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On rings over which every �nitely generated
module is a direct sum of cyclic modules

M. Behboodi∗† and G. Behboodi Eskandari∗

Abstract

In this paper we study (non-commutative) rings R over which every
�nitely generated left module is a direct sum of cyclic modules (called
left FGC-rings). The commutative case was a well-known problem
studied and solved in 1970s by various authors. It is shown that a
Noetherian local left FGC-ring is either an Artinian principal left ideal
ring, or an Artinian principal right ideal ring, or a prime ring over
which every two-sided ideal is principal as a left and a right ideal. In
particular, it is shown that a Noetherian local duo-ring R is a left FGC-
ring if and only if R is a right FGC-ring, if and only if, R is a principal
ideal ring.
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1. Introduction

The question of which rings have the property that every �nitely generated module is
a direct sum of cyclic modules has been around for many years. We will call these rings
FGC-rings. The problem originated in I. Kaplansky's papers [13] and [14], in which it
was shown that a commutative local domain is FGC if and only if it is an almost maximal
valuation ring. For several years, this is one of the major open problems in the theory.
R. S. Pierce [19] showed that the only commutative FGC-rings among the commutative
(von Neumann) regular rings are the �nite products of �elds. A deep and di�cult study
was made by Brandal [3], Shores-R. Wiegand [22], S. Wiegand [24], Brandal-R. Wiegand
[4] and Vámos [23], leading to a complete solution of the problem in the commutative
case. To show that a commutative FGC-ring cannot have an in�nite number of minimal
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prime ideals required the study of topological properties (so-called Zariski and patch
topologies). For complete and more leisurely treatment of this subject, see Brandal [2].
It gives a clear and detailed exposition for the reader wanting to study the subject. The
main result reads as follows: A commutative ring R is an FGC-ring exactly if it is a �nite
direct sum of commutative rings of the following kinds: (i) maximal valuation rings; (ii)
almost maximal Bézout domains; (iii) so-called torch rings (see [2] or [8] for more details
on the torch rings).

The corresponding problem in the non-commutative case is still open; see [21, Ap-
pendix B. Dniester Notebook: Unsolved Problems in the Theory of Rings and Modules.
Pages 461-516] in which the following problem is considered.

Problem (I. Kaplansky, reported by A. A. Tuganbaev [21, Problem 2.45]): Describe the
rings in which every one-sided ideal is two-sided and over which every �nitely generated
module can be decomposed as a direct sum of cyclic modules.

Through this paper, all rings have identity elements and all modules are unital. A
left FGC-ring is a ring R such that each �nitely generated left R-module is a direct sum
of cyclic submodules. A right FGC-ring is de�ned similarly, by replacing the word left
with right above. A ring R is called a FGC-ring if it is a both left and right FGC-ring.
Also, a ring R is called duo-ring if each one-sided ideal of R is two-sided. Therefore, the
Kaplansky problem is: Describe the FGC-duo-rings.

In this paper we investigate Noetherian local left FGC-rings (see Section 2). Also, we
will present a partial solution to the above problem of Kaplansky (see Section 3).

2. On left FGC-rings

A ring R is local in case R has a unique left maximal ideal. An Artinian (resp.
Noetherian) ring is a ring which is both left and right Artinian (resp. Noetherian). A
principal ideal ring is a ring which is both left and right principal ideal ring. Also, for
a subset S of RM , we denote by AnnR(S), the annihilator of S in R. A left R-module
M which has a composition series is called a module of �nite length. The length of a
composition series of RM is said to be the length of RM and denoted by length(RM).

We begin with the following lemma which is an associative, non-commutative version
of Brandal [2, Proposition 4.3] for local rings (R,M) with M2 = (0). Also, the proof is
based on a slight modi�cation of the proof of [1, Theorem 3.1].

2.1. Lemma. Let (R,M) be a local ring with M2 = (0) and RM = Ry1 ⊕ . . .⊕Ryt such
that t ≥ 2 and each Ryi is a minimal left ideal of R. If there exist 0 6= x1, x2 ∈ M such
that x1R ∩ x2R = (0), then the left R-module (R ⊕ R)/R(x1, x2) is not a direct sum of
cyclic modules.

Proof. Since RM = Ry1⊕ . . .⊕Ryt and each Ryi is a minimal left ideal of R, we conclude
that R is of �nite composition length and length(RR) = t + 1. We put RG = (R ⊕
R)/R(x1, x2). Since x1, x2 ∈M and M2 = (0), we conclude that AnnR(R(x1, x2)) = M.
Thus R(x1, x2) is simple and hence

length(RG) = 2× length(RR)− length(RR(x1, x2)) = 2(t + 1)− 1.

We claim that every non-zero cyclic submodule Rz of G has length 1 or t+ 1. If Mz = 0,
then length(Rz) = 1 since Rz ' R/M. Suppose that Mz 6= 0, then there exist c1, c2 ∈ R
such that z = (c1, c2) + R(x1, x2). If c1, c2 ∈ M, then Mz = 0, since M2 = 0. Thus
without loss of generality, we can assume that z = (1, c2) + R(x1, x2) (since if c1 6∈ M,
then c1 is unit). Now let r ∈ AnnR(z), then r(1, c2) = t(x1, x2) for some t ∈ R. It follows
that r = tx1 and rc2 = tx2. Thus tx2 = tx1c2. If t /∈M, then t is unit and so x2 = x1c2



1337

that it is contradiction (since x1R ∩ x2R = (0)). Thus t ∈ M and so r = tx1 = 0.
Therefore, AnnR(z) = 0 and so Rz ∼= R. It follows that length(Rz) = t + 1.

Now suppose the assertion of the lemma is false. Then RG is a direct sum of cyclic
modules and since RG is of �nite length, we have

G = Rw1 ⊕ . . .⊕Rwk ⊕Rv1 ⊕ . . .⊕Rvl,

where l, k ≥ 0, and each Rwi is of length t+1 and each Rvj is of length 1. Clearly M⊕M

is not a simple left R-module. Since R(x1, x2) is simple, MG = (M⊕M)/R(x1, x2) 6= 0.
It follows that k ≥ 1. Also, length(RG) = 2(t+ 1)− 1 = k(t+ 1) + l and this implies that
k = 1 and l = t. Since Mvi = 0 for each i, MG = Mw1 and hence

G/MG ' Rw1/Mw1 ⊕Rv1 ⊕ . . .⊕Rvt.

It follows that length(RG/MG) = 1 + t. On the other hand, we have

G/MG ∼= R/M⊕R/M

and so length(RG/MG) = 2 and so t = 1, a contradiction. Thus the left R-module
(R⊕R)/R(x1, x2) is not a direct sum of cyclic modules. �

We recall that the socle soc(RM) of a left module M over a ring R is de�ned to be
the sum of all simple submodules of M .

2.2. Theorem. Let (R,M) be a local ring such that RM and MR are �nitely generated.
If every left R-module with two generators is a direct sum of cyclic modules, then either
M is a principal left ideal or M is a principal right ideal.

Proof. We can assume that M is not a principal left ideal of R. One can easily see
that MR is generated by {x1, · · · , xn} if and only if M/M2 is generated by the set
{x1 +M2, · · · , xn +M2} as a right ideal of R/M2. Thus it su�ces to show that M/M2 is
a principal right ideal of R/M2. Since every left R-module with two generators is a direct
sum of cyclic modules, we conclude that every left R/M2-module with two generators is
also a direct sum of cyclic modules. Therefore, without loss of generality we can assume
that M2 = (0). It follows that soc(RR) = soc(RR) = M. Since RM is �nitely generated,

RM = Ry1⊕ . . .⊕Ryt such that t ≥ 2 and each Ryi is a minimal left ideal of R. We claim
that MR = xR, for if not, then we can assume that MR = ⊕i∈IxiR where |I| ≥ 2 and
each xiR is a minimal right ideal of R. We can assume that {1, 2} ⊆ I and so 0 6= x1,
x2 ∈M and x1R∩ x2R = (0). Now by Lemma 2.1, the left R-module (R⊕R)/R(x1, x2)
is not a direct sum of cyclic modules, a contradiction. Thus M is principal as a right
ideal of R. �

A ring whose lattice of left ideals is linearly ordered under inclusion, is called a left
uniserial ring. A uniserial ring is a ring which is both left and right uniserial. Note that
left and right uniserial rings are in particular local rings and commutative uniserial rings
are also known as valuation rings.

Next, we need the following lemma from [18].

2.3. Lemma. (See Nicholson and Sánchez-Campos [18, Theorem 9]) For any ring R,
the following statements are equivalent:

(1) R is local, J(R) = Rx for some x ∈ R and xk = 0 for some k ∈ N.
(2) There exist x ∈ R and k ∈ N such that xk−1 6= 0 and

R ⊃ Rx ⊃ . . . ⊃ Rxk = (0)

are the only left ideals of R.
(3) R is left uniserial of �nite composition length.
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2.4. Theorem. Let (R,M) be a local ring such that RM and MR are �nitely generated

and Mk = (0) for some k ∈ N. If every left R-module with two generators is a direct sum
of cyclic modules, then either R is a left Artinian principal left ideal ring or R is a right
Artinian principal right ideal ring.

Proof. Assume that every left R-module with two generators is a direct sum of cyclic
modules. Then by Theorem 2.2, either M is a principal left ideal or M is a principal right
ideal. If M is a principal left ideal, then by Lemma 2.3, R is a left Artinian principal left
ideal ring. Thus we can assume that M is a principal right ideal. Then by using Lemma
2.3 to the right side, R is a right Artinian principal right ideal ring. �

Next, we need the following lemma from Mohamed H. Fahmy-Susan Fahmy[9]. We
note that their de�nition of a local ring is slightly di�erent than ours; they de�ned a local
ring (resp. scalar local ring) as a ring R such that it contains a unique maximal ideal
M and R/M is an Artinian ring (resp. division ring). Thus our de�nition of a local ring
and the scalar local ring coincide.

2.5. Lemma. (See [9, Theorem 3.2]) Let (R,M) be non-Artinian Noetherian local ring.
Then the following conditions are equivalent:

(1) M is principal as a right ideal.
(2) M is principal as a left ideal.
(3) Every two-sided ideal of R is principal as a left ideal.
(4) Every two-sided ideal of R is principal as a right ideal. Moreover, R is a prime

ring.

Now we are in a position to prove the main theorem of this section.

2.6. Theorem. Let (R,M) be a Noetherian local ring. If every left R-module with two
generators is a direct sum of cyclic modules, then one of the following holds:

(1) R is an Artinian principal left ideal ring.
(2) R is an Artinian principal right ideal ring.
(3) R is a prime ring and every two-sided ideal of R is principal as both left and

right ideals.

Proof. First we assume that R is an Artinian ring. Thus by Theorem 2.4, either R is
an Artinian principal left ideal ring or R is an Artinian principal right ideal ring. Now
we assume that R is not an Artinian ring. By Theorem 2.2, either M is a principal left
ideal or M is a principal right ideal. Thus by Lemma 2.5, R is a prime ring and every
two-sided ideal of R is principal as both left and right ideals. �

3. A partial solution of Kaplansky's problem on duo-rings

A ring R is said to be left (resp. right) hereditary if every left (resp. right) ideal of
R is projective as a left (resp. right) R-module. If R is both left and right hereditary,
we say that R is hereditary. Recall that a PID is a domain R in which any left and any
right ideal of R is principal. Clearly, any PID is hereditary.

Let R be an hereditary prime ring with quotient ring Q and A be a left R-module.
Following Levy [17], we say that a ∈ A is a torsion element if there is a regular element
r ∈ R such that ra = 0. Since, by Goldie's theorem, R satis�es the Ore condition, the
set of torsion elements of A is a submodule t(A) ⊆ A. A/t(A) is evidently torsion free
(has no torsion elements).
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3.1. Lemma. (Eisenbud-Robson [6, Theorem 2.1]) Let R be an hereditary Noetherian
prime ring, and let A be a �nitely generated left R-module. Then A/t(A) is projective
and A ∼= t(A)⊕A/t(A).

A Dedekind prime ring [20] is an hereditary Noetherian prime ring with no proper
idempotent two-sided ideals (see [7]). Clearly if a duo-ring R is a PID, then R is a
Dedekind prime ring.

3.2. Lemma. (Eisenbud-Robson [6, Theorem 3.11]) Let R be a Dedekind prime ring.
Then every �nitely generated torsion left R-module A is a direct sum of cyclic modules.

3.3. Lemma. (Eisenbud-Robson [6, Theorem 2.4]) Let R be a Dedekind prime ring, and
let A be a projective left R-module. Then:

(1) If A is �nitely generated, then A ∼= F ⊕ I where F is a �nitely generated free
module and I is a left ideal of R.

(2) If A is not �nitely generated, then A is free.

3.4. Proposition. Let R be a Dedekind prime ring. If R is a left principal ideal ring,
then R is a left FGC-ring.

Proof. Suppose that A is a �nitely generated left R-module. Since R is a Dedekind prime
ring, R is Noetherian and so A is also a Noetherian left R-module. Thus by Lemma 3.1,
A/t(A) is projective and A ∼= t(A) ⊕ A/t(A). By Lemma 3.2, t(A) is a direct sum of
cyclic modules. Also by Lemma 3.3, A/t(A) ∼= F ⊕ I where F is a free module and I is
a left ideal of R. Since R is a principal left ideal ring, I is a cyclic left R-module, i.e.,
A/t(A) is a direct sum of cyclic modules. Thus, A ∼= t(A) ⊕ A/t(A) is a direct sum of
cyclic modules. Therefore, R is a left FGC-ring. �

The following proposition is an answer to the question: �What is the structure of FGC
Noetherian prime duo-rings?"

3.5. Proposition. (See also Jacobson [11, Page 44, Theorems 18 and 19]) Let R be
a Noetherian prime duo-ring (i.e., R is a Noetherian duo-domain). Then the following
statements are equivalents:

(1) R is an FGC-ring.
(2) R is a left FGC-ring.
(3) R is a principal ideal ring.

The same characterizations also apply for right R-modules.

Proof. (1) ⇒ (2) is clear. (2) ⇒ (3). Suppose that I is an ideal of R. Since I is a direct
sum of principal ideals of R and R is a domain, we conclude that I is principal. Thus, R
is a principle ideal ring. (3) ⇒ (1) is by Proposition 3.4. �

A left (resp., right) Köthe ring is a ring R such that each left (resp., right) R-module
is a direct sum of cyclic submodules. A ring R is called a Köthe ring if it is a both
left and right Köthe ring. In [16] Köthe proved that an Artinian principal ideal ring
is a Köthe ring. Furthermore, a commutative ring R is a Köthe ring if and only if R
is an Artinian principal ideal ring (see Cohen and Kaplansky [5]). The corresponding
problem in the non-commutative case is still open (see [21, Appendix B, Problem 2.48] or
Jain-Srivastava [12, Page 40, Problem 1]. Recently, a generalization of the Köthe-Cohen-
Kaplansky theorem is given in [1]. In fact: in [1, Corollary 3.3.], it is shown that if R is
a ring in which all idempotents are central, then R is a Köthe ring if and only if R is an
Artinian principal ideal ring.
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Next, the following theorem is an answer to the question: �What is the structure of
FGC Noetherian local duo-rings?"

3.6. Theorem. Let (R,M) be a Noetherian local duo-ring. Then the following statements
are equivalent:

(1) R is an FGC-ring.
(2) R is a left FGC-ring.
(3) Every left R-module with two generators is a direct sum of cyclic modules.
(4) Either R is an Artinian principal ideal ring or R is a principal ideal domain.
(5) R is a principal ideal ring.

The same characterizations also apply for right R-modules.

Proof. (1) ⇒ (2) ⇒ (3) is clear.
(3) ⇒ (4). Suppose that every left R-module with two generators is a direct sum of
cyclic modules. Thus by Theorem 2.2, M is principal as both left and right ideals. If
R is Artinian, then by Theorem 2.4, R is an Artinian principal ideal ring. If R is not
Artinian, then by Lemma 2.5, R is a principal ideal domain.
(4) ⇒ (1). If R is an Artinian principal ideal ring, then by the Köthe result, each left,
and each right R-module is a direct sum of cyclic modules. Thus R is an FGC-ring. Now
assume that R is a principal ideal domain. Then by Proposition 3.5, R is an FGC-ring.
(4) ⇒ (5) is clear.
(5) ⇒ (4). Assume that R is a principal ideal ring. Then M is principal as both left and
right ideals. If R is Artinian, then by Lemma 2.3, R is an Artinian principal ideal ring.
If R is not Artinian, then by Lemma 2.5, R is a principal ideal domain. �

Let R = Πn
i=1Ri be a �nite product of rings Ri. Clearly R is a principal ideal ring if

and only if each Ri is a principal ideal ring. On the other hand if R is a left FGC-ring,
then each Ri is also a left FGC-ring. Thus as a corollary of Proposition 3.5 and Theorem
3.6, we have the following result.

3.7. Corollary. Let R = Πn
i=1Ri be a �nite product of Noetherian duo-rings Ri such

that each Ri is a domain or a local ring. Then the following statements are equivalent:

(1) R is an FGC-ring.
(2) R is a left FGC-ring.
(3) R is a principal ideal ring.

The same characterizations also apply for right R-modules.

Next, we need the following lemma from [10] about Artinian duo-rings (its proof is
worthwhile even in the commutative case (see [10, Corollary 4] or [15, Lemma 4.2])

3.8. Lemma. Let R be an Artinian duo-ring. Then R is a �nite direct product of
Artinian local duo rings.

Next, we give the following characterizations of an Artinian FGC duo-ring. In fact,
on Artinian duo-rings, the notions �FGC" and �Köthe" coincide.

3.9. Theorem. Let R be an Artinian Duo-ring. Then the following statements are
equivalent:

(1) R is a left FGC-ring.
(2) R is an FGC-ring.
(3) Every left R-module with two generators is a direct sum of cyclic modules.
(4) R is a left Köthe-ring.
(5) R is a Köthe-ring.
(6) R is a principal ideal ring.
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The same characterizations also apply for right R-modules.

Proof. Since R is an Artinian duo-ring, by Lemma 3.8, R = Πn
i=1Ri such that each Ri

is an Artinian local duo-ring. Thus by the Köthe result and Corollary 3.7, the proof is
complete. �
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