad(N) = 0 but N
is not semiprime. Let P be the set of all prime integer numbers and p ∈ P . Consider the
Z-module N = {m/pn | m,n ∈ Z, n ≥ 1}. Then for each q ∈ P \ {p}, qN is a maximal
submodule of NZ. To see this, note that qN 6= N and suppose that K is any submodule
of NZ such that qN ( K and m/pt ∈ K \ qN . Hence (m, q) = 1. Also, if a/pr ∈ K
for some r ≥ 1 and (a, q) = 1, then 1/pr ∈ K. It follows that 1/pn ∈ K for all n ≥ 1
(take n ≥ t or n ≤ t). Therefore K = N and so qN is a maximal submodule. Clearly⋂
q 6=p qN = 0 and hence Rad (N) = 0. Now if NZ is semiprime, then HomZ(N,Z) 6= 0

and since N is uniform, we must have N ↪→ Z, contradiction.

(b) A direct summand of a semiprime module is not necessarily a semiprime module.
Assume that P and N are as stated in (a). Let W = ⊕p∈PZp and L = W ⊕ N . We
show that LZ is semiprime. Since

⋂
q 6=p qN = 0, N ∈ Cog(W ). Thus from Soc(L) = W ,
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we have L ∈ Cog(Soc(L)). It follows that L is semiprime as a Z-module because every
essential submodule of L contains Soc(L).

(c) Lemma 2.1(b) and part (b) show that the Z-module L in (b) is semiprime which is
not weakly compressible. Furthermore, let R be a commutative regular ring which is not
semi-Artinian (for example R =

∏
Z2). Since R is a regular ring, Rad(M) = 0 for all

R-modules. Hence every R-module embeds in a semiprime R-module by Lemma 2.1(c).
On the other hand, since R is not semi-Artinian, there exists an R-moduleM which is not
weakly compressible by [10, Corollary 3.5]. Now if M embeds in a semiprime R-module
L, then L is not weakly compressible by Lemma 2.1(b).

(d) The condition (h) in Theorem 2.5 shows that the study of weakly compressible mod-
ules can be reduced to the study of such modules when they are either singular or non-
singular; see Proposition 2.7. However we shall note that, in general, the condition M
is Z(M)-weakly compressible is stronger than Z(M) is a weakly compressible R-module.

For example, if R =

[
Z 0
Z2 Z2

]
, then Z(RR) =

[
0 0
Z2 0

]
=: I. Thus IR is weakly

compressible, but R is not I-weakly compressible because HomR(R, I)(I) = 0.

(e) In view of the condition (c) in Theorem 2.5, we note that the condition N ↪→
Rej(M,N) is weaker than N ⊆ Rej(M,N). For if we consider I as left ideal in R,

then I '
[

0 0
0 Z2

]
=: J as left R-modules and Rej(R, J) = l.annR(J) =

[
Z 0
Z2 0

]
.

Hence J ↪→ Rej(R, J), but J 6⊆ Rej(R, J).

In the following nonsingular weakly compressible modules are characterized and some
corollaries are given. For certain moduleMR, the condition (c) of Theorem 2.5 is reduced
to the ideals of R; see below.

2.9. Proposition. Let M be a module over a semiprime ring R and Z(Rej(M,R)) = 0.
Then the following statements are equivalent.
(a) MR is weakly compressible.
(b) For all nonzero right ideal I of R, I 6↪→ Rej(M, I).
(c) M ∈ Cog(R).

Proof. (a) ⇒ (b). By Theorem 2.5(c).
(b)⇒ (c). If Rej(M,R) is nonzero then by Lemma 2.4, I ↪→ Rej(M,R) for some nonzero
right ideal I of R. It follows that I ↪→ Rej(M, I), a contradiction. Therefore Rej(M,R) =
0 and so (c) holds.
(c) ⇒ (a). By Proposition 2.2. �

2.10. Corollary. Let M be a nonsingular R-module. Then MR is weakly compressible
if and only if there exists a semiprime ideal I ⊆ annR(M) such that M ∈ Cog(R/I).

Proof. Note that Z(MR/I) ⊆ Z(MR), for any ideal I of R. The result is now obtained by
Proposition 2.9. �

A ring R is called right (left) duo ring if every right(left) ideal of R is two sided.

2.11. Corollary. Let M be a faithful module over a right(left) duo ring R. Then MR is
weakly compressible if and only if MR is Z(M)-weakly compressible, M/Z(M) ∈ Cog(R)
and R is a semiprime ring.
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Proof. It is easy to verify that every semiprime right(left) duo ring must be reduced
and hence it is a nonsingular ring [5, Lemma 7.8]. Thus Z(M) = Z2(M). Suppose now
M is weakly compressible, then R must be a semiprime ring because MR is faithful.
Also M/Z(M) is weakly compressible by Lemma 2.1(i), and so M/Z(M) ∈ Cog(R) by
Proposition 2.9. The converse is obtained by Theorem 2.5(h). �

3. Weakly compressible modules with enough critical submodules
We are now going to investigate semiprime and weakly compressible modules over

rings with Krull dimensions. Let M be an R-module. Following [7, Chapter 6], the Krull
dimension of MR, will be denoted by K.dim(M). Modules with Krull dimensions are
known to have finite uniform dimensions [7, Lemma 6.2.6]. Let α ≥ 0 be an ordinal
number. A module MR is called α-critical if K.dim(M) = α and K.dim(M/N) < α for
every nonzero submodule N of MR. A module is then called critical if it is β-critical for
some ordinal number β. The submodule

⋂
{ K ≤ MR | M/K is α-critical } is denoted

by Jα(M).

3.1. Lemma. Let M be a semiprime R-module, T be any nonzero submodule of M .
If there exist submodules W and N of M such that N ∈ Cog(T ), T /∈ Cog(W ) and
(N ⊕W ) ≤ess M , then T * Rej(M,T ).

Proof. Since MR is semiprime, there exists an injective homomorphism f : M → NA ⊕
WA for some set A. Since T /∈ Cog(W ), πf(T ) 6= 0, where π : NA⊕WA → NA is natural
projection. By our assumption, NA ∈ Cog(T ). Hence there exists a homomorphism
ϕ : NA → T such that ϕπf(T ) 6= 0, proving that T * Rej(M,T ). �

The following lemma is needed. That is just obtained by the definition of critical
submodules.

3.2. Lemma. Let U and V be critical R-modules and f : U → V be a nonzero homo-
morphism. Then either Kerf = 0 or K.dim(V ) < K.dim(U).

We say that a module MR has enough critical submodules if every nonzero submodule
has a nonzero submodule with Krull dimension (note, modules with Krull dimension have
critical submodules).

3.3. Lemma. Suppose that MR has enough critical submodules and α = Min{K.
dim(N) | 0 6= N ≤MR}. If MR is semiprime, then N * Rej(M,N) for every submodule
N ≤MR with K.dim(N) = α.

Proof. Let N ≤ MR and K.dim(N) = α. By [7, Lemma 6.2.10], there exists a critical
submodule T ≤ N . By choosing of α, T is α-critical. Let Λ = {T

′
≤MR| T

′
∈ Cog(T )},

{Ti
′
}i∈I be a maximal independent family of elements in Λ and N ′ = ⊕i∈ITi

′
. SinceMR

has enough critical submodules, N ′ ⊕W ≤ess MR where W is a direct sum of critical
submodules. Therefore by Lemma 3.2, T /∈ Cog(W ) and so T * Rej(M,T ) by Lemma
3.1. The proof is complete. �

A module MR is called compressible if it embeds in every submodule of M . By
Lemma 3.2 critical weakly compressible modules are compressible.

3.4. Theorem. Suppose that MR has enough critical submodules and β = Sup{K.
dim(N) | N is a critical submodule ofMR}. Then the following statements are equivalent.
(a) MR is semiprime module and Jβ(M) = 0.
(b) MR embeds in a product of β-critical compressible submodules of MR.
(c) MR embeds in a product of β-critical compressible R-modules.
Furthermore, each of the above conditions implies that MR is weakly compressible.
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Proof. (a) ⇒ (b). We first show that every critical submodule of MR is β-critical. Let
C be any critical submodule of MR. By our assumption, C * Jβ(M). It follows that
there exists a homomorphism f from MR to a β-critical module TR such that f(C) 6= 0.
By Lemma 3.2, f is one to one on C. Thus CR is β-critical, as desired. Now since MR

has enough critical submodules, β = Min{K.dim(N) | 0 6= N ≤ MR}. Therefore MR is
weakly compressible by Lemma 3.3. Hence, every critical submodule ofMR is also weakly
compressible as well as compressible. The proof is now complete because M contains an
essential submodule that is a direct sum of β-critical compressible submodules.
(b) ⇒ (c). This is clear.
(c) ⇒ (a). It is easy to see that Jβ(M) = 0. As we see in the proof of (a) ⇒ (b), for
every critical submodule C of MR there exist a β-critical compressible R-module T and
homomorphism α : M → T such that α is one to one on C. Since now TR is compressible,
there exists an injective homomorphism f : T → C. Thus fα(C) 6= 0, proving that C *
Rej(M,C). It follows that MR is weakly compressible, hence semiprime. �

3.5. Remark. Let R = Z, M = Z2 ⊕ Z and β be as stated in Theorem 3.4. Then MR

is weakly compressible and β = 1, but Jβ(M) 6= 0 because M /∈ Cog(R).

3.6. Lemma. Suppose thatM is an R-module, {Vi}i∈I is a family of nonzero submodules
of MR, {Wj}j∈J is a family of R-modules and the following conditions (a), (b) hold,
(a) For every nonzero submodule N of MR, there exists Vi ⊆ N for some i ∈ I.
(b) For every i ∈ I, there exist j ∈ J and homomorphism f : M → Wj such that
Kerf ∩ Vi = 0.
If MR has finite uniform dimension, then there exists a finite subset A of J such that
MR embeds in ⊕j∈AWj.

Proof. Let Λ = {u.dim(Kerf) | f ∈ HomR(M,⊕j∈AWj) and A is a finite set }. By
hypothesis Λ is a nonempty set. Let n be the smallest element in Λ, and f : M → ⊕j∈AWj

such that u.dim(Kerf) = n. Let K = Kerf . If K 6= 0, then by (a), there exists i ∈ I such
that Vi ⊆ K and by (b) there exists a homomorphism g : M →Wt such that Kerg∩Vi = 0
for some t ∈ J . Now, define h : M → ⊕j∈AWj ⊕Wt by h(m) = (f(m), g(m)) for all
m ∈ M . It is clear that Kerh = K ∩ Kerg. Since Kerh ∩ Vi = 0, Kerh is not essential
submodule of K. Hence u.dim( Kerh) < u.dim( Kerf). This contradicts the choice of f .
Therefore K = 0 and so M embeds in ⊕j∈AWj , as desired. �

3.7. Theorem. The following statements are equivalent for a nonzero module MR.
(a) MR is weakly compressible with finite uniform dimension and Z(M) has Krull dimen-
sion.
(b) MR is weakly compressible with finite uniform dimension and Z(M) has enough crit-
ical submodules.
(c) MR embeds in a finite direct sum ⊕iWi of cyclic compressible submodules of MR such
that each Wi is either uniform nonsingular or critical singular.
(d)MR embeds inW⊕V such thatWR and VR are weakly compressible, W is nonsingular
with finite uniform dimension and V is singular with Krull dimension.

Proof. (a) ⇒ (b) and (c) ⇒ (d) are clear. (d) ⇒ (a) is obtained by Lemma 2.1(b) and
the fact that modules with Krull dimensions have finite uniform dimensions. We shall
show that (b) ⇒ (c).
Apply Lemma 3.6 for {Vi}ß∈I = {Wj}æ∈J=I = {C ≤MR | C is either uniform nonsingu-
lar or critical singular}. By our hypothesis, the condition (a) of Lemma 3.6 holds. Note
that every endomorphism of the above submodules C is either injective or zero (Lemma
3.2). Hence, by the weakly compressible condition on M , we have the submodules C
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are compressible and the condition (b) of Lemma 3.6 holds. The proof is now complete
because any compressible module embeds in each of its cyclic submodule. �

3.8. Corollary. The following statements are equivalent for a nonzero module MR.
(a) MR is weakly compressible with Krull dimension.
(b) MR is weakly compressible with finite uniform dimension and it has enough critical
submodules.
(c) MR embeds in a finite direct sum of critical compressible submodules of MR.
(d) MR embeds in a finite direct sum of critical compressible R-modules.

Proof. This follows by Theorem 3.7. �

The following result is a consequence of Theorem 3.7 which should be compared with
Corollary 2.10.

3.9. Corollary. If MR is a nonsingular weakly compressible module with finite uniform
dimension, then MR embeds in a finitely generated free R-module.

Proof. Note that every nonsingular compressible R-module embeds in R (Lemma 2.4).
Thus the result is obtained by Theorem 3.7(c). �

4. Weakly compressible modules over singular semi-Artinian rings
In [8, Main Theorem], it is shown that a Z-module M is weakly compressible if and

only if Z(M) is semisimple and M/Z(M) is torsionless. We conclude the paper with a
characterization of weakly compressible (semiprime) modules over certain rings including
prime hereditary Noetherian rings. If R is a hereditary Noetherian ring, then by [7,
Proposition 5.4.5], every nonzero singular R-module has a nonzero socle. We call such
rings R right singular semi-Artinian.

4.1. Theorem. Suppose that R is a right singular semi-Artinian ring, MR is nonzero
and MI = 0 for some ideal I of R. If MR is semiprime then M ∈ Cog(Soc(M)⊕R/I).
The converse holds if I is a prime ideal of R.

Proof. Since R/I is also a right singular semi-Artinian ring, we can suppose that I = 0.
Let MR be semiprime and Soc(Z(M))⊕K ≤ess MR where K ≤MR. By our assumption
on R, we have Z(K) = 0. Thus M ∈ Cog(Soc(M)⊕R) by Lemma 2.4.
Conversely, assume that M ∈ Cog(Soc(M) ⊕ R) and R is a prime ring. Let N be any
essential submodule of MR. We have Soc(Z(N)) ⊕ L ≤ess N such that L ' ⊕i∈IIi
where each Ii is a right ideal of R. Since Soc(M) lies in any essential submodule of
MR, we deduce from the hypothesis that M ∈ Cog(Soc(N)⊕ L⊕R). Now Rej(R,L) =
annR(L) = 0 because R is prime ring. It follows that R ∈ Cog(L) and hence M ∈
Cog(N), proving that MR is semiprime. �

4.2. Remark. Let R be any ring andM be a nonzero R-module. ThenMR is a subdirect
product of prime modules if and only if M is cogenerated by prime modules. Now let
MR be a weakly compressible R-module and A = annR(M). Note that R/A is subdirect
product of prime R-modules. Therefore if MR satisfies the conditions of Theorem 3.4 or
3.7 or 4.1, then M is cogenerated by prime modules and hence it is a subdirect product
of prime R-modules. This gives a partially answer to the open problem 1 of [6].

4.3. Proposition. Let MR be semiprime and L ≤ MR. Then the following statements
hold.
(a) If Soc(L) is finitely generated then Soc(L) is a direct summand of M . In particular,
if M has acc on direct summands, then Soc(M) is a direct summand of M .
(b) If every cyclic submodules of L has a finitely generated socle then Soc(L) is a closed
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submodule of M .
(c) M is Soc(M)-weakly compressible and Soc(M)∩ Rad(M) = 0 .

Proof. (a) Suppose that the length of Soc(L) = n. Let T1 be a simple submodule
of LR, N =

∑
{T ′ ≤ MR | T ′ ' T1} and W be a complement to N in M . Then

T1 /∈Cog(W ) and so by Lemma 3.1, T1 * Rej(M,T1). Hence there exists a nonzero
homomorphism f : M → T1 such that f(T1) 6= 0. Clearly Ker(f) is a maximal submodule
of MR. It follows that M = T1 ⊕ A1 where A1 ker f , and hence L = T1 ⊕ (L ∩ A1). If
Soc(L ∩ A1) = 0, then Soc(L) = T1 and we are done. If not, consider the simple
submodule T2 of L∩A1. Again we deduce that T2 is a direct summand of M and hence
of A1. Thus M = T1 ⊕ T2 ⊕A2 for some A2 ≤M and L = T1 ⊕ T2 ⊕ (L∩A2). Continue
to obtain T1 ⊕ T2 ⊕ ...⊕ Tn is a direct summand of MR, as desired. The last statement
is now clear.
(b) If Soc(L) ≤ess C and x ∈ C ≤ L, then Soc(xR) ≤ess xR. Hence by our assumption
and (a), we must have xR = Soc(xR) ⊆ Soc(L). It follows that Soc(L) = C.
(c) This is obtained by (a) and the fact that every nonzero cyclic submodule in Rad(M)
is a small submodule of M and so cannot be a direct summand. �

4.4. Lemma. Suppose S and R are two rings, T = R⊕ S and M be a T -module. Then
M = K ⊕L where K and L are modules over R and S respectively. In this case, Z(MT )
= Z(KR)⊕ Z(LS) and Soc(MT ) = Soc(KR)⊕ Soc(LS).

Proof. Just note that if M is a T -module then M = Me1 ⊕Me2 where e1 = 1R and
e2 = 1S are central orthogonal idempotents in T such that e1S = e2R = 0. Clearly Me1

and Me2 are naturally R-module and S-module respectively. �

4.5. Theorem. Suppose thatM is a nonzero R-module andMI = 0 for some semiprime
ideal I of R. If M ∈ Cog(Soc(M)⊕R/I) and M/Soc(M) ∈ Cog(R/I), then MR is weakly
compressible. The converse holds if R is a right singular semi-Artinian ring such that
every cyclic R-module has a finitely generated socle or acc on direct summands.

Proof. We may suppose that I = 0. Let N = Soc(M). By Proposition 2.2, M/N is a
weakly compressible R-module. Hence by Theorem 2.5(f), we need to show that M is
N -weakly compressible. Assume that S is a simple submodule of M , and by hypothesis
let θ : M ↪→ (N ⊕ R)Λ =: L for some set Λ. Then πλθ(S) is nonzero for some canonical
projection πλ (λ ∈ Λ) on L. Let U = πλθ(S) and note that U ' S. Since now any
minimal right ideal in a semiprime ring R is a direct summand of RR, we deduce that
there exists R-homomorphism f : M → U such that f(S) 6= 0. It follows S 6⊆ Rej(M,S),
as desired.
Conversely, suppose that R satisfies the above hypothesis andMR is weakly compressible.
By Theorem 4.1, M ∈ Cog(Soc(M)⊕R). It remains to show that M/Soc(M) ∈ Cog(R).
Since R is assumed to be a semiprime ring, Soc(RR) is a direct summand of R by
Proposition 4.3(a). It follows that R ' A ⊕ B where A is a semisimple ring and B is a
ring with zero socle. By Lemma 4.4, M = K ⊕ L and Soc(M) = K⊕ Soc(L). Thus it is
enough to show that L/ Soc(L) ∈ Cog(B). Now L is a weakly compressible B-module.
Since B is a right singular semi-Artinian ring, Z(L) has an essential socle, and since
Soc(BB) = 0, every simple B-module is singular. Thus Soc(L) ≤ess Z(L). On the other
hand, if C is a cyclic submodule LB , then an application of Proposition 4.3(a) for CB
shows that Soc(C) is a direct summand of C. Hence Soc(C) is cyclic. It follows that
Soc(L) is a closed submodule of L by Proposition 4.3(b). Therefore Soc(L) = Z(L) =
Z2(L). The proof is now completed by Lemma 2.1(i). �
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4.6. Corollary. Let R be a prime right singular semi-Artinian ring such that cyclic R-
modules have finite uniform dimensions. Then the following statements hold for MR.
(a) M ∈ Cog(Soc(M) ⊕ R) and M/Soc(M) ∈ Cog(R) if and only if MR is weakly
compressible.
(b) M ∈ Cog(Soc(M)⊕R) if and only if MR is semiprime.
(c) If MR is semiprime, then either MR is semisimple or Z(M) = Soc(M).
(d) Furthermore, if R is a PID then M/Soc(M) ∈ Cog(R) if and only if MR is weakly
compressible.

Proof. (a) and (b). These follow from Theorems 4.1 and 4.5.
(c). By Proposition 4.3(a), Soc(RR) is a direct summand of R. Since now R is a prime
ring, R is semisimple or Soc(RR) = 0. If R is a semisimple ring then MR is semisimple.
In case Soc(RR) = 0, as we see in the proof of Theorem 4.5, Z(M) = Soc(M).
(d) The sufficiency holds by part (a). Conversely, let N = Soc(M) and M/N ∈ Cog(R).
It follows that Z(M) ⊆ N and M/N is weakly compressible. Thus we need to show that
M is N -weakly compressible. Let S be a simple submodule of MR and P = annR(S).
Let P = pR for some prime element p ∈ R. If 0 6= x ∈ S ⊆ MP , then x = mp for
some m ∈ M and so p2R ⊆ annR(m) ( pR. Hence p2R = annR(m). This implies that
mR ⊆ N , a contradiction. Therefore, S ∩MP = 0. Since now M/MP ' S(Λ) for some
set Λ, we can deduce that S * Rej(M,S). The proof is complete. �
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