Asymptotic behavior of associated primes of certain ext modules

Kamal Bahmanpour∗, Reza Naghipour† and Mehdi Sehatkhah‡

Abstract

Let R be a commutative Noetherian ring, I an ideal of R and M a finitely generated R-module. It is shown that, whenever I is principal, then for each integer i the set of associated prime ideals $\text{Ass}_R \text{Ext}_i^R(R/I^n, M)$, $n = 1, 2, \ldots$, becomes independent of n, for large n.

Keywords: Artinian module, Associated prime, Depth, Noetherian module.

2000 AMS Classification: 13E05.

Received: 20.07.2015 Accepted: 24.11.2015 Doi: 10.15672/HJMS.20164514288

1. Introduction

Let R denote a commutative Noetherian ring (with identity), I an ideal of R, and M a finitely generated R-module. In [7] L.J. Ratliff, Jr., conjectured about the asymptotic behavior of $\text{Ass}_R R/I^n$ when R is a Noetherian domain. Subsequently, M. Brodmann [1] showed that $\text{Ass}_R M/I^n M$ is ultimately constant for large n. In [6], Melkersson and Schenzel asked whether the sets $\text{Ass}_R \text{Ext}_i^R(R/I^n, M)$ become stable for sufficiently large n. The aim of this paper is to show that, for all $i \geq 0$, the sets of prime ideals $\text{Ass}_R \text{Ext}_i^R(R/I^n, M)$, $n = 1, 2, \ldots$, becomes independent of n, for large n, whenever I is principal, which is an affirmative answer to the above question in the case I is principal.

Also, it is shown that, if I is generated by an R-regular sequence and $\text{Ext}_i^R(R/I, M)$ is Artinian, then the set $\bigcup_{n=1}^{\infty} \text{Ass}_R \text{Ext}_{i+1}^R(R/I^n, M)$ is finite.

For any R-module L, the set $\{ p \in \text{Ass}_R L | \dim R/p = \dim L \}$ is denoted by $\text{Assh}_R L$.

∗Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran.
Email: bahmanpour.k@gmail.com
†Department of Mathematics, University of Tabriz, Tabriz, Iran.
Email: naghipour@ipm.ir
Email: naghipour@tabrizu.ac.ir Corresponding author.
‡Roshdiye Higher Education Institution, Tabriz, Iran.
Email: m_sehatkhah@pnu.ac.ir
2. The Results

2.1. Lemma. Let R be a Noetherian ring, I an ideal of R and M a finitely generated R-module. Then the sequence $\text{Ass}_R \text{Ext}_1^0(R/\Gamma^n, M)$ becomes eventually constant, for large n.

Proof. See [4, Corollary 2.3].

2.2. Lemma. Let x be an element of the Noetherian ring R. Let M and N be two finitely generated R-modules such that $\text{pd}(N) = t < \infty$. Then for each $i \geq t + 2$ and for all large k,

$\text{Ass}_R \text{Ext}_{i-k}^i(N/x^k N, M) = \text{Ass}_R \text{Ext}_{i-k}^i(N/\Gamma N, M)$,

and so the sets $\text{Ass}_R \text{Ext}_{i-k}^i(N/x^k N, M)$ are eventually constant.

Proof. Suppose that $i \geq t + 2$. As, N is finitely generated, it follows that there is an integer n such that

$\Gamma N := \bigcup_{i=0}^{\infty} (0 : M R^i) = (0 : N x^n) = (0 : N x^{n+1}) = \cdots$.

Now we claim that for any $k \geq n$, $\text{Ext}_{i-k}^i(N/x^k N, M) \cong \text{Ext}_{i-k}^{i-1}(N/\Gamma N, M)$.

To do this, as $(0 : N x^k) = \Gamma N$, it follows that $x^k N \cong N/\Gamma N$. Therefore for all $j \geq 0$ we have

$\text{Ext}_{i-k}^j(x^k N, M) \cong \text{Ext}_{i-k}^j(N/\Gamma N, M)$,

for all $k \geq n$. Now the exact sequence

$0 \rightarrow x^k N \rightarrow N \rightarrow N/x^k N \rightarrow 0$,

implies that

$\text{Ext}_{i-k}^i(N/x^k N, M) \cong \text{Ext}_{i-k}^{i-1}(x^k N, M) \cong \text{Ext}_{i-k}^{i-1}(N/\Gamma N, M)$,

(Note that $\text{pd}(N) = t$ and $i \geq t + 2$.) Hence we have

$\text{Ass}_R \text{Ext}_{i-k}^i(N/x^k N, M) = \text{Ass}_R \text{Ext}_{i-k}^{i-1}(N/\Gamma N, M)$,

for all $k \geq n$, as required.

2.3. Theorem. Let R be a Noetherian ring and let x be an element of R. Let M be a finitely generated R-module and i a non-negative integer. Then the sequence $\text{Ass}_R \text{Ext}_{i-k}^i(R/Rx^k, M)$, of associated primes is ultimately constant for large k, and if $i \geq 2$, then

$\text{Ass}_R \text{Ext}_{i-k}^i(R/Rx^k, M) = \text{Ass}_R \text{Ext}_{i-k}^{i-1}(R/\Gamma N, M)$,

for all large k.

Proof. The result follows from Lemmas 2.1 and 2.2.

2.4. Proposition. Let R be a Noetherian ring and let M, N be tow finitely generated R-modules. Let x be an N-regular element of R. Then, for any given integer $j \geq 0$, the set

$\bigcup_{n=1}^{\infty} \text{Ass}_R \text{Ext}_{j-k}^j(N/x^n N, M)$,

of associated prime ideals, is finite.
Proof. If \(j = 0 \), then
\[
\text{Ass}_R \text{Hom}_R(N/x^n N, M) = \text{Ass}_R \text{Hom}_R(N, \text{Hom}_R(R/Rx, M)),
\]
and so
\[
\bigcup_{n=1}^{\infty} \text{Ass}_R \text{Ext}_R^0(N/x^n N, M)
\]
is a finite set. Suppose then that \(j \geq 1 \), and we use the exact sequence
\[
0 \longrightarrow N \overset{x^n} \longrightarrow N/x^n N \longrightarrow 0,
\]
to obtain the exact sequence
\[
\cdots \rightarrow \text{Ext}_R^{j-1}(N, M) \overset{x^n} \longrightarrow \text{Ext}_R^{j-1}(N, M) \longrightarrow \text{Ext}_R^j(N/x^n N, M)
\]
\[
\longrightarrow \text{Ext}_R^j(N, M) \overset{x^n} \longrightarrow \text{Ext}_R^j(N, M) \longrightarrow \cdots
\]
Hence we have the following exact sequence,
\[
0 \rightarrow \text{Ext}_R^{j-1}(N, M)/x^n \text{Ext}_R^{j-1}(N, M) \rightarrow \text{Ext}_R^j(N/x^n N, M) \rightarrow (0 : \text{Ext}_R^j(N, M) x^n) \rightarrow 0.
\]
Consequently, it follows from Brodmann’s result (see [1]) that the set
\[
\bigcup_{n=1}^{\infty} \text{Ass}_R \text{Ext}_R^j(N/x^n N, M)
\]
is finite. \(\square \)

2.5. Lemma. Let \(R \) be a Noetherian ring and let \(M \) be an \(R \)-module. Let \(N \) be an Artinian submodule of \(M \). Then
\[
\text{Ass}_R M/N/\text{Supp} N = \text{Ass}_R M/\text{Supp} N.
\]
Proof. As \(N \) is an Artinian \(R \)-module, it follows that the set \(\text{Supp} N \subseteq \text{Max} R \) is finite. Let \(\text{Supp} N = \{m_1, \ldots, m_n\} \) and \(J := m_1 \cdots m_n \). Then we have
\[
\text{Ass}_R M/\text{Supp} N = \text{Ass}_R M/\Gamma J(M) = \text{Ass}_R M/N/\text{Supp} N,
\]
as required. \(\square \)

Following we let \(H^j_I(M) \) denote the \(j^{\text{th}} \) local cohomology module of \(M \) with respect to an ideal \(I \) of a Noetherian ring \(R \) (cf. [2] and [3]).

2.6. Theorem. Let \(R \) be a Noetherian ring and let \(I \) be an ideal of \(R \) which is generated by an \(R \)-regular sequence. Let \(M \) be a finitely generated \(R \)-module and let \(i \) be a non-negative integer such that the \(R \)-module \(\text{Ext}_R^i(R/I, M) \) is Artinian. Then the set
\[
\bigcup_{n=1}^{\infty} \text{Ass}_R \text{Ext}_R^{i+1}(R/I^n, M),
\]
is finite. In particular, the set \(\text{Ass}_R H^{i+1}_I(M) \) is finite.

Proof. For \(n \geq 0 \), the exact sequence
\[
0 \longrightarrow I^n/I^{n+1} \longrightarrow R/I^{n+1} \longrightarrow R/I^n \longrightarrow 0
\]
induces the exact sequence
\[
\text{Ext}_R^i(I^n/I^{n+1}, M) \rightarrow \text{Ext}_R^{i+1}(R/I^n, M) \rightarrow \text{Ext}_R^{i+1}(R/I^{n+1}, M) \rightarrow \text{Ext}_R^{i+1}(I^n/I^{n+1}, M).
\]
Since I is generated by an R-regular sequence, by [5, page 125] I^n/I^{n+1} is a finitely generated free R/I-module, and so the sets
\[
\text{Ass}_R \text{Ext}_R^{i+1}(I^n/I^{n+1}, M) = \text{Ass}_R \text{Ext}_R^{i+1}(R/I, M),
\]
and
\[
\text{SuppExt}_R^{i}(I^n/I^{n+1}, M) = \text{SuppExt}_R^{i}(R/I, M)
\]
as finite, (note that the R-module $\text{Ext}_R^{i}(R/I, M)$ is Artinian). Therefore in view of the above exact sequence and Lemma 2.5, the set
\[
\text{Ass}_R \text{Ext}_R^{i+1}(R/I^n, M) \setminus \text{SuppExt}_R^{i}(R/I, M)
\]
is a subset of
\[
(\text{Ass}_R \text{Ext}_R^{i+1}(R/I^n, M) \setminus \text{SuppExt}_R^{i}(R/I, M)) \cup \text{Ass}_R \text{Ext}_R^{i+1}(R/I, M),
\]
and so the set $\bigcup_{n=1}^{\infty} \text{Ass}_R \text{Ext}_R^{i+1}(R/I^n, M)$ is finite, as required. The second assertion follows from the fact that
\[
\text{Ass}_R H_R^{i+1}(M) \subseteq \bigcup_{n=1}^{\infty} \text{Ass}_R \text{Ext}_R^{i+1}(R/I^n, M).
\]

2.7. Corollary. Let R be a Noetherian ring and let I be an ideal of R which is generated by an R-regular sequence. Let M be a finitely generated R-module and let i be a non-negative integer such that $\text{Ext}_R^i(R/I, M) = 0$. Then the sequence
\[
\text{Ass}_R \text{Ext}_R^{i+1}(R/I^k, M),
\]
of associated primes is increasing and ultimately constant for all large k.

Proof. Since I^k/I^{k+1} is a free R/I-module, it follows that $\text{Ext}_R^i(I^k/I^{k+1}, M) = 0$, for all $k \geq 1$. Hence the exact sequence
\[
0 \rightarrow \text{Ext}_R^{i+1}(R/I^k, M) \rightarrow \text{Ext}_R^{i+1}(R/I^{k+1}, M) \rightarrow \text{Ext}_R^{i+1}(I^k/I^{k+1}, M),
\]
implies that
\[
\text{Ass}_R \text{Ext}_R^{i+1}(R/I^k, M) \subseteq \text{Ass}_R \text{Ext}_R^{i+1}(R/I^{k+1}, M).
\]
Now the result follows from Theorem 2.6.

2.8. Lemma. Let (R, m) be a Noetherian local ring of depth d. Let M be a finitely generated R-module and N an Artinian submodule of M. Then for all $i \leq d-1$,
\[
\text{Ext}_R^i(M, R) \cong \text{Ext}_R^i(M/N, R).
\]

Proof. The exact sequence
\[
0 \rightarrow N \rightarrow M \rightarrow M/N \rightarrow 0
\]
induces the exact sequence
\[
\text{Ext}_R^{-1}(N, R) \rightarrow \text{Ext}_R^i(M/N, R) \rightarrow \text{Ext}_R^i(M, R) \rightarrow \text{Ext}_R^i(N, R).
\]
As N has finite length and depth $R = d$, it follows that
\[
\text{Ext}_R^i(N, R) = 0 = \text{Ext}_R^{-1}(N, R).
\]
Hence the result follows.

2.9. Lemma. Let (R, m) be a local Cohen-Macaulay ring of dimension d and I an ideal of R. Then for any $p \in \text{Ass}_R \text{Ext}_R^{i+i}(R/I, R)$,
\[
\text{height } p = \text{grade } I.
\]
Proof. Let \(\text{grade } I = t \). The assertion is clear when \(t = 0 \). Now suppose that, \(t \geq 1 \).

There exists an \(R \)-regular sequence \(x_1, \ldots, x_t \in I \). As

\[
\text{Ext}_R^{\text{grade } I}(R/I, R) \cong \text{Hom}_{R/(x_1, \ldots, x_t)}(R/I, R/(x_1, \ldots, x_t)),
\]

and \(R/(x_1, \ldots, x_t) \) is a Cohen-Macaulay ring it follows that

\[
\text{Ass}_R \text{Ext}_R^{\text{grade } I}(R/I, R) \subseteq \text{Ass}_R R/(x_1, \ldots, x_t),
\]

that implies for any \(p \in \text{Ass}_R \text{Ext}_R^{\text{grade } I}(R/I, R) \),

\[
\text{height } p = \text{grade } I,
\]
as required.

\[\square\]

2.10. Theorem. Let \((R, m)\) be a local Cohen-Macaulay ring of dimension \(d \geq 3 \). Let \(I \) be an ideal of \(R \) such that \(1 \leq \text{grade } I \leq d - 2 \). Then

\[
\text{depth } \text{Ext}_R^{\text{grade } I}(R/I, R) \geq 2,
\]

and if \(\text{grade } I \leq d - 3 \) then the equality holds if and only if \(m \in \text{Ass}_R \text{Ext}_R^{1 + \text{grade } I}(R/I, R) \).

Proof. Set \(t := \text{grade } I \). Let \(\Gamma_m(R/I) := J/I \) for some ideal \(J \) of \(R \) with \(I \subseteq J \). Then it is easy to see that \(m \notin \text{Ass}_R R/J \) and \(\dim R/J = \dim R/J \). Hence as \(R \) is a Cohen-Macaulay ring, it follows that \(\text{grade } I = \text{grade } J \). Moreover, since \(J/I \) has finite length, it follows from Lemma 2.8 that

\[
\text{Ext}_R^t(R/I, R) \cong \text{Ext}_R^t(R/J, R) \text{ and } \text{Ext}_R^{t+1}(R/I, R) \cong \text{Ext}_R^{t+1}(R/J, R).
\]

Therefore, we may and do replace \(I \) with \(J \) in the following. Since \(m \notin \text{Ass}_R R/J \), it follows that there exists an element \(x \in R \) such that \(x \) is \(R/J \)-regular sequence. Then, as \(\dim R/(J + Rx) = \dim R/J - 1 \) and \(R \) is a Cohen-Macaulay ring, it follows that

\[
\text{grade } (J + Rx) = \text{grade } J + 1.
\]

Now the exact sequence

\[
0 \rightarrow R/J \rightarrow R/J + Rx \rightarrow 0
\]

induces the exact sequence

\[
0 \rightarrow \text{Ext}_R^t(R/J, R) \rightarrow \text{Ext}_R^t(R/J, R) \rightarrow \text{Ext}_R^{t+1}(R/J, R).
\]

Hence

\[
\text{Ass}_R \text{Ext}_R^t(R/J, R) \subseteq \text{Ass}_R \text{Ext}_R^{t+1}(R/J, R),
\]

and since \(1 + \text{grade } J \leq d - 1 \), it follows from Lemma 2.9 that

\[
\text{depth } \text{Ext}_R^t(R/J, R) \geq 2.
\]

Now, let \(\text{grade } J \leq d - 3 \). Then we have the following exact sequence,

\[
0 \rightarrow \text{Ext}_R^t(R/J, R) \rightarrow \text{Ext}_R^{t+1}(R/J + Rx, R) \rightarrow 0.
\]

Since \(\text{grade } (J + Rx) = t + 1 \) and \(t + 1 \leq d - 2 \), it follows from the first part that

\[
\text{depth } \text{Ext}_R^{t+1}(R/J + Rx, R) \geq 2.
\]

Therefore it follows from the exact sequence

\[
0 \rightarrow \text{Hom}_R(R/m, \text{Ext}_R^{t+1}(R/J, R)) \rightarrow \text{Ext}_R^t(R/m, \text{Ext}_R^t(R/J, R)) \rightarrow 0.
\]

that \(\text{depth } \text{Ext}_R^t(R/J, R) = 2 \) if and only if \(\text{Hom}_R(R/m, \text{Ext}_R^{t+1}(R/J, R)) \neq 0 \). Consequently \(\text{depth } \text{Ext}_R^t(R/J, R) = 2 \) if and only if \(m \in \text{Ass}_R \text{Ext}_R^{t+1}(R/J, R) \), as required. \[\square\]
Acknowledgments

The authors are deeply grateful to the referee for his/her valuable suggestions on the article. Also, we would like to thank Professor Hossein Zakeri for his reading of the first draft and useful comments.

References