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Abstract
In this paper, we introduce and investigate the notions of ξ-strongly copure
projective objects in a triangulated category. This extends Asadollahi’s notion
of ξ-Gorenstein projective objects. Then we study the ξ-strongly copure pro-
jective dimension and investigate the existence of ξ-strongly copure projective
precover.
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1. Introduction
Triangulated categories originated from algebraic geometry and algebraic topology and were in-

troduced by Grothendieck and Verdier in the early sixties as the proper framework for doing homo-
logical algebra in an abelian category. By now triangulated categories have become indispensable
in many different areas of mathematics, such as algebraic geometry, stable homotopy theory, and
representation theory.

In [3], Beligiannis develops a classical homological algebra in a triangulated category C =
(C,Σ,∆). He introduced ξ-projective objects, ξ-projective resolution, ξ-projective dimension and
their dualities. Based on the works of Auslander and Bridger [2], Enochs and Jenda [8] and Be-
ligiannis [5], Asadollahi [3] introduced and studied ξ-Gorenstein projective objects and their du-
alities, which maked contributions to develop there relative homological algebra in a triangulated
category.

At the other extreme, Mao [9] investigated strongly P-projective modules. M is called to be
strongly P-projective if ExtiR(M,P) = 0 for all projective left R-modules P, which is dual to strongly
copure injective modules in Enochs and Jenda [6]. So we also call strongly P-projective modules as
strongly copure projective modules in this paper. As we all known, strongly copure projective (resp.
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injective) modules are a generaliation of Gorenstein projective and projective (resp., Gorenstein
injective and injective) modules in categories of modules.

Our aim in this paper is to introduce and study ξ-strongly copure projective (injective) objects
in a triangulated category C. This is denoted by ξ-SCprojective (ξ-SCinjective) objects for conve-
nience. In Section 2, we introduce the notion of ξ-SCprojective objects and study some properties
of ξ-SCprojective objects in C. We also investigate ξ-SCprojective dimension. In Section 3, we in-
troduce the concept of ξ-SCprojective precover and show the existence of ξ-SCprojective precover.
We also prove that the equivalence between ξxtn+1

SCP(ξ)
(A,−) = 0 and ξ-SCpdA ≤ n under some

conditions.
Next we recall some known notions and facts of triangulated categories needed in the sequel. The

basic reference for triangulated categories and derived categories is the original article of Verdier
[15]. Also [3, 7, 11] give introduction to these concepts.

Let C be an additive category and Σ : C −→ C an additive functor. Let Diag(C,Σ) denotes the
category whose objects are diagrams in C of the form A −→ B −→ C −→ ΣA, and morphisms
between two objects Ai −→ Bi −→ Ci −→ ΣAi, i = 1,2, are triple of morphisms α : A1 −→ A2,
β : B1 −→ B2 and γ : C1 −→C2, such that the following diagram commutes:

A1
f1 //

α

��

B1
g1 //

β

��

C1
h1 //

γ

��

ΣA1

Σα

��
A2

f2 // B2
g2 // C2

h2 // ΣA2

A triangle (C,Σ,∆) is called a triangulated category, where C is an additive category. Σ is an autoe-
quivalence of C and ∆ is a full subcategory of Diag(C,Σ) which satisfies the following axioms. The
elements of ∆ are then called triangles.
(Tr1) Every diagram isomorphic to a triangle is a triangle. Every morphism f : A −→ B in C

can be embedded into a triangle A
f−→ B

g−→ C h−→ ΣA. For any object A ∈ C, the diagram

0−→ A 1A−→ A−→ 0 is a triangle, where 1A denotes the identity morphism from A to A.

(Tr2) A
f−→ B

g−→C h−→ ΣA is a triangle if and only if B
g−→C h−→ ΣA

−Σ f−→ ΣB is so.

(Tr3) Given triangles Ai
fi−→ Bi

gi−→ Ci
hi−→ ΣAi, i = 1,2, and morphisms α : A1 −→ A2 and

β : B1 −→ B2 such that α f2 = f1β, there exists a morphism γ : C1 −→ C2 such that (α,β,γ) is a
morphism from the first triangle to the second.

(Tr4) (The Octahedral Axiom) Given triangles A
f−→ B i−→ C′ i′−→ ΣA, B

g−→ C
j−→ A′

f ′−→ ΣB,

A
g f−→C k−→ B′ k′−→ ΣA, there exist morphisms f ′ : C′ −→ B′ and g′ : B′ −→ A′ such that the fol-

lowing diagram commutes and the third row is triangle:

Σ−1B′ Σ−1k′ //

Σ−1g′

��

A
1A //

f

��

A

g f

��
Σ−1A′

Σ−1 j′ // B
g //

i
��

C
j //

k
��

A′
j′ //

1A′

��

ΣB

Σi
��

C′
f ′ //

i′

��

B′
g′ //

k′

��

A′
Σi j′ // ΣC′

ΣA
1ΣA // ΣA

Throughout the paper, we fix a triangulated category C = (C,Σ,∆), Σ is the suspension functor
and ∆ is the triangulation.
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1.1. Proposition. ([3, Proposition 2.1]) Let C be an additive category equipped with an autoequiv-
alence Σ : C −→ C and a class of diagrams ∆ ⊆ Diag(C,Σ). Suppose that the triple (C,Σ,∆), Σ

satisfies all the axioms of a triangulated category except possibly of the Octahedral Axiom. Then
the following are equivalent:

(a) Base change. For any triangle A
f−→ B

g−→ C h−→ ΣA ∈ ∆ and morphism ε : E −→ C, there
exists a commutative diagram

0 //

��

M

α

��

M //

δ

��

0

��
A

f ′ // G
g′ //

β

��

E h′ //

ε

��

ΣA

A
f //

��

B
g //

γ

��

C h //

ζ

��

ΣA

��
0 // ΣM ΣM // 0

in which all horizontal and vertical diagrams are triangle in ∆.

(b) Cobase change. For any triangle A
f−→ B

g−→C h−→ ΣA ∈ ∆ and any morphism α : A −→ D,
there exists a commutative diagram

0 //

��

N

ζ

��

N //

δ

��

0

��
Σ−1C

−Σ−1(h) // A
f //

α

��

B
g //

β

��

C

Σ−1C
−Σ−1(h′) //

��

D
f ′ //

η

��

F
g′ //

ν

��

C

��
0 // ΣN ΣN // 0

in which all horizontal and vertical diagrams are triangles in ∆.
(c) Octahedral Axiom For any two morphisms f1 : A−→ B, f2 : B−→C, there exists a commuta-
tive diagram

A
f1 // B

g1 //

f2

��

X
h1 //

α

��

ΣA

A
f2 f1 //

f1

��

C
g3 // Y

h3 //

β

��

ΣA

Σ f1

��
B

f2 //

��

C
g2 //

0
��

Z
h2 //

Σg1h2

��

ΣB

��
0 // ΣX ΣX // 0

in which all horizontal and the third vertical diagrams are triangles in ∆.

A class of triangles ξ is closed under base change if for any triangle A
f−→ B

g−→C h−→ ΣA ∈ ξ

and any morphism ε : E −→C as in Proposition 1.1(a), the triangle A
f ′−→G

g′−→ E h′−→ ΣA belongs
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to ξ. Dually, a class of triangles is closed under cobase change if for any triangle A
f−→ B

g−→C h−→
ΣA∈ ξ and any morphism α : A−→D as in Proposition 1.1(b), the triangle D

f ′−→ F
g′−→C h′−→ ΣD

belongs to ξ. A class of triangles is closed under suspension if for any triangle A
f−→ B

g−→C h−→
ΣA ∈ ξ and any integer i ∈ Z, the triangle

Σ
iA

(−1)iΣi f−→ Σ
iB

(−1)iΣig−→ Σ
iC

(−1)iΣih−→ Σ
i+1A

is in ξ. A class of triangles ξ is called saturated if in the situation of base change in Proposition 1.1,

whenever the third vertical and the second horizontal triangle is in ξ, then the triangle A
f−→ B

g−→
C h−→ ΣA is in ξ.

1.2. Definition. ([3, Definition 2.2]) A full subcategory ξ ⊆ Diag(C,Σ) is called a proper class of
triangles if the following conditions hold:

(i) ξ is closed under isomorphisms, finite coproducts and ∆0 ⊆ ξ⊆ ∆, where ∆0 denotes the full
subcategory of split triangles.

(ii) ξ is closed under suspensions and is saturated.
(iii) ξ is closed under base and cobase change.

Throughout we fix a proper class of triangles ξ in the triangulated category C.

2. Strongly copure projective objects
2.1. Definition. ([3, Definition 4.1]) An object P ∈ C, (respectively I ∈ C) is called ξ-projective
(respectively ξ-injective) if for any triangle A→ B→C→ ΣA in ξ, the induced sequence

0→ HomC(P,A)→ HomC(P,B)→ HomC(P,C)→ 0

(respectively 0→ HomC(C, I)→ HomC(B, I)→ HomC(A, I)→ 0)

is exact in the category of abelian group Ab.

The symbol P(ξ) (res. I(ξ)) will denote the full subcategory of ξ-projective (res. ξ-injective)
objects of C. It follows easily from the definition that the categories P(ξ) and I(ξ) are full, additive,
closed under isomorphisms, direct summands and Σ-stable.

C is said to have enough ξ-projective objects if for any object A ∈ C there exists a triangle
K→ P→ A→ ΣK in ξ with P ∈ P(ξ). Dually one defines when C has enough ξ-injectives.

2.2. Lemma. ([3, Lemma 4.2]) Assume that C is a triangulated category with enough ξ-projective
objects. Then A −→ B −→C −→ ΣA is in ξ if and only if for all P ∈ P(ξ) the induced sequence
0−→ HomC(P,A)−→ HomC(P,B)−→ HomC(P,C)−→ 0 is exact.

In [3], the ξ-projective dimension ξ-pdA of an object A ∈ C is defined inductively.

2.3. Definition. ([3, Definition 4.7]) An ξ-exact complex X• → A over A ∈ C is a diagram · · · →
Xn+1

dn+1−−→ Xn −→ ·· · −→ X1
d1−→ X0

d0−→ A→ 0 such that for each integer n≥ 0 :

(i) There are triangles Kn+1
gn−→ Xn

fn−→ Kn
hn−→ ΣKn+1 in ξ, where K0 = A.

(ii) The differential dn = gn−1 fn for any n≥ 1 and d0 = f0.

An ξ-projective resolution of A ∈ C is an ξ-exact complex P•→ A as above such that Pn ∈ P(ξ),
n≥ 0.

2.4. Definition. ([2, Definition, 3.2]) A triangle A→ B→C→ ΣA in ξ is called HomC(−,P(ξ))-
exact, if for any Q ∈ P(ξ), the induced complex

0→ HomC(C,Q)→ HomC(B,Q)→ HomC(A,Q)→ 0

is exact in Ab.
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2.5. Definition. An object A is said to be ξ-strongly copure projective object (ξ-SCprojective object)

if there exists an ξ-projective resolution of A : · · · → Pn+1
dn+1−−→ Pn → ·· · → P1

d0−→ P0
d0−→ A→ 0

with Pi ∈ P(ξ) for all i≥ 0 such that Kn+1
gn−→ Pn

fn−→ Kn
hn−→ ΣKn+1 in ξ are HomC(−,P(ξ))-exact

triangles for all integer n.

We denote SCP(ξ) the full subcategory of ξ-strongly copure projective objects of C. It follows
directly from the definition that the category SCP(ξ) is full, additive and closed under isomor-
phisms.

Remark. By [2, Definition 3.6], every ξ-Gorenstein projective object is ξ-strongly copure pro-
jective. In particular, there is an inclusion of categories GP(ξ)⊆ SCP(ξ), where GP(ξ) is the class
of ξ-Gorenstein projective objects.

Let C be an object of C. For any integer n ≥ 0, the ξ-extension functor ξxtn
ξ
(−,C) is defined to

be the nth right ξ-derived functor of the functor HomC(−,C), that is ξxtn
ξ
(−,C) := Rn

ξ
HomC(−,C).

2.6. Proposition. ([3, Corollary 4.12]) If A −→ B −→ C −→ ΣA is a triangle in ξ, then for any
X ∈ C we have a long exact sequence

0−→ ξxt0
ξ
(C,X)−→ ξxt0

ξ
(B,X)−→ ξxt0

ξ
(A,X)−→ ξxt1

ξ
(C,X)−→ ·· · .

2.7. Lemma. Let A be a ξ-SCprojective object of C. Then ξxt0
ξ
(A,Q) ∼= HomC(A,Q) and

ξxt i
ξ
(A,Q) = 0 for any Q ∈ P̃(ξ) and any i > 0, where P̃(ξ) denote the full subcategory of C whose

objects are of finite ξ-projective dimension.

Proof. Let ξ-pdQ=n for some nonnegative integer n and P∗ a ξ-projective resolution of A. If
n = 0, then Q is an ξ-projective object. Then HomC(P∗,Q) is an exact sequence, and this implies
that

HomC(A,Q)∼= H0(0−→ HomC(P0,Q)−→ HomC(P1,Q)−→ ·· ·)∼= ξxt0
ξ
(A,Q).

Moreover, ξxt i
ξ
(A,Q)= 0 for any i> 0. Inductively, suppose that the assertions follow for any object

with ξ-projective dimension n−1. Consider the triangle K −→ P −→ Q −→ ΣK in ξ , where P ∈

P(ξ) and ξ-pdK = n−1. For any j ∈ Z, the triangle Σ jK
(−1) jΣ j f−→ Σ jP

(−1) jΣ jg−→ Σ jQ
(−1) jΣ jh−→ Σ j+1K

is also in ξ. By Proposition 2.6, there is an exact sequence 0 −→ ξxt0
ξ
(A,Σ jK) −→ ξxt0

ξ
(A,Σ jP),

and then 0−→HomC(A,Σ jK)−→HomC(A,Σ jP). This implies that HomC(A,−) kills ξ-phantom
map (−1) jΣ jh. Especially, we have the following commutative diagram:

0 // HomC(A,K) //

∼=
��

HomC(A,P) //

∼=
��

HomC(A,Q) //

��

0

0 // ξxt0
ξ
(A,K) // ξxt0

ξ
(A,P) // ξxt0

ξ
(A,Q) // ξxt1

ξ
(A,K) = 0

,

where rows are exact. Hence ξxt0
ξ
(A,Q)∼= HomC(A,Q). Since

ξxt i
ξ
(A,P)−→ ξxt i

ξ
(A,Q)−→ ξxt i+1

ξ
(A,K)

is exact by Proposition 2.6, where ξxt i
ξ
(A,P) = ξxt i+1

ξ
(A,K) = 0. Thus ξxt i

ξ
(A,Q) = 0.

2.8. Proposition. Assume that C is a triangulated category with enough ξ-projective objects and X
is an object in P(ξ). Then X is ξ-injective relative to SCP(ξ) .

Proof. Let A −→ B −→C −→ ΣA be a triangle of SCP(ξ) in ξ. By Proposition 2.6, there is an
exact sequence 0−→ ξxt0

ξ
(C,X)−→ ξxt0

ξ
(B,X)−→ ξxt0

ξ
(A,X)−→ ξxt1

ξ
(C,X). Since ξxt1

ξ
(C,X) =

0 by Lemma 2.7 and ξxt0
ξ
(G,X) ∼= HomC(G,X) for any G ∈ SCP(ξ), there is an exact sequence

0−→HomC(C,X)−→HomC(B,X)−→HomC(A,X)−→ 0. So X is ξ-injective relative to SCP(ξ).
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2.9. Theorem. Assume that C is a triangulated category with enough ξ-projective objects and A α−→
B

β−→ C
γ−→ ΣA is a triangle in ξ such that C is ξ-SCprojective. Then A is ξ-SCprojective if and

only if B is ξ-SCprojective.

Proof. First assume that A is ξ-SCprojective. We will show that B is also such. Since A and C

are ξ-SCprojective, there exist triangles KA
gA−→ PA

fA−→ A hA−→ ΣKA and KC
gC−→ PC

fC−→C
hC−→ ΣKC

in ξ, where PA and PC are ξ-projective, KA and KC are ξ-SCprojective. By [3, Lemma 4.2], γ fC = 0.
Using that Σ is an automorphism and a result of Verdier [16], the commutative square on the top
left corner below is embedded in a diagram

PC
0 //

fC
��

ΣPA
−Σp //

−Σ fA

��

ΣPB
Σq //

−Σ fB

��

ΣPC

Σ fC
��

C
γ //

hC

��

ΣA
−Σα //

−ΣhA
��

ΣB
−Σβ //

−ΣhB
��

ΣC

ΣhC
��

ΣKC
−ΣΦ //

−ΣgC

��

Σ2KA
Σ2Ψ //

Σ2gA

��

Σ2KB
Σ2ω //

Σ2gB

��

Σ2KC

−Σ2gC

��
ΣPC

0 // Σ2PA
−Σ2 p // Σ2PB

Σ2q // Σ2PC

,

which is commutative except the lower right square which anticommutes and where the rows and
columns are triangles. But the above diagram is equivalent to the following commutative diagram:

KA
−ψ //

gA

��

KB
ω //

gB

��

KC

gC

��

−φ // ΣKA

ΣgA

��
PA

p //

fA

��

PB
q //

fB

��

PC

fC
��

0 // ΣPA

Σ fA

��
A α //

hA

��

B
β //

hB

��

C
γ //

hC

��

ΣA

ΣhA
��

ΣKA
−Σψ // ΣKB

Σω // ΣKC
−Σφ // Σ2KA.

Since the second horizontal triangle is split and PA, PC are ξ-projective, PB is ξ-projective. Applying
to the above diagram the homological functor HomC(P,−), ∀P ∈ P(ξ), a simple diagram chasing
argument shows that 0 −→ HomC(P,K1

A) −→ HomC(P,K1
B) −→ HomC(P,K1

C) −→ 0 is exact. By
Lemma 2.2, the first horizontal triangle is in ξ. Similarly the sencond vertical triangle is in ξ. Since
there is the commutative diagram for any Q ∈ P(ξ):
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0

��

0

��
HomC(C,Q)

f //

��

HomC(B,Q)
g //

��

HomC(A,Q)

��
0 // HomC(PC,Q) //

��

HomC(PB,Q) //

��

HomC(PA,Q) //

��

0

HomC(KC,Q)
h //

��

HomC(KB,Q)
w // HomC(KA,Q)

��
0 0 .

Obviously, f is monic and w is epic. Thus g is epic and h is monic. By HomC(−,Q) is a co-
homological functor and snake Lemma, the sequence 0 −→ HomC(B,Q) −→ HomC(PB,Q) −→
HomC(KB,Q) −→ 0 is exact. Proceeding the above procedure for the triangle KA −→ KB −→
KC −→ ΣKA, we get the ξ-projective resolution of B with appropriate properties. Hence B is ξ-
SCprojective.

Assume that B is ξ-SCprojective. By base change, there is a commutative diagram:

0 //

��

Σ−1K1
C

��

Σ−1K1
C

//

��

0

��
Σ−1A // Σ−1D //

��

Σ−1P0
C

//

��

A

Σ−1A //

��

Σ−1B //

��

Σ−1C //

��

A

��
0 // K1

C K1
C

// 0.

Since Σ−1B and Σ−1K1
C are ξ-SCprojective, we may use the previous case to deduce that Σ−1D is ξ-

SCprojective. Then there exists an ξ-projective resolution of Σ−1D : · · · −→ Σ−1P1
D −→ Σ−1P0

D −→
Σ−1D satisfying the condition of definition. Since C is ξ-SCprojective, there exists a triangle K1

C
gC−→

P0
C

fC−→C
hC−→ ΣKC in ξ with P0

C ξ-projective and K1
C ξ-SCprojective and K1

C −→ P0
C −→C−→ ΣK1

C
is HomC(−,P(ξ)) exact. For any Q ∈ P(ξ),there is a commutative diagram:

0 // ξxt0
ξ
(B,Q) //

∼=
��

ξxt0
ξ
(D,Q) //

∼=
��

ξxt0
ξ
(K1

C,Q) //

∼=
��

0

0 // HomC(B,Q) // HomC(D,Q) // HomC(K1
C,Q) // 0
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by Lemma 2.7. Moreover, there is the commutative diagram

0 // ξxt0
ξ
(C,Q) //

∼=
��

ξxt0
ξ
(B,Q) //

∼=
��

ξxt0
ξ
(A,Q) //

��

0

HomC(ΣA,Q) // HomC(C,Q)
β∗ // HomC(B,Q)

α∗ // HomC(A,Q)
γ∗ // HomC(Σ

−1C,Q)

with the below is exact. Since β∗ is monic, γ∗ is also so. So 0 −→ HomC(C,Q) −→
HomC(B,Q) −→ HomC(A,Q) −→ 0 is exact. Thus Σ−1A −→ Σ−1D −→ Σ−1P0

C −→ A is
HomC(−,P(ξ)) exact. Now pasting · · · −→ Σ−1P1

D −→ Σ−1P0
D −→ Σ−1D with Σ−1A −→

Σ−1D−→ Σ−1P0
C −→ A, so A is ξ-SCprojective.

2.10. Proposition. Assume that C is a triangulated category with enough ξ-projective objects. If
X ∈ SCP(ξ) is ξ-projective relative to SCP(ξ) , then X ∈ P(ξ).

Proof. Since C has enough ξ-projectives, there exists a triangle K −→ P−→ X −→ ΣK in ξ with
P ∈ P(ξ). But X and P are ξ-SCprojective, then so is K by Theorem 2.9. Since X is ξ-projective
relative to SCP(ξ), there exists an exact sequence

0−→ HomC(X ,K)−→ HomC(X ,P)−→ HomC(X ,X)−→ 0.

So K −→ P−→ X −→ ΣK is split. Then P∼= K⊕X . Hence X ∈ P(ξ).

It is clear that SCP(ξ) is closed under countable direct sums. In the following, we use Eilenberg’s
trick to show that SCP(ξ) is closed under direct summands.

2.11. Corollary. SCP(ξ) is closed under direct summands.

Proof. Let A be an object of SCP(ξ) and B a direct summand of A. So A = B⊕B′, for some
object B′ of C. Set

K = B⊕B′⊕B⊕B′⊕·· · .

Since K = A⊕A⊕·· · and SCP(ξ) is closed under countable direct sum, K belongs to SCP(ξ). We
have K ∼= B⊕K and so B⊕K also belongs to SCP(ξ). Now consider the split exact triangle

B−→ B⊕K −→ K 0−→ ΣB

in ξ to conclude, from the previous Theorem 2.9 , that B belongs to SCP(ξ).

Now we introduce a new invariant for an object A of C, namely its ξ-SCprojective dimension, ξ-
SCpdA. It is defined inductively. When A=0, put ξ-SCpdA =−1. If A∈ SCP(ξ), then ξ-SCpdA = 0.
Next by induction, for an integer n> 0, put ξ-SCpdA≤ n if there exists a triangle K−→P−→A−→
ΣK in C with P ∈ SCP(ξ) and ξ-SCpdK ≤ n−1.

We define ξ-SCpdA = n if ξ-SCpdA≤ n and ξ-SCpdA� n−1. If ξ-SCpdA 6= n for all n≥ 0, we
set ξ-SCpdA = ∞.

2.12. Theorem. Assume that C is a triangulated category with enough ξ-projective objects and
A−→B−→C

γ−→ ΣA is a triangle in ξ such that A 6= 0 and C is ξ-SCprojective. Then ξ-SCpdA= ξ-
SCpdB.

Proof. The result is clear from Theorem 2.9 if one of A or B is ξ-SCprojective. Let ξ-SCpdA =
n > 0. So there exists a triangle KA −→ PA −→ A −→ ΣKA in ξ where PA is ξ-SCprojective and
ξ-SCpdKA = n−1. Since C is ξ-SCprojective, there exists a triangle KC −→ PC −→C −→ ΣKC in
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ξ where PC is ξ-projective and KC is ξ-SCprojective. Then by the proof of Theorem 2.9, we have
the following commutative diagram:

PC
0 //

��

ΣPA //

��

ΣPB //

��

ΣPC

��
C

γ //

��

ΣA //

��

ΣB //

��

ΣC

��
ΣKC //

��

Σ2KA //

��

Σ2KB //

��

Σ2KC

��
ΣPC // Σ2PA // Σ2PB // Σ2PC,

which is commutative except the lower right square which anticommutes and where the rows and
columns are triangles. This is equivalent to the commutative diagram:

KA //

��

KB //

��

KC //

��

ΣKA

��
PA //

��

PB //

��

PC
0 //

��

ΣPA

��
A //

��

B //

��

C
γ //

��

ΣA

��
ΣKA // ΣKB // ΣKC // Σ2KA,

in which the first three vertical and horizontal diagrams are triangles. The second horizontal triangle
is split, and so belongs to ξ. Since PA and PC are both ξ-SCprojective, it follows from that PB is also
ξ-SCprojective. Applying HomC(P(ξ),−) to the above commutative diagram , by Lemma 2.2 and
diagram chasing argument, the first horizontal and also second vertical triangles are HomC(P(ξ),−)
exact and so belong to ξ. Now consider the triangle KA −→ KB −→ KC −→ ΣKA in ξ, in which ξ-
SCpdKA = n−1 and use induction to deduce that ξ-SCpdKB = n−1 and hence ξ-SCpdB = n.

Now suppose ξ-SCpdB = n. So there exists a triangle KB −→ PB −→ B−→ ΣKB in ξ, where PB
is ξ-SCprojective and ξ-SCpdKB = n− 1. Using (Tr2) and base change in Proposition 1.1, we get
the following commutative diagram:

0 //

��

KB

��

KB //

��

0

��
Σ−1C // PA //

��

PB //

��

C

Σ−1C //

��

A //

��

B //

��

C

��
0 // ΣKB ΣKB // 0
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in which all horizontal and vertical diagrams are triangles. Since the third horizontal and third
vertical triangles are in ξ, one can show the second horizontal and second vertical triangles are
HomC(P(ξ),−) exact and so belong to ξ. Because both PB and Σ−1C are ξ-SCprojective, by Theo-
rem 2.9, so is PA. So ξ-SCpdA = n.

2.13. Lemma. ([2, Proposition 3.15]) Let the following be a commutative diagram such that rows
are triangles in ξ:

X //

��

Y // Z //

��

ΣX

��
X ′ // Y ′ // Z′ // ΣX ′.

Then it may be completed to a morphism of triangles

X //

��

Y //

��

Z //

��

ΣX

��
X ′ // Y ′ // Z′ // ΣX ′

so that X −→ X ′⊕Y −→ Y ′ −→ ΣX is a triangle in ξ.

2.14. Proposition. Assume that C is a triangulated category with enough ξ-projective objects and
let A be an object of C. Then the following are equivalent:

(i) ξ-SCpdA≤ n.
(ii) In any ξ-exact sequence 0 −→ B −→ Pn−1 −→ ·· · −→ P0 −→ A −→ 0, if Pi are ξ-

SCprojective, then so is B.

Proof. (i)⇒ (ii). There exits a triangle K −→ Q−→ A−→ ΣK in ξ where Q is ξ-SCprojective
and ξ-SCpdK ≤ n−1. Since 0−→ B−→ Pn−1 −→ ·· · −→ P0 −→ A−→ 0 is ξ-exact, by definition
of ξ-exact sequence, there exists a triangle K1 −→ P0 −→ A −→ ΣK in ξ. Since C have enough
ξ-projectives, there exists a triangle L −→ P −→ A −→ ΣL in ξ with P ξ-projective. So we can
construct morphisms of triangles:

L //

��

P //

��

A //

��

ΣL

��
K // Q // A // ΣK,

L //

��

P //

��

A //

��

ΣL

��
K1 // P0 // A // ΣK1

Now consider the diagrams

L //

��

P // A //

��

ΣL

��
K // Q // A // ΣK,

L //

��

P // A //

��

ΣL

��
K1 // P0 // A // ΣK1

where the rows are triangles in ξ. By Lemma 2.13, we can complete them such that L−→K⊕P−→
Q −→ ΣL and L −→ K1 ⊕P −→ P0 −→ ΣL are both triangles in ξ. Since Q is ξ-SCprojective,
by Theorem 2.12, ξ-SCpdL = ξ-SCpd(K⊕P). Since P0 is ξ-SCprojective, by Theorem 2.12, ξ-
SCpdL= ξ-SCpd(K1⊕P). Thus ξ-SCpd(K⊕P)= ξ-SCpd(K1⊕P). But K−→K⊕P−→P−→ΣK
and K1 −→ K1 ⊕P −→ P −→ ΣK1 are split triangles and so are in ξ, and P is ξ-projective, so
is ξ-SCprojective. By Theorem 2.12 again, then ξ-SCpdK = ξ-SCpdK1. The proof now can be
completed by induction.

(ii)⇒ (i). Since C has enough ξ-projectives, there exists a ξ-exact complex

0−→ B−→ Pn−1 −→ ·· · −→ P0 −→ A−→ 0,

where each Pi is ξ-projective. So by assumption B is ξ-SCprojective. This gives the result.
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2.15. Proposition. Assume that C is a triangulated category with enough ξ-projective objects and
let ξ-SCpdA≤ 1 and ξxt1

ξ
(A,P) = 0 for all P ∈ P(ξ). Then A is ξ-SCprojective.

Proof. Since C has enough ξ-projectives. We have a triangle K
f−→ P0

g−→ A h−→ ΣK in ξ,
where P0 is ξ-projective. By proposition 2.14, K is ξ-SCprojective. Thus we have the following
commutative diagram for any P ∈ P(ξ) :

0 // ξxt0
ξ
(A,P) //

∼=

ξxt0
ξ
(P0,P) //

α ∼=
��

ξxt0
ξ
(K,P) //

β ∼=
��

ξxt1
ξ
(A,P) = 0

HomC(ΣK,P) // HomC(A,P)
g∗ // HomC(P0,P)

f ∗ // HomC(K,P) // HomC(Σ
−1A,P),

in which the rows are exact. Since the two isomorphisms α, β hold by Lemma 2.7, f ∗ is epic.

So g∗ is monic. Hence K
f−→ P0

g−→ A h−→ ΣK is HomC(−,P(ξ)) exact. Since C has enough
ξ-projectives, we have a triangle K1 −→ P1 −→ K −→ ΣK1 in ξ with P1 ξ-projective. Thus K1 is
ξ-SCprojective by Theorem 2.9. By Proposition 2.6 and Lemma 2.7, there is an exact sequence

0−→ ξxt0
ξ
(K,P)−→ ξxt0

ξ
(P1,P)−→ ξxt0

ξ
(K1,P)−→ 0.

This is equivalent to

0−→ HomC(K,P)−→ HomC(P1,P)−→ HomC(K1,P)−→ 0

is exact. So K1 −→ P1 −→ K −→ ΣK1 is also HomC(−,P(ξ)) exact. Proceeding this procedure,
we get ξ-projective resolution of A satisfying the condition of definition of ξ-SCprojective object.

2.16. Theorem. Assume that C is a triangulated category with enough ξ-projective objects and let
A ∈ C be of finite ξ-SCprojective dimension. Then ξ-SCpdA ≤ n if and only if ξxt i

ξ
(A,Q) = 0 for

any Q ∈ P̃(ξ) and i > n.

Proof. Let ξ-SCpdA≤ n. So there exists a ξ-exact complex

0−→ Pn −→ Pn−1 −→ ·· · −→ P1 −→ P0 −→ A−→ 0,

with Pi ξ-SCprojective. But now in view of Lemma 2.7 and using the corresponding triangles, we
see that ξxt i

ξ
(Pn,Q)∼= ξxtn+i

ξ
(A,Q) = 0 for all i≥ 1.

Let 0 −→ B −→ Pn−1 −→ ·· · −→ P1 −→ P0 −→ A −→ 0 is ξ-exact sequence with Pi ξ-
projective. Since ξ-SCpdA < ∞, ξ-SCpdB < ∞. Suppose ξ-SCpdB = m. Then there exists an ξ-exact
SCprojective resolution

0−→ Gm −→ Gm−1 −→ ·· · −→ G0 −→ B−→ 0,

with Gi ξ-SCprojective. Next we show that B is ξ-SCprojective. Consider a triangle Gm −→
Gm−1 −→ Km−1 −→ ΣGm in ξ, where ξ-SCpdKm−1 ≤ 1. For any Q ∈ P(ξ), ξxt1

ξ
(Km−1,Q) ∼=

ξxtm
ξ
(B,Q) ∼= ξxtm+n

ξ
(A,Q) = 0. By Proposition 2.15, Km−1 is ξ-SCprojective. Proceeding this

procedure, we get B is ξ-SCprojective. So ξ-SCpdA≤ n.

3. ξ-SCprojective precover
3.1. Definition. Let A be an object of C. A morphism G −→ A where G is ξ-SCprojective is
called a ξ-SCprojective precover of A if it can be completed to an HomC(SCP(ξ),−)-exact triangle
K −→ G−→ A−→ ΣK in ξ.

The following proposition implies that the existence of ξ-SCprojective precover.

3.2. Theorem. Let A be an object of C of finite ξ-projective dimension. Then there exists an
ξ-SCprojective precover.
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Proof. By definition of ξ-projective dimension in [3], there exists a triangle K
f−→ P

g−→ A h−→
ΣK with P ξ-projective and ξ-pdK <∞. For any ξ-SCprojective object Q, ξxt1

ξ
(Q,K) = 0 by Lemma

2.7. But HomC(Q,−) is a cohomological functor, then we have the following commutative dia-
gram:

0 // ξxt0
ξ
(Q,K) //

∼=

ξxt0
ξ
(Q,P) //

α ∼=
��

ξxt0
ξ
(Q,A) //

β ∼=
��

ξxt1
ξ
(Q,K) = 0

HomC(Q,Σ−1A) // HomC(Q,K)
f∗ // HomC(Q,P)

g∗ // HomC(Q,A) // HomC(Q,ΣK),

in which the rows are exact. Since the two isomorphisms α, β hold by Lemma 2.7, g∗ is epic.

Thus f∗ is monic. Hence K
f−→ P

g−→ A h−→ ΣK is HomC(SCP(ξ),−)-exact. Then P −→ A is a
ξ-SCprojective precover of A.

3.3. Proposition. Assume that K1
f1−→ P1

g1−→ A h1−→ ΣK1 and K2
f2−→ P2

g2−→ A h2−→ ΣK2 are
triangles in ξ, where P1

g1−→ A and P2
g1−→ A are both ξ-SCprojective precovers of A. Then

K1⊕P2 ∼= K2⊕P1.

Proof. According to the base change in Proposition 1.1, we get the following commutative
diagram:

0 //

��

K2
= //

α

��

K2 //

f2

��

0

��
K1

f ′1 // Y
g′1 //

β

��

P2
h′1 //

g2

��

ΣK1

K1
f1 //

��

P1
g1 //

γ

��

A
h1 //

h2

��

ΣK1

��
0 // ΣK2 ΣK2 // 0.

Since P2
g2−→ A is an ξ-SCprojective precover of A, there is an exact sequence

HomC(P2,K1)
α−→ HomC(P2,P1)−→ HomC(P2,A)

(h1)∗−→ HomC(P2,ΣK1),

such that (h1)∗g2 = 0, i.e. h1g2 = 0. Thus h′1 = 0. Then the second rows is split. Hence Y ∼=K1⊕P2.
Since P1

g1−→ A is an ξ-SCprojective precover of A, there is an exact sequence

HomC(P1,K2)
α−→ HomC(P1,P2)−→ HomC(P1,A)

(h2)∗−→ HomC(P1,ΣK2),

such that (h2)∗g1 = 0, i.e. h2g1 = 0. Thus γ = 0. Then the second column is split. So Y ∼= K2⊕P1.
Hence K2⊕P1 ∼= K1⊕P2.

3.4. Definition. A ξ-SCprojective resolution of A ∈ C is a ξ-exact complex

P := · · ·Pn+1
dn+1

−→ Pn −→ ·· · −→ P1 −→ P0 −→ A−→ 0

such that Pn ∈ SCP(ξ) and for any n∈N0, in the relevant triangle Kn −→ Pn −→Kn−1 −→ ΣKn(n≥
0)Pn −→ Kn−1 is the ξ-SCprojective precover of Kn−1, in which K−1 = A. The resolution is said to
be of length n if Pn 6= 0 and Pi = 0 for all i > n.

3.5. Definition. Let P := · · ·Pn+1
dn+1

−→ Pn −→ ·· · −→ P1 −→ P0 −→ A−→ 0 be an ξ-SCprojective
resolution of A ∈ C. Then define ξxtn

SCP(ξ)
(A,B) to be the nth-cohomology of the induced complex

HomC(P,B) for any B ∈ C.
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Remark. By the comparison theorem the above ξ-derived functors are well defined.

3.6. Corollary. Let 0 −→ Pn −→ Pn−1 −→ ·· · −→ P0 −→ A1 −→ 0 and 0 −→ P′n −→ P′n−1 −→
·· · −→ P′0 −→ A2 −→ 0 be ξ-SCprojective resolution of A1 and A2 respectively. If A1 ∼= A2, then
P0⊕P′1⊕P2⊕·· · ∼= P′0⊕P1⊕P′2⊕·· · .

3.7. Proposition. Suppose A α−→ B
β−→ C

γ−→ ΣA in ξ such that 0 −→ HomC(P,A) −→

HomC(P,B) −→ HomC(P,C) −→ 0 is exact for all P ∈ SCP(ξ). If · · · −→ P′1 −→ P′0
f ′0−→ A −→ 0

and · · · −→ P′′1 −→ P′′0
f ′′0−→ C −→ 0 are ξ-SCprojective resolutions of A and C respectively, then

there exists a ξ-SCprojective resolution of B.

Proof. Since 0 −→ HomC(P′′0 ,A) −→ HomC(P′′0 ,B) −→ HomC(P′′0 ,C) −→ 0 is exact with
P′′0 ∈ SCP(ξ), γ f ′′0 = 0. Using that Σ is an automorphism and a result of Verdier (see [16]), the
commutative square on the top left corner below is embedded in a diagram

P′′0
0 //

f ′′0
��

ΣP′0
−Σ(p) //

−Σ f ′0
��

ΣP0
Σq //

−Σ f0

��

ΣP′′0

Σ f ′′0
��

C
γ //

h′′0
��

ΣA
−Σα //

−Σh′0
��

ΣB
−Σβ //

−Σh0

��

ΣC

Σh′′0
��

ΣK′′1
−Σφ //

−Σg′′0
��

Σ2K′1
Σ2ψ //

Σ2g′0
��

Σ2K1
Σ2ω //

Σ2g0

��

Σ2K′′1

−Σ2g′′0
��

ΣP′′0
0 // Σ2P′0

Σ2 p // Σ2P0
Σ2q // Σ2P′′0

which is commutative except the lower right square which anticommutes and where the rows and
columns are triangles. Then we have the following commutative diagram in which the first three
vertical and horizontal diagrams are triangles:

K′1
ψ //

g′0
��

K1
ω //

g0

��

K′′1
−φ //

g′′0
��

ΣK′1

Σg′0
��

P′0
p //

f ′0
��

P0
q //

f0

��

P′′0
0 //

f ′′0
��

ΣP′0

Σ f ′0
��

A α //

h′0
��

B
β //

h0

��

C
γ //

h′′0
��

ΣA

−Σh′0
��

ΣK′1
−Σψ // ΣK1

Σω // ΣK′′1
−Σφ // Σ2K′1.

Since the second horizontal triangle is split, we have P0 ∈ SCP(ξ). Applying the cohomological
HomC(P,−) to the above diagram for any P ∈ P(ξ), a simple chasing argument shows that the first
horizontal triangle and the second vertical triangle are both in ξ. Applying to the above diagram the
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cohomological HomC(Q,−) for any Q ∈ SCP(ξ), we have the following commutative diagram:

0

��

0

��

0

��
0 // HomC(Q,K′1) //

��

HomC(Q,K1) //

��

HomC(Q,K′′1 )

��

// 0

0 // HomC(Q,P′0) //

��

HomC(Q,P0) //

��

HomC(Q,P′′0 ) //

��

0

0 // HomC(Q,A) //

��

HomC(Q,B) //

��

HomC(Q,C) //

��

0

0 0 0 .

Easily, we get dotted arrows. Then the second row and the second column are both exact. Induc-
tively the above procedure completes the proof.

3.8. Definition. ([3, Definition 4.14]) Let C be a triangle category and D is a subcategory of C. D
is called generating subcategory if D is Σ-stable and HomC(D,A) = 0⇒ A = 0 for any A ∈ C.

3.9. Theorem. If SCP(ξ) is a generating subcategory of a triangulated category C, then the follow-
ing two conditions are equivalent for any A ∈ C and n≥ 0:

(i) ξxtn+1
SCP(ξ)

(A,B) = 0 for any B ∈ C;
(ii) there exists an ξ-SCprojective resolution 0−→ Pn −→ Pn−1 −→ ·· · −→ P0 −→ A−→ 0.

Proof. (ii)⇒ (i). It is obvious.

(i) ⇒ (ii). Let · · · −→ Pn+2
dn+2−→ Pn+1

dn+1−→ Pn −→ ·· · −→ P1 −→ P0 −→ A −→ 0 be an ξ-

SCprojective resolution of A, where dn = gn−1 fn and Pn
fn−→ Kn is ξ-SCprojective precover of Kn,

∀n≥ 0. Since ξxtn+1
SCP(ξ)

(A,B) = 0 for any B ∈ C, the complex

HomC(Pn,Kn+1)
d∗n+1−→ HomC(Pn+1,Kn+1)

d∗n+2−→ HomC(Pn+2,Kn+1)

implies Im d∗n+1 =Ker d∗n+2. But fn+1gn+1 fn+2 = 0, then fn+1dn+2 = 0. That is to say, d∗n+2 fn+1 =
0, i.e. fn+1 ∈ Ker d∗n+2. So there exists α : Pn −→ Kn+1 such that fn+1 = dn+1α. Applying the

functor HomC(P,−), ∀P ∈ SCP(ξ), to the triangle Kn+1
gn−→ Pn

fn−→ Kn −→ ΣKn+1, we get the
exact sequence

0−→ HomC(P,Kn+1)
gn∗−→ HomC(P,Pn)

fn∗−→ HomC(P,Kn)−→ 0.

Since α : Pn −→ Kn+1 is ξ-SCprojective precover, HomC(P,Pn)
α∗−→ HomC(P,Kn+1) is epic. So

α∗gn∗ = 1HomC(P,Kn+1). Then the above exact sequence is split. So HomC(P,Pn) ∼= HomC(P,Kn⊕
Kn+1). But SCP(ξ) be generating subcategory, then Pn ∼= Kn⊕Kn+1. Hence Kn is ξ-SCprojective.
Thus the proof is completed.

Remark. Similar to the way that we define ξ-SCprojective objects, one can define ξ-SCinjective
objects of triangulated category C. The conclusions and their proofs in Sections 2 and 3 dualize
perfectly, so all the resluts in these sections have valid analogs in terms of ξ-SCinjective objects.
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4. Conclusions and a future work
In this paper, we generalize the notion of strongly copure projective modules in category of mod-

ule to triangulated category, which is called to be ξ-strongly copure projective objects. This extends
the notions of ξ-projective objects and ξ-Gorenstein projective objects in triangulated categories.
We prove that SCP(ξ) has a resolving property in Theorem 2.9. We discuss the ξ-strongly copure
projective dimension and show the relation between ξ-SCpdA and ξxt i

ξ
(A,−) for any object A of

C in Theorem 2.16. We also introduce the concept of ξ-SCprojective precover and investigate the
existence in Theorem 3.2, and moreover, characterize the ξ-SCprojective resolution of object A by
the functor ξxt i

SCP(ξ)
(A,−) in Theorem 3.9.

Referee of this paper has suggested to study a relative quasi-Frobenius property of the category
C in connection with the results obtained in [8] for module categories and in [14] for locally finitely
presented Grothendieck categories. Following Referee’s suggestion, we intend to study in future
the following problem:

Problem 1. Assume that C is a triangulated category with enough ξ-projective objects as in
Section 2. When are the following conditions equivalent?

(i) every ξ-SCprojective object in C is ξ-SCinjective;
(ii) every ξ-SCinjective object C is ξ-SCprojective;
(iii) every object in C is ξ-SCprojective or ξ-SCinjective (that is the global dimension of C is

zero),
Let us recall that the equivalence of these three conditions are proved 40 years ago in [8] for the

usual fp-purity in module categories and the equivalence is proved in [14] for the usual fp-purity
in any locally finitely presented Grothendieck categories. Moreover, an analogous problem is also
discussed in [3].

In the category R-Mod of unitary left modules over a ring R with an identity element, the classical
equality is

sup{pdRA| for any left R-module A}= sup{idRA| for any left R-module A}
established in [13, Theorem 8.14] is extended by D. Bennis and N. Mahdou in [4] to the equality

sup{GpdRA| for any left R-module A}= sup{GidRA| for any left R-module A}
where pdRA(res. idRA) means the projective(res. injective) dimension of A, GpdRA(res. GidRA)
means the Gorenstein projective(res. injective) dimension of A. Naturally, we also try to find some
conditions such that the following conclusion holds in a triangulated category C .

Problem 2. sup{ξ-SCpdA| for any A ∈ C}= sup{ξ-SCidA| for any A ∈ C}.
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