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Subalgebra analogue to H-basis for ideals
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Abstract

The H-basis concept allows an investigation of multivariate polynomial
spaces degree by degree. In this paper we present the analogue of H-
bases for subalgebras in polynomial rings, we call them "SH-bases".
We present their connection to the Sagbi basis concept, characterize
SH-basis and show how to construct them.
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1. Introduction

The concept of Gröbner bases, introduced by Buchberger [3] in 1965, has become an
important ingredient for the treatment of various problems in computational algebra,
(see [2] for an extensive survey). This concept has also been extended to more general
situations, such as Gröbner bases of modules, for example, as in [9]. However, all ap-
proaches related to Gröbner bases are fundamentally tied to monomial orderings, which
lead to asymmetry among the variables of interest. On the other hand, the concept of
H-bases, introduced long ago by Macaulay [7], is based solely on homogeneous terms of
a polynomial. In [12], an extension of Buchberger's algorithm is presented to construct
H-bases algorithmically. Some applications of H-bases are given in [10], in addition, many
of the problems in applications which can be solved by the Gröbner technique can also
be treated successfully with H-bases.

The concept of Gröbner basis for ideals of a polynomial ring over a �eld K can be
adopted in a natural way to K-subalgebras of a polynomial ring. In [11] Sagbi (Subalge-
bra Analogue to Gröbner Basis for Ideals) basis for the K-subalgebra of K[x1, . . . , xn] is
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de�ned; this concept was also independently developed in [6]. The properties and appli-
cations of Sagbi bases are typically similar to standard Gröbner basis results (see [1] and
[4] for an overview of the standard theory). Like Gröbner bases, the concept of Sagbi
basis is also tied to monomial orderings. Consequently, within the concept of H- bases for
ideals, it is natural to probe the concept of subalgebra bases which may be based solely on
homogenous terms of a polynomial. In this paper we will present the analogue to H-bases
for ideals in polynomial rings, we call them "SH-bases". Unlike H-bases, SH-bases are
not �nite. This is not surprising because unlike ideals in polynomial rings, subalgebras
in polynomial rings are not necessarily �nitely generated. The subalgebras which are not
�nitely generated cannot have �nite SH-basis. Moreover, a �nitely generated subalgebra
may have an in�nite SH-basis (see Example 3.8).

The paper is organized as follows. In section 2, we brie�y describe the underlying
concept of grading which leads to Sagbi basis and SH-basis. Then, we give the notion of
d-reduction, which is one of the key ingredients for the characterization and construction
of SH-basis. After setting up the necessary notation, we present the d-reduction Algo-
rithm (see Algorithm 1). Also, here we present some properties characterizing SH-basis
(Theorem 2.4). In section 3, we present a criterion through which we can check that the
given system of polynomials is an SH-basis of the subalgebra it generates (Theorem 3.4)
and further on the basis of this theorem we present an algorithm for the construction of
SH-basis (Algorithm 2).

2. SH-bases and Sagbi bases

Here and in the following sections we consider polynomials in n variables x1, . . . , xn
with coe�cients from a �eld K. For short, we write

P := K[x1, . . . , xn].

If G is a subset of K[x1, . . . , xn] (not necessarily �nite), then the subalgebra of P

generated by G is K[G]. This notion is natural since the elements of K[G] are precisely
the polynomials in the set of formal variables G, viewed as elements of K[G].

2.1. De�nition. A G-monomial is a �nite power product of the form Gα = gα1
1 . . . gαm

m

where gi ∈ G for i = 1, . . . ,m, and α = (α1, . . . , αm) ∈ Nm.

Let Γ denote an ordered monoid, i.e., an abelian semigroup under an operation +,
equipped with a total ordering > such that, for all α, β, γ ∈ Γ,

α > β =⇒ α+ γ > β + γ.

A direct sum

P :=
⊕
γ∈Γ

P
(Γ)
γ

is called grading (induced by Γ) or brie�y a Γ-grading if for all α, β ∈ Γ

(2.1) f ∈ P
(Γ)
α , g ∈ P

(Γ)
β =⇒ f · g ∈ P

(Γ)
α+β .

Since the decomposition above is a direct sum, each polynomial f 6= 0 has a unique
representation

f =

s∑
i=1

fγi , 0 6= fγi ∈ P
(Γ)
γi .
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Assuming that γ1 > γ2 > . . . > γs, the Γ-homogeneous term fγ1 is called the maximal

part of f , denoted by M (Γ)(f) := fγ1 , and f −M (Γ)(f) is called the d-reductum of f .

For G ⊂ P, M (Γ)(G) := {M (Γ)(g) | g ∈ G }.
There are two major examples of gradings. The �rst one is grading by degrees,

P
(Γ)
d = {p ∈ P | p homogenous of degree d } ∀ d ∈ N.

Here, Γ = N with the natural total ordering. This grading is called theH-grading because
of the homogeneous polynomials. Therefore we also write H in place of this Γ. The space
of all polynomials of degree at most d can now be written as

Pd :=

d⊕
k=0

P
(H)
k .

The maximal part of a polynomial f 6= 0 is its homogeneous form of highest degree,
M (H)(f). For simplicity, let M (H)(0) := 0.

Now we introduce SH-bases and some of their properties. This concept is very similar
to the concept of Sagbi bases. Therefore, we will brie�y explain the underlying common
structure.

2.2. De�nition. A subset G of P is called SH- basis of the subalgebra A of P if, for all
0 6= f ∈ A, there exist G-monomials Gαi and ci ∈ K, i = 1, . . . , p such that

(2.2) f =

p∑
i=1

ciG
αi and

p
max
i=1
{deg(Gαi)} = deg(f).

The representation for f in (2.2) is also called its SH-representation with respect to G.

Note that SH-basis of a subalgebra is also a generating set of it. To obtain more
insight into SH-bases, we will give some equivalent de�nitions. First we need a more
technical notion.

2.3. De�nition. Let f ∈ P and G ⊂ P. We say f d-reduces to f̃ with respect to G if

f̃ = f −
m∑
i=1

ciG
αi , deg(f̃) < deg(f),

holds with G-monomials Gαi satisfying deg(Gα1) ≤ deg(f), i = 1, . . . ,m. In this case
we write

f →G f̃ .

By →G,∗ we denote the transitive closure of the binary relation →G
�.

The concept of d-reduction plays an important role in the characterization and con-
struction of SH-basis. For f ∈ P and G ⊂ P , the following algorithm computes h such
that f →G,∗ h.

�f →G,∗ h if we apply d-reduction iteratively such as f →G h1 →G h2 . . . →G h, where h

cannot be d-reduced any further with respect to G.
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Algorithm 1

Input: Let G and f be subset and polynomial respectively in P.
Output: h ∈ P such that f →G,∗ h.

1: h := f .
2: while (h 6= 0 and Gh = {

∑
i ciG

αi |M (H)(
∑
i ciG

αi) = M (H)(h)} 6= ∅)
3: (a) choose

∑
i ciG

αi ∈ Gh.
4: (b) h := h−

∑
i ciG

αi and continue at 2.

We note that when step 2(b), has been performed, then deg(h) is strictly smaller than
the deg(h −

∑
i ciG

αi) (by the choice of
∑
i ciG

αi). This shows that the Algorithm 1
always terminate.

2.4. Theorem. Let G ⊂ P and A be a subalgebra of P. Then the following conditions
are equivalent:
i) G is an SH-basis of A.

ii) K[{M (H)(g) | g ∈ G}] = K[{M (H)(f) | f ∈ A}].
iii) For all f ∈ A, f →G,∗ 0.

Proof. (i)⇒ (ii) follows by

M (H)(f) =
∑
j∈J

cjM
(H)(Gαj ), J := {j | deg(Gαj ) = deg(f)}

for arbitrary f ∈ A with SH-representation f =
∑
ciG

αi .

(ii) ⇒ (iii) If 0 6= f ∈ A, then M (H)(f) =
∑
j∈J cjM

(H)(Gαj ). Therefore, f̃ = f −∑
j∈J cjG

αj , where f̃ ∈ A and deg(f̃) ≤ deg(f). Inductively, we get f →G,∗ 0.

(iii)⇒ (i) Let

g0 = f →G g1 →G . . .→G gd = 0

where M (H)(gi−1) = M (H)(Gαi) and deg(Gαi+1) < deg(Gαi), i = 1, . . . , d. Then

f =

d∑
i=1

ciG
αi and deg(f) = deg(Gα1) =

d
max
i=1
{deg(Gαi)}

i.e., f has an SH-representation with respect to G. �

The second major example of gradings leads to the Sagbi basis concept. Here, Γ = Nn
with componentwise addition and equipped with a total ordering satisfying (2.1) and, in

addition, γ ≥ 0 ∀γ ∈ Γ. For arbitrary γ = (γ1, . . . , γn) ∈ Γ, the space P
(Γ)
γ is a vector

space of dimension 1, namely,

P
(Γ)
γ = { c · xγ1 . . . xγn | c ∈ K }.

The maximal part of a polynomial is now a product of a leading coe�cient and a
leading monomial, M (Γ)(f) = LC(f) · LM(f), LC(f) ∈ K,LM(f) a leading mono-

mial. The s-reduction f →G f̃ is de�ned if there exists a G-monomial Gα such that

LM(Gα) = LM(f) and then we set f̃ := f − cGα, c ∈ K. The relation →G,∗ is con-
structed as above.

A Sagbi basis G (with respect to a given monomial ordering and a given subalgebra A)
is a set of polynomials, generating the subalgebra A and satisfying one of the following
equivalent conditions:
(i) Every f ∈ A has a representation f =

∑s
i=1 ciG

αi , LM(f) = maxsi=1{LM(Gαi)}.
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(ii) K[{M (Γ)(g) | g ∈ G}] = K[{M (Γ)(f) | f ∈ A}].
(iii) Every f ∈ A s-reduces to 0 with respect to G.

The proof of this equivalence and many other equivalent conditions can be found in
[11]. If a monomial ordering is compatible with the semi-ordering by degrees,

deg(xγ) > deg(xβ) =⇒ γ > β, γ, β ∈ Nn

then any Sagbi-representation as given in (i) is an SH-representation, in other words, a
Sagbi basis with respect to a degree compatible ordering is an SH-basis as well. The
converse is false, as the following example shows.

2.5. Example. Let f1 = x3 + x2y, f2 = y3, f3 = xy + y and A = K[f1, f2, f3]. Then
f1, f2 and f3 already constitute an SH-basis of A. (This is consequence of Theorem 2.4).
If we order the monomials by degree lexicographical ordering then

K[{M (H)(f) | f ∈ A}] = K[x3, y3, xy, x2y4].

Every Sagbi basis G with respect to this ordering contains at least four elements, for
instance SINGULAR ([5]) computes G = {g1, g2, g2, g4} with

g1 = x3 + x2y = f1

g2 = y3 = f2

g3 = xy + y = f3

g4 = x2y4 − 3x2y3 − 3xy3

Obviously, this Sagbi basis is an SH-basis as well.

It is possible that a subalgebra has a �nite SH-basis, but no �nite Sagbi basis, as the
following example shows.

2.6. Example. Let G = {f1, f2, f3} ⊂ K[x, y] where f1 = x + y, f2 = xy, f3 = xy2

and A = K[G]. It is easy to see that G is an SH-basis of A. However, the set S =
{x + y, xy, xy2, xy3, xy4, . . .} ⊂ A is an in�nite Sagbi basis for A with respect to a
monomial ordering x > y. (see [11]).

3. Construction of SH-bases

In this section, we present an SH-basis criterion, through which we can construct SH-
basis. For this purpose, we �x some notations which are necessary for this construction.

3.1. De�nition. Let G be a set of polynomials in P and let A = K[G]. We consider
f ∈ A with the representation f =

∑m
i=1 ciG

αi . Then the degree-height of f , written
d-ht(f), with respect to this representation is maxmi=1{deg(Gαi)}.

Let Y = {y1, . . . , ys} and K[Y ] be a polynomial ring over a �eld K in variables
y1, . . . , ys. Let P (Y ) = P (y1, . . . , ys) ∈ K[Y ] and Y α be a Y -monomial.

3.2. De�nition. Let G ⊆ P. A polynomial P (Y ) =
∑m
i=1 ciY

αi ∈ K[Y ] (where ci ∈ K)
is called G-homogenous if deg(Gαi) are same for 1 ≤ i ≤ m.

3.3. De�nition. Let G = {g1, . . . , gs} be a subset of K[x1, . . . , xn]. We denote

AR((M (H)(G)), the ideal of algebraic relations between M (H)(gi), i = 1, . . . , s de�ned
by:

AR((M (H)(G)) = {h ∈ K[y1, . . . , ys] |h(M (H)(g1)), . . . ,M (H)(gs)) = 0}

AR((M (H)(G)) is an ideal in K[y1, . . . , ys].
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In the case of Sagbi bases, there is as an algorithm for computing Sagbi bases by
means of algebraic relations (see [8]) where algebraic relations and their connection to
Sagbi bases are studied in detail.) The analogue for constructing SH-bases by means of
algebraic relations is based on the following result.

3.4. Theorem. (SH-basis criterion) Let G = {g1, . . . , gs} be a subset of K[x1, . . . , xn].
Let A = K[G] and let {Pj(Y ) | j ∈ J} be a �nite set of G-homogenous generators for

AR((M (H)(G)). Then the following conditions are equivalent:
i) G is an SH-basis of A.
ii) For each j ∈ J , Pj(G) = Pj(g1, . . . , gs)→G,∗ 0.

Proof. (i)⇒ (ii): This is trivial and follows from Theorem 2.4.
(ii)⇒ (i): For every h ∈ K[G], we will show that

h =

m∑
i=1

ciG
αi and deg(h) =

m
max
i=1
{deg(Gαi)}.

Let h ∈ K[G] and write h =
∑m
i=1 ciG

αi ; furthermore, assume that this representation
has the smallest possible degree-height t0 = maxmi=1{deg(Gαi)} of all such representation.
We know that deg(h) ≤ t0. Suppose that deg(h) < t0, without loss of generality, let the

�rst N summands be the ones for which deg(M (H)(Gαi)) = t0. Then the cancelation

of their maximal part must occur; i.e
∑N
i=1 ciM

(H)(Gαi) = 0. From this condition, we

obtain a polynomial P (Y ) =
∑N
i=1 ciY

αi ∈ AR((M (H)(G)). We can then write

(3.1)
N∑
i=1

ciY
αi = P (Y ) =

M∑
j=1

gj(Y )Pj(Y )

where the polynomials Pj(Y ) are among the stated generators of AR((M (H)(G)) and
the polynomials gj(Y ) ∈ K[y1, . . . , ys]. Moreover, we may assume that each gj(Y ) is
G-homogenous (since P (Y ) and every Pj(Y ) are) and also that

(3.2) d-ht(gj(G)) + d-ht(Pj(G)) = d-ht(P (G)) = t0 ∀j.
We have assumed that each Pj(G)→G,∗ 0; therefore we have Pj(G) =

∑nj

k=1 ckjG
αkj

where ckj ∈ K. By de�nition, these sums must have degree heights maxk{deg(G
αkj )} =

deg(Pj(G)) < d-ht(Pj(G)) for each j, where the last inequality holds because Pj(Y ) ∈
AR((M (H)(G)). Then for each j, 1 ≤ j ≤M ,

(3.3) gj(G)Pj(G) =

nj∑
k=1

ckjgj(G)Gαkj

Note that

(3.4) deg(gj(G))Pj(G)) = deg(gj(G)) + deg(Pj(G)) < deg(gj(G)) + d-ht(Pj(G)).

From our observation and using equation (3.2), we have

(3.5) deg(gj(G)) + d-ht(Pj(G)) ≤ d-ht(gj(G)) + d-ht(Pj(G)) = t0

Combining equations (3.4) and (3.5) we have

(3.6) deg(gj(G)Pj(G)) < t0

Finally, equations (3.1) and (3.3) imply that

(3.7) h = P (G) +

m∑
i=N+1

ciG
αi =

M∑
j=1

(

nj∑
k=1

ckjgj(G)Gαkj )︸ ︷︷ ︸+

m∑
i=N+1

ciG
αi .︸ ︷︷ ︸
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Sum1 Sum2

If we examine the expression (3.7) closely, we see that:

• By (3.6), d-ht(Sum1) = maxMj=1{deg(gj(G)Pj(G))} < t0;
• By the choice of N , d-ht(Sum2) < t0;

But this contradicts our initial assumption that we have chosen a representation of h
that has the smallest possible height. Thus, G is an SH-basis of K[G]. �

On the basis of Theorem 3.4, now we present an algorithm which computes SH-basis
from a given set of generators. This algorithm is not necessarily terminating but does
terminate, if and only if, the considered subalgebra has a �nite SH-basis.

Algorithm 2

Input: A �nite subset G ⊂ P.
Output: SH-basis G.

1: Compute a generating set S for AR(M (H)(G)).
2: For P ∈ S

3: (a) h ∈ P, such that P (G)→G,∗ h.
4: (b) If h 6= 0, set G := G ∪ {h} and continue at 1.

3.5. Remark. We have implemented SH-basis construction algorithm in the computer
algebra system SINGULAR [5]. Code can be download from mathcity.org/junaid.

Now we present some examples which show the computation of SH-basis through
Algorithm 2.

3.6. Example. The subalgebra A ⊂ P of symmetric polynomials is well known to be
�nitely generated by a set S which is a set of elementary symmetric polynomials in
P. The set S is an SH-basis of A as AR(M (H)(S)) = {0} i.e, there is no polynomial
0 6= P (Y ) ∈ K[y1, . . . , yn] such that P (S) = 0.

3.7. Example. Let G = {x + y + 1, x2 + y2 − x + 2, 2xy − y} and A = Q[G]. The

ideal AR((M (H)(G)) = AR(x + y, x2 + y2, xy) in Q[y1, y2, y3] is generated by P (Y ) =
y2

1 − y2 − y3. It is easy to see that the polynomial P (G) = 3x + 3y − 1 →G.∗ 0. This
shows that G is an SH-basis of A.

The next example shows that there are �nitely generated algebras which do not admit
a �nite SH-basis.

3.8. Example. Let G = { g1 = xz+ y, g2 = xyz, g3 = xy2z} and A = Q[G]. Also we have

M (H)(g1) = xz,M (H)(g2) = xyz and M (H)(g3) = xy2z.
In �rst step, G = { g1 = xz + y, g2 = xyz, g3 = xy2z}. It is evident that the

ideal of relations AR(M (H)(G)) = AR(xz, xyz, xy2z) ⊂ Q[y1, y2, y3] is generated by
P (Y ) = y1y3 − y2

2 . The polynomial P (G) = (xz + y)(xy2z)− (xyz)2 = xy3z 9G,∗ 0, so
G := G ∪ {g4 = xy3z}.
In second step, G = { g1 = xz + y, g2 = xyz, g3 = xy2z, g4 = xy3z}. The polynomial

P (Y ) = y1y4 − y2y3 is one the generators of the ideal of relations AR(M (H)(G)) =
AR(xz, xyz, xy2z, xy3z) ⊂ Q[y1, y2, y3, y4]. Here we note that the polynomial P (G) =
(xz + y)(xy3z) − (xyz)(xy3z) = xy4z 9G,∗ 0, therefore we have G := G ∪ {xy4z} =
{ g1 = xz + y, g2 = xyz, g3 = xy2z, g4 = xy3z, g5 = xy4z}.

By induction, we get G = {xz+ y, xyz, xy2z, xy3z, xy4z, xy5z, . . .} which implies that
A have an in�nite SH-basis.
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