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On the rescaled Riemannian metric of
Cheeger-Gromoll type on the cotangent bundle
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Abstract
Let (M, g) be an n−dimensional Riemannian manifold and T ∗M be
its cotangent bundle equipped with a Riemannian metric of Cheeger-
Gromoll type which rescale the horizontal part by a positive differen-
tiable function. The main purpose of the present paper is to discuss
curvature properties of T ∗M and construct almost paracomplex Norden
structures on T ∗M. We investigate conditions for these structures to
be para-Kähler (paraholomorphic) and quasi-para-Kähler. Also, some
properties of almost paracomplex Norden structures in context of al-
most product Riemannian manifolds are presented.
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1. Introduction
Geometric structures on bundles have been object of much study since the middle of

the last century. The natural lifts of the metric g, from a Riemannian manifold (M, g)
to its tangent or cotangent bundles, induce new (pseudo) Riemannian structures, with
interesting geometric properties. Maybe the best known Riemannian metric Sg on the
tangent bundle over Riemannian manifold (M, g) is that introduced by Sasaki in 1958
(see [25]), but in most cases the study of some geometric properties of the tangent bundle
endowed with this metric led to the flatness of the base manifold. The metric Sg is called
the Sasaki metric. The Sasaki metric Sg has been extensively studied by several authors
and in many different contexts. Another Riemannian metric on the tangent bundle TM
defined by E. Musso and F. Tricerri [14] is the Cheeger-Gromoll metric CGg. The metric
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was defined by J. Cheeger and D. Gromoll [3]; yet, E. Musso and F. Tricerri wrote down
its expression, constructed it in a more ”comprehensible” way, and gave it the name. In
[30], B. V. Zayatuev introduced a Riemannian metric Sg on the tangent bundle TM
given by

Sg
(
HX,H Y

)
= fg (X,Y ) ,

Sg
(
HX,V Y

)
= Sg

(
VX,H Y

)
= 0,

Sg
(
VX,V Y

)
= g (X,Y ) ,

where f > 0, f ∈ C∞(M). For f = 1, it follows that Sg = Sg. The metric Sg is called
the rescaled Sasaki metric. The authors studied the rescaled Sasaki type metric on the
cotangent bundle T ∗M over Riemannian manifold (M, g) (see [8]). Also, for rescaled
Riemannian metrics on orthonormal frame bundles, see [11].

Let M2k be a 2k-dimensional differentiable manifold endowed with an almost (para)
complex structure ϕ and a pseudo-Riemannian metric g of signature (k, k) such that
g(ϕX, Y ) = g(X,ϕY ) for arbitrary vector fields X and Y on M2k, i.e. g is pure with
respect to ϕ. The metric g is called Norden metric. Norden metrics are also referred to as
anti-Hermitian metrics or B-metrics. They present extensive application in mathematics
as well as in theoretical physics. Many authors considered almost (para)complex Norden
structures on the tangent, cotangent and tensor bundles [5, 7, 16, 17, 18, 19, 20, 22, 23].

In this paper, firstly, we present curvature tensor of the rescaled Cheeger-Gromoll
type metric CGgf . Secondly, we get the conditions under which the cotangent bun-
dle endowed with some paracomplex structures and the rescaled Riemannian metric of
Cheeger-Gromoll type CGgf is a paraholomorphic Norden manifold. Finally, for an al-
most paracomplex manifold to be an specialized almost product manifold, we give some
results related to Riemannian almost product structures on the cotangent bundle.

Throughout this paper, all manifolds, tensor fields and connections are always assumed
to be differentiable of class C∞. Also, we denote by =pq(M) the set of all tensor fields of
type (p, q) on M , and by =pq(T ∗M) the corresponding set on the cotangent bundle T ∗M .
The Einstein summation convention is used, the range of the indices i, j, s being always
{1, 2, ..., n}.

2. Preliminaries
The cotangent bundle of a smooth n−dimensional Riemannian manifold may be en-

dowed with a structure of 2n−dimensional smooth manifold, induced by the structure on
the base manifold. If (M, g) is a smooth Riemannian manifold of dimension n, we denote
its cotangent bundle by π : T ∗M →M. A system of local coordinates

(
U, xi

)
, i = 1, ..., n

in M induces on T ∗M a system of local coordinates
(
π−1 (U) , xi, xi = pi

)
, i = n+ i =

n + 1, ..., 2n, where xi = pi is the components of covectors p in each cotangent space
T ∗xM, x ∈ U with respect to the natural coframe

{
dxi
}
.

Let X = Xi ∂
∂xi

and ω = ωidx
i be the local expressions in U of a vector field X and

a covector (1-form) field ω on M , respectively. Then the vertical lift V ω of ω and the
horizontal lift HX of X are given, with respect to the induced coordinates, by

(2.1) V ω = ωi∂i,

and

(2.2) HX = Xi∂i + phΓhijX
j∂i,
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where ∂i = ∂
∂xi

, ∂i = ∂

∂xi
and Γhij are the coefficients of the Levi-Civita connection ∇ of

g.
Let T ∗M be the cotangent bundle of a Riemannian manifold (M, g). If the local

expression of the metric g is g = gijdx
i ⊗ dxj , then the inverse of the metric g is g−1 =

gij∂i⊗ ∂j , where gij are the entries of the inverse matrix of gij , i.e. gijgjk = δik. We
define r2 = g−1 (p, p) = gijpipj and put α = 1 + r2. Then the rescaled Riemannian
metric of Cheeger-Gromoll type CGgf is defined on T ∗M by the following three equations
at (x, p) ∈ T ∗M

(2.3) CGgf
(
V ω, V θ

)
=

1

α
(g−1 (ω, θ) + g−1 (ω, p) g−1 (θ, p)),

(2.4) CGgf
(
V ω,HY

)
= 0,

(2.5) CGgf
(
HX,HY

)
= fg (X,Y )

for any X,Y ∈ =1
0(T ∗M) and ω, θ ∈ =0

1(T ∗M), where f > 0, f ∈ C∞(M), g−1 (ω, θ) =
gijωiθj .

The Lie bracket operation of vertical and horizontal vector fields on T ∗M is given by
the formulas

(2.6)


[
HX,H Y

]
= H [X,Y ] +V (p ◦R(X,Y ))[

HX,V ω
]

= V (∇Xω)[
V θ,V ω

]
= 0

for any X, Y ∈ =1
0(M) and θ, ω ∈ =0

1(M), where R is the Riemannian curvature of g
defined by R (X,Y ) = [∇X ,∇Y ]−∇[X,Y ] (for details, see [28], p. 238, p. 277).

With the connection ∇ of g on M , we can introduce on each induced coordinate
neighborhood π−1(U) of T ∗M a frame field which allows the tensor calculus to be effi-
ciently done. The adapted frame on π−1(U) of T ∗M consist of the following 2n linearly
independent vector fields:

(2.7)
{
Ej = ∂j + psΓ

s
hj∂h,

Ej = ∂j .

We can write the adapted frame as {Eα} =
{
Ej , Ej

}
. The indices α, β, γ, ... = 1, ..., 2n

indicate the indices with respect to the adapted frame. By the straightforward calcula-
tions, we have the lemma below.

2.1. Lemma. The Lie brackets of the adapted frame of T ∗M satisfy the following iden-
tities:

[Ei, Ej ] = psR
s

ijl El,[
Ei, Ej

]
= ΓjilEl,[

Ei, Ej
]

= 0

where R s
ijl denote the components of the curvature tensor R of (M, g) ([28], p. 290).

Using (2.1), (2.2) and (2.7), we have

(2.8) V ω =

(
0
ωj

)
and

(2.9) HX =

(
Xj

0

)
with respect to the adapted frame {Eα} (for details, see [28]).
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3. The curvature tensor of the rescaled Riemannian metric of
Cheeger-Gromoll type
From the equations (2.3)-(2.5), by virtue of (2.8) and (2.9), the rescaled Cheeger-

Gromoll type metric CGgf has components with respect to the adapted frame {Eα}:

(3.1) CGgf = diag

(
fgij ,

1

α
(gij + gisgtjpspt)

)
.

For the Levi-Civita connection of the rescaled Cheeger-Gromoll type metric CGgf we
give the next theorem.

3.1. Theorem. Let (M, g) be a Riemannian manifold and T ∗M be its cotangent bundle
equipped with the rescaled Cheeger-Gromoll type metric CGgf . Then the corresponding
Levi-Civita connection ∇̃ satisfies the followings:

(3.2)



i) ∇̃EiEj = {Γlij + fAlij}El +
1

2
psR

s
ijl El,

ii) ∇̃EiEj =
1

2fα
psR

l js
. i . El − ΓjilEl,

iii) ∇̃EiEj =
1

2fα
psR

l is
. j . El,

iv) ∇̃EiEj = {−1
α

(piδjl + pjδil ) + α+1
α2 g

ijpl + 1
α2 p

ipjpl}El
with respect to the adapted frame, where fAhji is a tensor field of type (1, 2) defined by
fAhji = 1

f
(fjδ

h
i + fiδ

h
j − fm. gji) and pi = gitpt, Rk. j .is = gktgimR s

tjm.

Proof. The connection ∇̃ is characterized by the Koszul formula:

2CGgf (∇̃X̃ Ỹ , Z̃) = X̃(CGgf (Ỹ , Z̃)) + Ỹ (CGgf (Z̃, X̃))− Z̃(CGgf (X̃, Ỹ ))

−CGgf (X̃, [Ỹ , Z̃]) + CGgf (Ỹ , [Z̃, X̃]) + CGgf (Z̃, [X̃, Ỹ ])

for all vector fields X̃, Ỹ and Z̃ on T ∗M . One can verify the Koszul formula for pairs X̃ =

Ei, Ei and Ỹ = Ej , Ej and Z̃ = Ek, Ek. In calculations, the formulas (2.7), Lemma 2.1
and the first Bianchi identity for R should be applied. We omit standard calculations. �

Let X̃, Ỹ ∈ =1
0(T ∗M). Then the covariant derivative ∇̃Ỹ X̃ has components

∇̃Ỹ X̃
α = Ỹ γEγX̃

α + Γ̃αγβX̃
β Ỹ γ

with respect to the adapted frame {Eα}. Using (2.7), (2.8), (2.9) and (3.2), we have the
following proposition.

3.2. Proposition. Let (M, g) be a Riemannian manifold and ∇̃ be the Levi-Civita con-
nection of the cotangent bundle T ∗M equipped with the rescaled Cheeger-Gromoll type
metric CGgf . Then

i) ∇̃HX
HY = H

(
∇XY +f A(X,Y )

)
+ 1

2
V (p ◦R (X,Y )) ,

ii) ∇̃HX
V θ = 1

2fα
H
(
p
(
g−1 ◦R ( , X) θ̃

))
+V (∇Xθ) ,

iii) ∇̃V ω
HY = 1

2fα
H
(
p
(
g−1 ◦R ( ,Y ) ω̃

))
,

iv) ∇̃V ω
V θ = − 1

α

(
CGg

(
V ω, γδ

)
V θ + CGgf

(
V θ, γδ

)
V ω
)

+α+1
α

CGgf
(
V ω, V θ

)
γδ − 1

α
CGgf

(
V ω, γδ

)
CGg

f

(
V θ, γδ

)
γδ

for all X,Y ∈ =1
0 (M), ω, θ ∈ =0

1 (M), where ω̃ = g−1 ◦ω ∈ =1
0 (M) , R ( ,X) ω̃ ∈ =1

1 (M) ,
g−1 ◦ R ( ,X) ω̃ ∈ =1

0 (M), R and γδ denote respectively the curvature tensor of ∇ and
the canonical or Liouville vector field on T ∗M with the local expression γδ = piEi (for
f = 1, see [1]).
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The Riemannian curvature tensor R̃ of T ∗M with the rescaled Cheeger-Gromoll type
metric CGgf is obtained from the well-known formula

R̃
(
X̃, Ỹ

)
Z̃ = ∇̃X̃∇̃Ỹ Z̃ − ∇̃Ỹ ∇̃X̃ Z̃ − ∇̃[X̃,Ỹ ]Z̃

for all X̃, Ỹ , Z̃ ∈ =1
0(T ∗M). Then from Lemma 2.1 and Theorem 3.1, we get the following

proposition.

3.3. Proposition. The components of the curvature tensor R̃ of the cotangent bundle
T ∗M with the rescaled Cheeger-Gromoll type metric CGgf are given as follows:

R̃(El, Ei)Ej = {R m
lij −

1

2fα
ptpaR

a
lih R

m
. j

h
.
t+

1

4fα
ptpa(Rm. l

h
.
tR a

ijh −Rm. ih. tR a
ljh )

+∇l(Amij )−∇i(Amlj ) +AmlhA
h
ij −AmihAhlj)}Em

+{ 1

2f
pt(∇lR t

ijm −∇iR t
ljm)+

1

2
pt(R

t
lhmA

h
ij −R t

ihmA
h
lj)}Em̄,

R̃(E l̄, Ei)Ej = { −1

2fα
pa∇iRm. jl.a+

1

2fα
pa(Rm. h

l
.
aA

h

ij −R
h
. j
l
.
aA

m

ih +
fi
f
Rm. j

l
.
a)}Em

+{1

2
R l
ijm −

1

4fα
ptpaR

t
ihmR

h
. j
l
.
a− 1

2α
pap

lR a
ijm −

α+ 1

2α2
papmRij

l
.
a}Em̄,

R̃(El, Ei)Ej = { 1

2fα
pa∇lRm. ji.a +

1

2fα
pa(Rh. j

i
.
a Amlh −Rm. hi.aA

h

lj −
fl
f
Rm. j

i
.
a)}Em

+{−1

2
R i
ljm −

1

4fα
ptpaR

a
lhmR

h
. j
i
.
t+

1

2α
pap

iR a
ljm −

α+ 1

2α2
papmRlj

i
.
a}Em̄,

R̃(E l̄, Ei)Ej = { 1

4f2α2
ptpa(Rm. h

l
.
aRh. j

i
.
t −Rm. hi.aRh. j l.t)+

1

fα
Rm. j

i
.
l)

+
1

fα2
pa(piRm. j

l
.
a−plRm. ji.a}Em,

R̃(El, Ei)Ej̄ = { 1

2fα
pa(∇lRm. ij. a −∇iRm. lj. a)+

1

2fα
pa(Rh. i

j
.
aA

m

lh −R
h
. l
j
.
aA

m

ih

−fl
f
Rm. i

j
.
a+

fi
f
Rm. l

j
.
a)}Em + {R j

ilm +
1

4fα
ptpa(R t

lhmR
h
. i
j
.
a

−R a
ihmR

h
. l
j
.
t)+

1

α
pap

jR a
l im −

α+ 1

α2
papmRli

j
.
a}Em̄,

R̃(E l̄, Ei)Ej̄ = { 1

2fα
Rm. i

j
.
l+

1

2fα2
pa(plRm. i

j
.
a+piRm. i

l
.
a)+

1

4f2α2
paptR

m
. h

l
.
aRh. i

j
.
t}Em,

R̃(El, Ei)Ej̄ = { −1

2fα
Rm. l

ji
. +

1

2fα2
pa(piRm. l

j
.
a+pjRm. l

i
.
a)− 1

4f2α2
paptR

m
. h

i
.
aRh. l

j
.
t}Em,

R̃(E l̄, Ei)Ej̄ = {α
2 + α+ 1

α3
(gijδlm − gjlδim) +

α+ 2

α3
(gljpipm − gijplpm)

+
α− 1

α3
(δimp

lpj − δlmpipj)}Em̄
with respect to the adapted frame {Eα} (for f = 1, see [1]).

4. Para-Kähler (or paraholomorphic) Norden structures on T ∗M

An almost paracomplex manifold is an almost product manifold (M2k, ϕ), ϕ2 = id,
ϕ 6= ±id, such that the two eigenbundles T+M2k and T−M2k associated to the two
eigenvalues +1 and -1 of ϕ, respectively, have the same rank. Note that the dimension
of an almost paracomplex manifold is necessarily even. An almost paracomplex Norden
manifold (M2k, ϕ, g) is defined to be a real differentiable manifold M2k endowed with



360

an almost paracomplex structure ϕ and a Riemannian metric g satisfying Nordenian
property (or purity condition)

g(ϕX, Y ) = g(X,ϕY )

for anyX,Y ∈ =1
0(M2k). The almost paracomplex Norden manifold (M2k, ϕ, g) is called a

paraholomorphic Norden manifold (or a para-Kähler-Norden manifold) such that∇ϕ = 0,
where ∇ is the Levi-Civita connection of g. Also note that ∇ϕ = 0 is equivalent to
paraholomorphy of the metric g [21], i.e Φϕg = 0, where Φϕ is the Tachibana operator
[27]:

(Φϕg)(X,Y, Z) = (ϕX)(g(Y,Z))−X(g(ϕY,Z))

+ g((LY ϕ)X,Z) + g(Y, (LZϕ)X)

for any X,Y, Z ∈ =1
0(M2k).

V. Cruceanu defined in [4] an almost paracomplex structure on T ∗M as follows:

(4.1)
{
J(HX) = −HX,
J(V ω) =V ω

for any X ∈ =1
0 (M) and ω ∈ =0

1 (M). One can easily check that the metric CGgf is
pure with respect to the almost paracomplex structure J . Hence we state the following
theorem.

4.1. Theorem. Let (M, g) be a Riemannian manifold and T ∗M be its cotangent bun-
dle equipped with the rescaled Cheeger-Gromoll type metric CGgf and the paracomplex
structure J . Then the triplet (T ∗M,J,CG gf ) is an almost paracomplex Norden manifold.

We now give conditions for the rescaled Cheeger-Gromoll type metric CGgf to be
paraholomorphic with respect to the almost paracomplex structure J . Using definition
of the rescaled Cheeger-Gromoll type metric CGgf and the almost paracomplex structure
J and by using the fact that V ωV (g−1(θ, σ)) = 0 and HXV (fg(Y,Z)) = V (X(fg(Y,Z)))
we calculate

(ΦJ
CGgf )(X̃, Ỹ , Z̃) = (JX̃)(CGgf (Ỹ , Z̃))− X̃(CGgf (JỸ , Z̃))

+ CGgf ((LỸ J)X̃, Z̃) + CGgf (Ỹ , (LZ̃J)X̃)

for all X̃, Ỹ , Z̃ ∈ =1
0(T ∗M). For pairs X̃ =H X,V ω, Ỹ =H Y,V θ and Z̃ =H Z, V σ, we

get

(ΦJ
CGgf )(HX, V θ,HZ) = 2CGgf (V θ,V (p ◦R(X,Z)),(4.2)

(ΦJ
CGgf )(HX,HY, V σ) = 2CGgf (V (p ◦R(X,Y ),V σ)

and the others are zero. Therefore, we have the following result.

4.2. Theorem. Let (M, g) be a Riemannian manifold and T ∗M be its cotangent bun-
dle equipped with the rescaled Cheeger-Gromoll type metric CGgf and the paracomplex
structure J . Then the triplet

(
T ∗M,J,CGgf

)
is a para-Kähler-Norden (paraholomorphic

Norden) manifold if and only if (M, g) is flat.

4.3. Remark. Let (M, g) be a Riemannian manifold and T ∗M be its cotangent bundle
equipped with the rescaled Cheeger-Gromoll type metric CGgf . The diagonal lift Dγ of
γ ∈ =1

1(M) to T ∗M is defined by the formulas
DγHX = H(γX),
DγV ω = −V (ω ◦ γ)
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for any X ∈ =1
0 (M) and ω ∈ =0

1 (M). The diagonal lift DI of the identity tensor field
I ∈ =1

1(M) has the following properties
DIHX = HX
DIV ω = −V ω

and satisfies (DI)2 = IT∗M . Thus, DI is an almost paracomplex structure. Also,
the rescaled Cheeger-Gromoll type metric CGgf is pure with respect to DI, i.e. the
triplet

(
T ∗M,D I,CGgf

)
is an almost paracomplex Norden manifold. Finally, by using

Φ−operator, we can say that the rescaled Cheeger-Gromoll type metric CGgf is para-
holomorphic with respect to DI if and only if (M, g) is flat.

The following remark follows directly from Proposition 3.3.

4.4. Remark. Let (M, g) be a flat Riemannian manifold and T ∗M be its cotangent bun-
dle equipped with the rescaled Cheeger-Gromoll type metric CGgf . Then the cotangent
bundle

(
T ∗M,CGgf

)
is unflat.

As is known, the almost paracomplex Norden structure is a specialized Riemannian
almost product structure on a Riemannian manifold. The theory of Riemannian almost
product structures was initiated by K. Yano in [29]. The classification of Riemannian
almost-product structure with respect to their covariant derivatives is described by A.M.
Naveira in [15]. This is the analogue of the classification of almost Hermitian structures
by A. Gray and L. Hervella in [10]. Having in mind these results, M. Staikova and K.
Gribachev obtained a classification of the Riemannian almost product structures, for
which the trace vanishes (see [26]). There are lots of physical applications involving a
Riemannian almost product manifold. Now we shall give some applications for almost
paracomplex Norden structures in context of almost product Riemannian manifolds.

4.1. Let us recall almost product Riemannian manifolds. If an n-dimensional Riemann-
ian manifold M , endowed with a Riemannian metric g, admits a non-trivial tensor field
F of type (1.1) such that

F 2 = I

and

g(FX, Y ) = g(X,FY )

for all X,Y ∈ =1
0(M), then F is called an almost product structure and (M,F, g) is called

an almost product Riemannian manifold. An almost product Riemannian manifold with
integrable almost product F is called a locally product Riemannian manifold. It is known
that the integrability of an almost product structure F is equivalent to the vanishing of
the Nijenhuis tensor NF given by

NF (X,Y ) = [FX,FY ]− F [FX, Y ]− F [X,FY ] + [X,Y ]

for all X,Y ∈ =1
0(M). If F is covariantly constant with respect to the Levi-Civita

connection ∇ of g which is equivalent to ΦF g = 0, then (M,F, g) is called a locally
decomposable Riemannian manifold.

Now consider the almost product structure J defined by (4.1) and the Levi-Civita
connection ∇̃ given by Proposition 3.1. We define a tensor field S̃ of type (1, 2) on T ∗M
by

S̃(X̃, Ỹ ) =
1

2
{(∇̃JỸ J)X̃ + J((∇̃Ỹ J)X̃)− J((∇̃X̃J)Ỹ )}

for all X̃, Ỹ ∈ =1
0(T ∗M). Then the linear connection

(4.3) ∇X̃ Ỹ = ∇̃X̃ Ỹ − S̃(X̃, Ỹ )
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is an almost product connection on T ∗M (for almost product connection, see [12]).

4.5. Theorem. Let (M, g) be a Riemannian manifold and T ∗M be its cotangent bun-
dle equipped with the rescaled Cheeger-Gromoll type metric CGgf and the almost product
structure J . Then the almost product connection ∇ constructed by the Levi-Civita connec-
tion ∇̃ of the rescaled Cheeger-Gromoll type metric CGgf and the almost product structure
J is as follows:

(4.4)



i) ∇ H
HX Y = H(∇XY ) +H (fA(X,Y )),

ii) ∇ V
HX θ = V (∇Xθ),

iii) ∇ H
V ω Y =

3

2fα
H
(
p
(
g−1 ◦R ( ,Y ) ω̃

))
,

iv) ∇ V
V ω θ = − 1

α

(
CGg

(
V ω, γδ

)
V θ + CGgf

(
V θ, γδ

)
V ω
)

+α+1
α

CGg
f

(
V ω, V θ

)
γδ − 1

α
CGg

f

(
V ω, γδ

)
× CGgf

(
V θ, γδ

)
γδ.

Denoting by T the torsion tensor of ∇, we have from (4.1), (4.3) and (4.4)

T (V ω,V θ) = 0,

T (V ω,H Y ) =
3

2fα
H (p (g−1 ◦R ( ,Y ) ω̃

))
,

T (HX,H Y ) = −V (p ◦R(X,Y )).

Hence we have the theorem below.

4.6. Theorem. Let (M, g) be a Riemannian manifold and let T ∗M be its cotangent
bundle. Then the almost product connection ∇ constructed by the Levi-Civita connection
∇̃ of the rescaled Cheeger-Gromoll type metric CGgf and the almost product structure J
is symmetric if and only if (M, g) is flat.

As is well-known, if there exists a symmetric almost product connection on M then
the almost product structure J is integrable [12]. The converse is also true [6]. Thus we
get the following conclusion.

4.7. Corollary. Let (M, g) be a Riemannian manifold and T ∗M be its cotangent bundle
equipped with the rescaled Cheeger-Gromoll type metric CGgf and the almost product
structure J . Then the triplet (T ∗M,J,CG gf ) is a locally product Riemannian manifold if
and only if (M, g) is flat.

Similarly, let us consider the almost product structure DI and the Levi-Civita con-
nection ∇̃ of the rescaled Cheeger-Gromoll type metric CGgf . Another almost product
connection can be constructed.

If J is covariantly constant with respect to the Levi-Civita connection ∇̃ of the
rescaled Cheeger-Gromoll type metric CGgf which is equivalent to Φ CG

J gf = 0, then
(T ∗M,J,CG gf ) is called a locally decomposable Riemannian manifold. In view of Theo-
rem 4.2, we have the following.

4.8. Corollary. Let (M, g) be a Riemannian manifold and T ∗M be its cotangent bun-
dle equipped with the rescaled Cheeger-Gromoll type metric CGgf and the almost product
structure J . Then the triplet (T ∗M,J,CG gf ) is a locally decomposable Riemannian man-
ifold if and only if (M, g) is flat.

4.2. Let (M2k, ϕ, g) be a non-integrable almost paracomplex manifold with a Norden
metric. An almost paracomplex Norden manifold (M2k, ϕ, g) is a quasi-para-Kähler–
Norden manifold, if σ

X,Y,Z
g((∇Xϕ)Y,Z) = 0, where σ is the cyclic sum by three argu-

ments [13]. In [24], the authors proved that σ
X,Y,Z

g((∇Xϕ)Y,Z) = 0 is equivalent to
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σ
X,Y,Z

(Φϕg)(X,Y, Z) = 0. We compute

A(X̃, Ỹ , Z̃) = σ
X̃,Ỹ ,Z̃

(ΦJ
CGgf )(X̃, Ỹ , Z̃)

for all X̃, Ỹ , Z̃ ∈ =1
0(T ∗M). By means of (4.2), we have A(X̃, Ỹ , Z̃) = 0 for all X̃, Ỹ , Z̃ ∈

=1
0(T ∗M). Hence we state the following theorem.

4.9. Theorem. Let (M, g) be a Riemannian manifold and T ∗M be its cotangent bundle
equipped with the rescaled Cheeger-Gromoll type metric CGgf and the almost paracomplex
structure J defined by (4.1). Then the triplet (T ∗M,J,CG gf ) is a quasi-para-Kähler–
Norden manifold.

O. Gil-Medrano and A.M. Naveira proved that both distributions of the almost prod-
uct structure on the Riemannian manifold (M,ϕ, g) are totally geodesic if and only if
σ

X,Y,Z
g((∇Xϕ)Y,Z) = 0 for any X,Y, Z ∈ =1

0(M) [9]. As a consequence of Theorem 4.9,

we have the following.

4.10. Corollary. Both distributions of the almost product Riemannian manifold (T ∗M,
J,CG gf ) are totally geodesic.

4.3. Let F be an almost product structure and ∇ be a linear connection on an n-
dimensional Riemannian manifold M. The product conjugate connection ∇(F ) of ∇ is
defined by

∇(F )
X Y = F (∇XFY )

for all X,Y ∈ =1
0(M). If (M,F, g) is an almost product Riemannian manifold, then

(∇(F )
X g)(FY, FZ) = (∇Xg)(Y,Z), i.e. ∇ is a metric connection with respect to g if and

only if ∇(F ) is so. From this, we can say that if ∇ is the Levi-Civita connection of g,
then ∇(F ) is a metric connection with respect to g [2].

By the almost product structure J defined by (4.1) and the Levi-Civita connection ∇̃
given by Proposition 3.1, we write the product conjugate connection ∇̃(J) of ∇̃ as follows:

∇̃(J)

X̃
Ỹ = J(∇̃X̃JỸ )

for all X̃, Ỹ ∈ =1
0(T ∗M). Also note that ∇̃(J) is a metric connection of the rescaled

Cheeger-Gromoll type metric CGgf . The standart calculations give the following theorem.

4.11. Theorem. Let (M, g) be a Riemannian manifold and let T ∗M be its cotangent
bundle equipped with the rescaled Cheeger-Gromoll type metric CGgf and the almost prod-
uct structure J. Then the product conjugate connection (or metric connection) ∇̃(J) is as
follows:

i) ∇̃HX
HY = H

(
∇XY +f A(X,Y )

)
− 1

2
V (p ◦R (X,Y )) ,

ii) ∇̃HX
V θ = − 1

2fα
H
(
p
(
g−1 ◦R ( , X) θ̃

))
+V (∇Xθ) ,

iii) ∇̃V ω
HY = 1

2fα
H
(
p
(
g−1 ◦R ( ,Y ) ω̃

))
,

iv) ∇̃V ω
V θ = − 1

α

(
CGg

(
V ω, γδ

)
V θ + CGgf

(
V θ, γδ

)
V ω
)

+α+1
α

CGgf
(
V ω, V θ

)
γδ − 1

α
CGgf

(
V ω, γδ

)
CGg

f

(
V θ, γδ

)
γδ.

The relationship between curvature tensors R∇ and R∇(F ) of the connections ∇ and
∇(F ) is as follows: R∇(F )(X,Y, Z) = F (R∇(X,Y, FZ) for all X,Y, Z ∈ =1

0(M) [2]. By
means of the almost product structure J defined by (4.1) and Proposition 3.3, from
R̃∇̃(J)(X̃, Ỹ , Z̃) = J(R̃∇̃(X̃, Ỹ , JZ̃), components of the curvature tensor R̃∇̃(J) of the
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product conjugate connection (or metric connection) ∇̃(J) can easily be computed. Fi-
nally, using the almost product structure DI, another metric connection of the rescaled
Cheeger-Gromoll type metric CGgf can be constructed.

Acknowledgement. The authors are thankful to the anonymous referees for the valu-
able suggestions towards the improvement of this manuscript.
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