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Functional equations related to weightable
quasi-metrics
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Abstract
Starting from the definition of a weightable quasi-metric we observe
that several functional equations are induced in a natural way. Study-
ing these equations we characterize weightable quasi-metrics and show
that they define representable total preorders. We also analyze how to
retrieve weightable quasi-metrics from real-valued functions satisfying
suitable functional equations.
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1. Introduction
In the last years, (weightable) quasi-metric spaces have proven to be useful in mod-

eling many processes that arise in Theoretical Computer Science and that involve some
situation of asymmetry . The aforementioned usefulness is due to the fact that quasi-
metric spaces lack the symmetry and the Hausdorffness enjoyed by metric spaces. This
fact allows to introduce techniques of measuring that, contrarily to the metric ones,
reflect the asymmetry inherent to the computational process. It is then possible to de-
velop a “metric” foundation for partial orders reasoning techniques in the spirit of D.
Scott ([40, 34, 25]). Recent applications of the aforesaid metric tools based on the use
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of (weightable) quasi-metrics to Complexity Analysis of Algorithms, Denotational Se-
mantics and Program Correctnes can be found in [33, 32, 34, 17, 23, 37, 38, 26] and
[25].

Inspired in part by its utility in Theoretical Computer Science, we focus our at-
tention on the definition of a (weightable) quasi-metric ([10, 21]) and we immediately
encounter some functional equation that appears in a natural way. As a matter of fact
weightable quasi-metrics are characterized as the quasi-metrics that satisfy a certain
functional equation that we call circuit invariance. In addition, the disymmetry function
(defined in Section 2) of a weightable quasi-metric satisfies Sincov’s functional equation
and induces a total preorder, different, in general, from the specialization order directly
induced by the given quasi-metric. To conclude, we analyze the possibility of retrieving
a weightable quasi-metric from a real-valued bivariate function that satisfies Sincov’s
functional equation. This allows us to establish a link between apparently disparate no-
tions, namely: i) weightable quasi-metrics, ii) real-valued bivariate functions that satisfy
Sincov’s functional equation, and iii) total preorders that are representable through a
real-valued utility function.

This possibility of relating weightable quasi-metrics, functional equations and repre-
sentable total preorders is undoubtedly an important motivation, besides their aforemen-
tioned usefulness in Theoretical Computer Science, for the study of this particular kind
of quasi-metrics.

The structure of the manuscript goes as follows.
The key definitions and notations are listed and discussed in Section 2. In Section 3 we

consider and analyze different functional equations in two variables that are closely asso-
ciated to the concept of a quasi-metric. In Section 4 we relate those functional equations
to some kinds of orderings. In Section 5 we characterize when a positively weightable
quasi-metric can be retrieved from a real-valued bivariate function that satisfies either
the circuit invariance functional equation or Sincov’s functional equation.

2. Preliminaries
In what follows, X will denote a nonempty set and R will stand for the set of real

numbers.
The definition of a metric space is usually attributed to M. Fréchet (see [13]). However,

asymmetric distances had already been implicitly considered by Pompeiu in [28], as
mentioned in the seminal book by F. Hausdorff issued in 1914 (see [16]). Hausdorff
introduced a wide sort of ideas in this direction. Having these ideas in mind, the formal
definition of a quasi-metric space was issued by W. A. Wilson in 1931. (See [44, 18]).
Other miscellaneous extensions, special cases and variations of the concept of a metric
space (e.g. partial metric spaces, pseudo-metric spaces, etc.) are often encountered in
the specialized literature [41, 25, 19].

2.1. Definition. Let X be a nonempty set. Following the modern terminology ([20]),
by a quasi-metric on X we mean a function d : X × X → [0,+∞) such that for all
x, y, z ∈ X the following conditions hold:

(i) d(x, y) = d(y, x) = 0⇔ x = y;
(ii) d(x, y) + d(y, z) ≥ d(x, z).

Of course a metric on a set X is a quasi-metric d on X satisfying, in addition, the
following condition for all x, y ∈ X :

(iii) d(x, y) = d(y, x).
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By a quasi-metric space we mean a pair (X, d) such that X is a nonempty set and d
is a quasi-metric on X.

If d is a quasi-metric on a set X, then the relation ≤d on X given by x ≤d y ⇔
d(x, y) = 0, is an order on X (see Definition 4.1 in Section 4) called the specialization
order of d.

Given a quasi-metric d on X, and an ordered pair (x, y) ∈ X × X, the real number
F (x, y) = d(x, y)− d(y, x) is said to be the disymmetry of the pair (x, y). The function
F : X × X → R defined by F (x, y) = d(x, y) − d(y, x) (x, y ∈ X) is said to be the
disymmetry function associated to the quasi-metric d on X.

2.2. Remark. The original definition of a quasi-metric, due to Wilson ([44]) is a bit
more restrictive than Definition 2.1 above. Namely, in the sense of Wilson ([44]), a quasi-
metric d on X is a quasi-metric in the sense of Definition 2.1 which satisfies in addition
that d(x, y) = 0 ⇔ x = y for every x, y ∈ X. Obviously condition (i) in Definition
2.1 is less restrictive than the preceding condition (see also Example 2.3 below, due to
Hausdorff [16]). Nowadays, according, for instance, to [29], quasi-metrics in the sense of
Wilson are called T1 quasi-metrics. As a matter of fact, any quasi-metric generates a
topology in a natural way. This topology will satisfy the separation axiom T1 if and only
if the given quasi-metric is a quasi-metric in the sense of Wilson. This is the reason why
quasi-metrics in the sense of Wilson are called T1-quasi-metrics.

2.3. Example. ([16]) Let H denote the family of non-empty compact sets of the real
plane R2. Let dE denote the usual Euclidean distance on the real plane R2. Given
A,B ∈ H, consider the non-negative real number dH(A,B) defined as follows:

dH(A,B) = max
a∈A
{min
b∈B

dE(a, b)}.

It is well-known that dH is a quasi-metric (in the sense of Definition 2.1 above) on
the real plane. Moreover, it is not a metric, that is dH(A,B) could be different from
dH(B,A) (A,B ∈ H). This quasi-metric dH is said to be the Hausdorff quasi-metric on
H. By the way, note that this quasi-metric is not T1, i.e., dH does not satisfy Wilson’s
original definition, since if A ( B ∈ H, we have that dH(A,B) = 0 but dH(B,A) 6= 0 as
well.

(A very important use in Pure Mathematics of the Hausdorff quasi-metric dH appears
in the definition and study of fractal sets. See Chapter II, Section 6 in [6] for further
details).

2.4. Example. Let dS : R× R→ [0,+∞) be the function defined by

dS(x, y) =

{
min{y − x, 1} if x ≤ y
1 if x > y

.

It is easy to check that dS is a quasi-metric ([29]), known as the Sorgenfrey quasi-metric,
which is T1.

2.5. Definition. ([10, 25, 20]) Let X be a nonempty set. A quasi-metric d on X, as
well as the associated quasi-metric space (X, d), are said to be weightable if there exists
a function w : X → R such that d(x, y) +w(x) = d(y, x) +w(y) holds for every x, y ∈ X.
The function w is called a weighting function for d.

In the particular case in which there is at least one weighting function that only
takes non-negative values (w(X) ⊆ [0,+∞)) we say that the quasi-metric d is positively
weightable. (See Example 2.8 below).
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2.6. Example. Let d : R×R→ [0,+∞) be the function given by d(x, y) = max{y−x, 0}
for all x, y ∈ R. It is clear that (R, d) is a quasi-metric space which is weightable with
weighting function w : R→ R given by w(x) = x for all x ∈ R.

2.7. Remarks.
(1) Note that if (X, d) is a weightable quasi-metric space with weighting function w,

then the disymmetry function F associated to d is given by F (x, y) = w(y)−w(x)
for all x, y ∈ X.

(2) The original definition of a weightable quasi-metric ([10, 25]) does not force the
weighting functions to take non-negative values. However, inspired by the appli-
cations in Theoretical Computer Science, other authors (see e.g. [21]) define a
weightable quasi-metric by imposing the weighting functions to be non-negative.
By this reason, we have pointed out this nuance, distinguishing accordingly be-
tween “weightable quasi-metrics" and “positively weightable quasi-metrics" in
Definition 2.5.

In the next examples we provide a few weightable quasi-metrics which play a central
role in several fields of Theoretical Computer Science.

2.8. Examples. We introduce now several well-known examples of weightable quasi-
metrics.

1. The domain of words Σ∞ (see e.g. [20, 25, 31, 35]) consists of all finite and
infinite sequences over a nonempty set Σ, ordered by x v y ⇔ x is a prefix of y,
where we assume that the empty sequence φ is an element of Σ∞.

For each x, y ∈ Σ∞ denote by xuy the longest common prefix of x and y, and
for each x ∈ Σ∞ denote by `(x) the length of x. Thus `(x) ∈ [1,∞] whenever
x 6= φ, and `(φ) = 0. Then ([20, 25]) the function d : Σ∞×Σ∞ → [0,+∞) given
by

d(x, y) = 2−`(xuy) − 2−`(x),

is a positively weightable quasi-metric on Σ∞ with weighting function w given
by w(x) = 2−`(x) for all x ∈ Σ∞. Note that the specialization order ≤d coincides
with v .Moreover, the disymmetry function associated to d is given by F (x, y) =

2−`(y) − 2−`(x) for all x, y ∈ Σ∞.
2. The interval domain I([0, 1]) ([11, 22, 25]) consists of the nonempty closed in-

tervals of [0, 1] ordered by reverse inclusion, i.e., [a, b] v [c, d] ⇔ [a, b] ⊇ [c, d] .
In particular, points of [0,1] are identified with the singleton intervals. Then,
the function d defined on I([0, 1])× I([0, 1]) by

d([a, b], [c, d]) = max{b, d} −min{a, c} − (b− a),

is a weightable quasi-metric on I([0, 1]) with weighting function w given by
w([a, b]) = b−a, for all [a, b] ∈ I([0, 1]) (see e.g. [25, 31, 35]). The specialization
order ≤d coincides with v . Moreover, the disymmetry function associated to d
is given by F ([a, b], [c, d]) = d+ a− b− c for all [a, b], [c, d] ∈ I([0, 1]).

3. Denote by ω the set of non-negative integer numbers. The complexity quasi-
metric space [34] is the pair (C, dC), where

C = {f : ω → (0,+∞] |
+∞∑
n=0

2−n
1

f(n)
< +∞},
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and dC is the quasi-metric on C defined by

dC(f, g) =

+∞∑
n=0

2−n
[
max

(
1

g(n)
− 1

f(n)
, 0

)]
.

Furthermore, (C, dC) is weightable with weighting function wC given by wC(f) =∑+∞
n=0(2−n/f(n)) for all f ∈ C. The specialization order of dC coincides with the

pointwise order of C. Moreover, the disymmetry function associated to dC is
given by F (f, g) =

∑+∞
n=0 2−n[1/g(n)− 1/f(n)] for all f, g ∈ C.

3. Functional equations defined through quasi-metrics
Let us see now how the definition of a weightable quasi-metric gives rise to the con-

sideration of several functional equations. To this end, let us denote by N the set of
positive integer numbers. The following Lemma 3.1 hangs from a well known result of
the classical theory of functional equations in two variables.

3.1. Lemma. Let (X, d) be a quasi-metric space. Assume that the quasi-metric d satisfies
the functional equation of the 3-circuit, namely d(x, y) + d(y, z) + d(z, x) = d(x, z) +
d(z, y) + d(y, x), for every x, y, z ∈ X. Then d is weightable.

Proof. By hypothesis we observe that the disymmetry function F : X×X → R given by
F (x, y) = d(x, y)− d(y, x) (x, y ∈ X) satisfies F (x, y) + F (y, z) = F (x, z), (x, y, z ∈ X).
It is well known (see e.g. [4, 5, 15]) that in this case there exists a function w : X → R
such that F (x, y) = w(y)− w(x) = d(x, y)− d(y, x), for every x, y ∈ X. Therefore d is a
weightable quasi-metric. �

The converse of Lemma 3.1 is also true, as well as some other equivalences stated in
the following Theorem 3.2.

3.2. Theorem. Let (X, d) be a quasi-metric space. The following statements are equiv-
alent:

i) The quasi-metric d is weightable.
ii) The quasi-metric d satisfies the functional equation of the 3-circuit, namely

d(x, y) + d(y, z) + d(z, x) = d(x, z) + d(z, y) + d(y, x), for every x, y, z ∈ X.
iii) For every n ≥ 3, n ∈ N, the quasi-metric d satisfies the functional equation of the

n-circuit, namely d(x1, x2)+d(x2, x3)+. . .+d(xn−1, xn)+d(xn, x1) = d(x1, xn)+
d(xn, xn−1) + . . .+ d(x3, x2) + d(x2, x1), for every x1, x2, x3, . . . , xn ∈ X.

iv) For some k ≥ 3, k ∈ N, the quasi-metric d satisfies the functional equation of the
k-circuit, namely d(x1, x2)+d(x2, x3)+. . .+d(xk−1, xk)+d(xk, x1) = d(x1, xk)+
d(xk, xk−1) + . . .+ d(x3, x2) + d(x2, x1), for every x1, x2, x3, . . . , xk ∈ X.

Proof. i)⇒ iii):
Since d is weightable by hypothesis, there exists a function w : X → R such that

d(x, y)+w(x) = d(y, x)+w(y), for every x, y ∈ X. Thus, for every x1, x2, x3, . . . , xn ∈ X
we have that [d(x1, x2) + w(x1)] + [d(x2, x3) + w(x2)] + . . .+ [d(xn−1, xn) + w(xn−1)] +
[d(xn, x1) + w(xn)] = [d(x2, x1) + w(x2)] + [d(x3, x2) + w(x3)] + . . . + [d(xn, xn−1) +
w(xn)]+ [d(x1, xn)+w(x1)]. Hence d(x1, x2)+d(x2, x3)+ . . .+d(xn−1, xn)+d(xn, x1) =
d(x2, x1) + d(x3, x2) + . . . + d(xn, xn−1) + d(x1, xn) = d(x1, xn) + d(xn, xn−1) + . . . +
d(x3, x2) + d(x2, x1).
iii)⇒ ii) and iii)⇒ iv):
These implications are obvious.
iv)⇒ ii):
It follows immediately, by taking x3 = x4 = . . . = xk.
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ii)⇒ i): This has already been stated in Lemma 3.1.
This finishes the proof. �

Now we introduce a necessary definition concerning functional equations.

3.3. Definition. Let X be a nonempty set.
a) A bivariate function F : X × X −→ R is said to satisfy Sincov’s functional

equation if F (x, y) + F (y, z) = F (x, z) holds for every x, y, z ∈ X.
b) A bivariate function F : X ×X −→ R is said to satisfy the separability equation

if F (x, y) + F (y, z) = F (x, z) + F (y, y) holds for every x, y, z ∈ X.

Observe that the notion of Sincov’s functional equation is already involved in the
previous Theorem 3.2.

The following result is well-known (see e.g. [5], pp. 122 and ff.).

3.4. Proposition. Let X be a nonempty set. A bivariate function F : X × X −→ R
satisfies the separability equation if and only if F (x, y) = G(x) + H(y) (x, y ∈ X), for
some functions G,H : X → R that depend of only one variable.

3.5. Theorem. Let (X, d) be a quasi-metric space. Let F be the dysymmetry function
associated to d. The following statements are equivalent:

i) The quasi-metric d is weightable.
ii) The disymmetry function F associated to d satisfies Sincov’s functional equation

F (x, y) + F (y, z) = F (x, z), for every x, y, z ∈ X.
iii) The disymmetry function F satisfies the functional equation of separability F (x, y)+

F (y, z) = F (x, z) + F (y, y), for every x, y, z ∈ X.
iv) The disymmetry function F satisfies the functional equation F (x, y) +F (y, z) =

F (x, z) + F (t, t), for every x, y, z, t ∈ X.

Proof. i)⇔ ii):
By Theorem 3.1, d is weightable, if and only if d(x, y) + d(y, z) + d(z, x) = d(x, z) +

d(z, y) + d(y, x) holds for every x, y, z ∈ X. But this is equivalent to say that [d(x, y)−
d(y, x)] + [d(y, z)− d(z, y)] = [d(x, z)− d(z, x)], or, just changing the notation, F (x, y) +
F (y, z) = F (x, z) (x, y, z ∈ X).
ii)⇔ iii)⇔ iv):
Just notice that, for all x ∈ X, F (x, x) = d(x, x)− d(x, x) = 0 holds. �

4. Orderings induced by functional equations related to weightable
quasi-metrics
In this Section 4 we study orderings that are induced in a natural way by weightable

quasi-metrics. First we recall some basic definitions concerning orderings.

4.1. Definition. A preorder - on an arbitrary nonempty set X is a binary relation on
X which is reflexive and transitive. If - is a preorder on X, then the pair (X,-) is
said to be a preordered set. An antisymmetric preorder is said to be an order . A total
preorder - on a set X is a preorder such that [x - y] ∨ [y - x] holds for every x, y ∈ X.

4.2. Definition. Let X be a nonempty set. Let ≺ be an asymmetric binary relation
defined on X. Associated to ≺ we define the reflexive and total binary relation - given
by x - y ⇔ ¬(y ≺ x) (x, y ∈ X).

An interval order ≺ is an asymmetric binary relation such that [(x ≺ y) ∧ (z ≺ t)]⇒
[(x ≺ t) ∨ (z ≺ y)] (x, y, z, t ∈ X). An interval order ≺ is said to be a semiorder if
[(x ≺ y) ∧ (y ≺ z)]⇒ [(x ≺ w) ∨ (w ≺ z)], for every x, y, z, w ∈ X.
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4.3. Remark. Interval orders are perhaps the best class of ordered structures to build
models of uncertainty or to represent and manipulate vague or imperfectly described
pieces of knowledge. The notion of an interval order was introduced¶ by Peter C. Fish-
burn (see [12]), in order to study models of preference or measurement orderings whose
associated indifference may fail to be transitive.

The concept of a semiorder was introduced in [24] to deal with innacuracies in mea-
surements where a nonnegative threshold of discrimination is involved. Semiordered
structures are often encountered in a wide range of applications (see e.g. [2] for further
details).

We can generate total preorders, interval orders and semiorders from particular solu-
tions of suitable functional equations, as stated in the next straightforward Proposition
4.4, whose proof is omitted for the sake of brevity. (For similar results see e.g. [3])

4.4. Proposition. Let X be a nonempty set.

i) If F : X×X → R satisfies Sincov’s functional equation, then the binary relation
- defined on X by x - y ⇔ F (y, x) ≤ 0 (x, y ∈ X) is a total preorder.

ii) If F : X ×X → R satisfies the separability equation and, in addition F (t, t) ≤
0 (t ∈ X), then the binary relation defined on X by x ≺ y ⇔ F (x, y) > 0 (x, y ∈
X) is an interval order.

iii) If F : X × X → R satisfies the separability equation and, in addition, there
exists a non-positive real constant K ≤ 0 such that F (t, t) = K (t ∈ X), then
the binary relation defined on X by x ≺ y ⇔ F (x, y) > 0 (x, y ∈ X) is a
semiorder.

The following result is a direct consequence of Proposition 4.4 (part i), Theorem 3.2
and Theorem 3.5 in Section 3 above.

4.5. Corollary. Let X be a nonempty set. Let d be a weightable quasi-metric defined
on X. Let F be the dysymmetry function associated to d. Then, the binary relation -F
defined on X as x -F y ⇔ F (y, x) ≤ 0⇔ F (x, y) ≥ 0 (x, y ∈ X) is a total preorder.

4.6. Remark. Observe that given a quasi-metric space (X, d), then the following easy
relationship is satisfied: If x ≤d y, then x -F y ⇔ x = y. Moreover, note that the order
relation -F is total whereas that the specialization oder ≤d is not. This property could
be an advantage to model certain processes in applied contexts in the sense that the
order relation -F allows to compare elements of X that are not comparable with respect
to ≤d. For instance, coming back to Example 2.8 (2) we observe that [a, b] ≤d [c, d] ⇔
[c, d] ⊆ [a, b], whereas [a, b] -F [c, d]⇔ b+ c ≤ a+ d.

4.7. Remark. Suppose that we want to induce interval orders or semiorders from the
disymmetry function of a quasi-metric. Taking into account Proposition 4.4, we should
look for disymmetry functions that satisfy the separability equation. However, if F (x, y)+
F (y, z) = F (x, z) + F (y, y) holds for every x, y, z ∈ X, we immediately get Sincov’s
functional equation F (x, y) + F (y, z) = F (x, z) (x, y, z ∈ X) because by definition of
F , we have that F (y, y) = d(y, y) − d(y, y) = 0, for every y ∈ X. Thus, even if the
separability equation is accomplished, we would induce an interval order or a semiorder
that coincides with the asymmetric part of a total preorder. That is, if ≺ is the induced
interval order or semiorder, in this case we have that the binary relation - given by

¶Under a different name, the concept of an interval order, as well as the concept of a semiorder,
was already implicit much earlier, in the work of Norbert Wiener. (See e.g. [43]).
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x - y ⇔ ¬(y ≺ x) (x, y ∈ X) is actually a total preorder‖. Notice also that this fact is
the “expected one", taking into account the result stated in Theorem 3.5.

Furthermore, if the disymmetry function F of a quasi-metric satisfies the separability
equation F (x, y) + F (y, z) = F (x, z) + F (y, y) (x, y, z ∈ X), by Proposition 3.4 we have
that F can be decomposed as F (x, y) = G(x) + H(y) for every x, y ∈ X. But here we
have that F (x, y) = −F (y, x). Hence G(x) +H(y) = −G(y)−H(x), for every x, y ∈ X.
Thus G(x) + H(x) = G(y) + H(y), for every x, y ∈ X. But G(x) + H(x) = F (x, x) =
d(x, x)− d(x, x) = 0, for every x ∈ X. Therefore G(x) = −H(x), for every x ∈ X. Thus
we have that F (x, y) = G(x)−G(y) = H(y)−H(x)⇔ d(x, y)−d(y, x) = H(y)−H(x)⇔
d(x, y) + H(x) = d(y, x) + H(y) (x, y ∈ X). This is an alternative argument to show
that the quasi-metric d must be weightable, as stated in Theorem 3.5.

Inspired by Proposition 4.4, we may pay attention to the following important detail:
the total preorders associated to a weightable quasi-metric can be framed by means of
the disymmetry function F as well as by the weighting function w. Indeed, the fact
x -F y ⇔ F (x, y) ≥ 0⇔ w(x) ≤ w(y) (x, y ∈ X) is crucial. This inspires the following
definition.

4.8. Definition. Let - denote a total preorder defined on a nonempty set X. We say
that - is representable if there exists a function u : X → R such that x - y ⇔ u(x) ≤ u(y)
for every x, y ∈ X. The function u is called a numerical isotony, or, mainly in contexts
coming from Economics, a utility function.

The kind of numerical representation involved in Definition 4.8 is actually equivalent to
a representation that uses a bivariate function accomplishing Sincov’s functional equation,
as the next well-known result shows. (See e.g. Theorem 1 in [7]).

4.9. Proposition. Let - be a total preorder defined on a nonempty set X. Then - is
representable if and only if there exists a bivariate function F : X × X → R such that
F satisfies Sincov’s functional equation and, in addition, x - y ⇔ F (x, y) ≥ 0 holds for
every x, y ∈ X.

The following definition is inspired by Proposition 4.9, and it is equivalent to Definition
4.8.

4.10. Definition. Let - be a representable total preorder defined on a nonempty set
X. A bivariate function F : X × X → R satisfying Sincov’s functional equation, and
such that x - y ⇔ F (x, y) ≥ 0 holds for every x, y ∈ X, is called a bivariate numerical
representation of -.

4.11. Remark. Not every total preorder is representable. A well known example is the
lexicographic order -L on the real plane R2: Given (a, b), (c, d) ∈ R2, then (a, b) -L
(c, d)⇔ [(a < c) ∨ (a = c, b ≤ d)]. (See e.g [9] for further details).

Looking again at Corollary 4.5 we may observe that from a weightable quasi-metric
we get a representable total preorder. Looking for a converse result, we may start from a
representable total preorder - defined on a nonempty set X, and search for a weightable
quasi-metric whose disymmetry function constitutes a bivariate numerical representation
of -. We get a positive answer to this question, as the next Proposition 4.12 states.

4.12. Proposition. Let X be a nonempty set. Let - be a representable total preorder
defined on X. Then there exists a positively weightable quasi-metric d : X×X → [0,+∞)

‖In this case the corresponding interval order or semiorder is said to be degenerate or non-
typical. An interval order or semiorder ≺ defined on a set X is said to be typical provided that
its a associated symmetric part - fails to be transitive.
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whose disymmetry function F is a bivariate numerical representation of the given total
preorder -.

Proof. Since - is representable, there exists a function u : X → R such that x - y ⇔
u(x) ≤ u(y). We may assume without loss of generality that u takes strictly positive
values: indeed, if h(t) = 3 + 2

π
arctan(t) for t ∈ R, we have that h is a strictly increasing

function whose range is (2, 4), and such that x - y ⇔ h(u(x)) ≤ h(u(y)), for every
x, y ∈ X, so that the composition h◦u is another utility function that represents the total
preorder -. Thus, already assuming that u : X → (0,+∞) is a strictly positive utility
representation for -, given x, y ∈ X we may define d(x, y) = 0 if x = y and d(x, y) = u(y)
otherwise. It is straightforward to see that d is a (T1) quasi-metric. Moreover, it is
positively weightable: just observe that d(x, y)+u(x) = d(y, x)+u(y) for every x, y ∈ X.
Finally, its disymmetry function F satisfies that F (x, y) = d(x, y)−d(y, x) = u(y)−u(x)
for every x, y ∈ X, so that x - y ⇔ u(x) ≤ u(y) ⇔ u(y) − u(x) ≥ 0 ⇔ F (x, y) ≥ 0.
Therefore F is a bivariate numerical representation for -. �

4.13. Remark. Notice that the quasi-metric d that appears in the statement of Propo-
sition 4.12 is not unique, in general. As a matter of fact, to get d we may use any strictly
positive utility function u that represents the total preorder -.

To summarize this Section 4, we may notice that in Corollary 4.5 we get a representable
total preorder from a weightable quasi-metric, whereas in Proposition 4.12 we retrieve
a positively weightable quasi-metric from a representable total preorder. By Theorem
3.5, in both results the disymmetry functions associated to the weightable quasi-metrics
involved satisfy Sincov’s functional equation.

To complete the panorama, we may wonder if it is also possible to retrieve a (posi-
tively) weightable quasi-metric directly from a bivariate function that satisfies Sincov’s
functional equation. We answer this question throughout the next Section 5.

5. Retrieving positively weightable quasi-metrics from functional
equations
The main questions to be analyzed throughout this Section 5 are the following:

i) Suppose that X is a nonempty set and D : X ×X → R is a bivariate function
that satisfies the 3-circuit invariance functional equation. Can we induce from
D, in a natural way, a positively weightable quasi-metric∗∗ on X?

ii) Suppose that F : X × X → R is a bivariate function that satisfies Sincov’s
functional equation. Can we induce from F a positively weightable quasi-metric
on X whose disymmetry function is F?

To study the former question, let X denote a nonempty set, and let D : X×X → R be
a bivariate function such that D(a, b)+D(b, c)+D(c, a) = D(a, c)+D(c, b)+D(b, a) holds
for every a, b, c ∈ X. Define F : X×X → R by declaring that F (x, y) = D(x, y)−D(y, x)
for every x, y ∈ X. We immediately realize that F satisfies Sincov’s functional equation
F (a, b) +F (b, c) = F (a, c), for every a, b, c ∈ X. Therefore, we pass to consider the latter
question, since its solution would immediately lead to a solution for the former one.

Next Lemma 5.1, Theorem 5.2 and their subsequent corollaries provide us with a
positive answer.

5.1. Lemma. Let X be a nonempty set. Let F : X×X → R be a bivariate function that
satisfies Sincov’s functional equation. Suppose, in addition, that there exists a strictly
positive function G : X → (0,+∞) such that F (x, y) = G(y) − G(x), for every x, y ∈

∗∗Notice that we are not imposing D to be the solution, not even to be a quasi-metric.
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X. Then there exists a positively weightable quasi-metric d : X × X → [0,+∞) whose
disymmetry fuction is F .

Proof. Given x, y ∈ X, we define d(x, y) = 0 if x = y and d(x, y) = G(y) otherwise.
Notice that both d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y hold by definition of d. To check
the triangle inequality, given x, y, z ∈ X we distinguish the following cases:

Case 1: x = y. In this case we have that 0 = d(x, y) ≤ d(x, z) + d(z, y) because,
by definition of d, we have that d(x, z) ≥ 0 and d(z, y) ≥ 0.
Case 2: x 6= y; y = z. In this case we have that G(y) = d(x, y) ≤ d(x, z) +
d(z, y) = d(x, y) + d(y, y) since d(y, y) = 0 and d(x, y) = G(y) by definition of d.
Case 3: x 6= y; x = z. In this case the proof runs as in Case 2.
Case 4: x 6= y; y 6= z. In this case we have that G(y) = d(x, y) ≤ G(y) +
d(x, z) = d(z, y) + d(x, z) = d(x, z) + d(z, y) since d(x, z) ≥ 0 and d(x, y) =
d(z, y) = G(y) by definition of d.

Therefore d is a quasi-metric on X.
It is straightforward to check that F is the disymmetry function associated to d, so

that G is a weighting function for d. Hence d is positively weightable. �

From Lemma 5.1, we finally reach the main result in this Section 5, namely Theorem
5.2, which is a characterization of real-valued bivariate functions that can be identified
to the disymmetry function of some positively weightable quasi-metric.

5.2. Theorem. Let X be a nonempty set. Let F : X ×X → R be a bivariate function
that satisfies Sincov’s functional equation. The following statements are equivalent:

i) For every a ∈ X, the trace function Fa : X → R defined by Fa(t) = F (a, t) for
every t ∈ X, is bounded by below (i.e.: there exists a constant A ∈ R such that
F (a, t) > A for every t ∈ X).

ii) There exists an element a ∈ X such that Fa is bounded by below.
iii) There exists a positively weightable quasi-metric d : X × X → [0,+∞) whose

disymmetry function is F .

Proof. The implication i)⇒ ii) is trivial.
To prove the fact ii) ⇒ iii), let A ∈ R be such that F (a, t) > A for every t ∈ X.

Given x, y ∈ X, we define the function w : X → R as w(t) = F (a, t) + |A| for every
t ∈ X. Notice that w(t) > 0 holds for every t ∈ X, since A + |A| ≥ 0. Moreover,
for every x, y ∈ X we have that F (x, y) = F (x, a) + F (a, y) = F (a, y) − F (a, x) =
(F (a, y) + |A|) − (F (a, x) + |A|) = w(y) − w(x), so that by Lemma 5.1 there exists a
positively weightable quasi-metric d whose disymmetry function is F .

To conclude, we prove the implication iii)⇒ i). To do so, suppose that d : X ×X →
[0,+∞) is a positively weightable quasi-metric whose disymmetry function is F . By
Remark 2.7, we have that F (x, y) = w(y)− w(x) for every x, y ∈ X, where w stands for
the weighting function associated to d. Fix any element a ∈ X. Now, given t ∈ X, we
have that F (a, t) = w(t)− w(a) > −w(a). In other words: Fa is bounded by below. �

5.3. Example. Accordingly to Theorem 5.2, it is now easy to find an example of a
nonempty set X and a function F : X ×X → R such that F satisfies Sincov’s functional
equation, but there is no positively weightable quasi-metric on X whose disymmetry
function is F . Consider for instance X = R and F (x, y) = x − y for every (x, y) ∈ R2.
As a matter of fact, we may notice that no trace of F is bounded by below.

5.4. Corollary. Let X be a finite nonempty set. Let F : X×X → R be a bivariate func-
tion that satisfies Sincov’s functional equation. Then there exists a positively weightable
quasi-metric d : X ×X → R whose disymmetry function is F .
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Proof. This is an immediate consequence of Theorem 5.2, because F is bounded since X
is finite. �

5.5. Corollary. Let X be a nonempty set, endowed with a topology τ for which X is
a compact set. Let F : X × X → R be a continuous†† bivariate function that satisfies
Sincov’s functional equation. Then there exists a positively weightable quasi-metric d :
X ×X → R whose disymmetry function is F .

Proof. Again, this is an immediate consequence of Theorem 5.2, because F is a continuous
real-valued function defined on a compact set, so it is bounded (see e.g. [41], p. 20). �

To finish this Section 5 we analyze the posibility of retrieving a weightable quasi-
metric (in this case, not necessarily a positively weightable one) from a bivariate function
satisfying Sincov’s functional equation. Unlike Theorem 5.2 and Example 5.3, the answer
is always positive, as next Theorem 5.6 proves.

5.6. Theorem. Let X be a nonempty set. Let F : X×X → R be a bivariate function that
satisfies Sincov’s functional equation. Then there exists a weightable (T1) quasi-metric
d : X ×X → [0,+∞) whose disymmetry function is F .

Proof. Since F satisfies Sincov’s functional equation, there exists a function G : X → R
such that F can be decomposed as F (x, y) = G(y)−G(x), for every x, y ∈ X.

Define d : X ×X → R as follows:
i) d(x, y) = 0 if x = y ∈ X.
ii) d(x, y) = 1 +G(y)−G(x) if x 6= y ∈ X are such that G(x) ≤ G(y).
iii) d(x, y) = 1 if x 6= y ∈ X are such that G(x) > G(y).

By definition, d(x, y) ≥ 0 and d(x, y) = 0⇔ x = y, for every x, y ∈ X.
Let us see now that d satisfies the triangle inequality. To see this, given x, y, z ∈ X

we consider the following cases:
Case 1: If there is at least a coincidence between x, y, z then d(x, z) ≤ d(x, y) +
d(y, z) trivially holds.
Case 2: If x 6= y; y 6= z; x 6= z and G(x) ≤ G(y) ≤ G(z) then we have that
d(x, z) = 1 +G(z)−G(x) < 2 +G(z)−G(x) = (1 +G(y)−G(x)) + (1 +G(z)−
G(y)) = d(x, y) + d(y, z).
Case 3: If x 6= y; y 6= z; x 6= z and G(x) ≤ G(z) < G(y) then we have that
d(x, z) = 1 + G(z) − G(x) < 1 + G(y) − G(x) < (1 + G(y) − G(x)) + 1 =
d(x, y) + d(y, z).
Case 4: If x 6= y; y 6= z; x 6= z and G(y) < G(x) ≤ G(z) then we have that
d(x, z) = 1 + G(z) − G(x) < 1 + G(z) − G(y) < 1 + (1 + G(z) − G(y)) =
d(x, y) + d(y, z).
Case 5: If x 6= y; y 6= z; x 6= z and G(y) ≤ G(z) < G(x) then we have that
d(x, z) = 1 < 1 + d(y, z) = d(x, y) + d(y, z).
Case 6: If x 6= y; y 6= z; x 6= z and G(z) < G(x) ≤ G(y) then we have that
d(x, z) = 1 < d(x, y) + 1 = d(x, y) + d(y, z).
Case 7: If x 6= y; y 6= z; x 6= z and G(z) < G(y) < G(x) then we have that
d(x, z) = 1 < 2 = 1 + 1 = d(x, y) + d(y, z).

Therefore d is a quasi-metric.
A final checking shows that d(x, y)−d(y, x) = G(y)−G(x) for every x, y ∈ X, so that

d is indeed weightable (T1).
�

††Here we consider that X ×X is endowed with the product topology τ × τ , whereas the real
line R is given the usual Euclidean topology.
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6. Final comments and some suggestions for further research
Weightable quasi-metrics are closely related to several functional equations stated for

real-valued bivariate functions on a nonempty set.
As shown in the main results stated in Section 4 and Section 5, there is a close rela-

tionship between the concepts of weightable quasi-metrics, representable total preorders
and solutions of Sincov’s functional equation. Each of these concepts gives rise to any of
the two other ones.

We leave as an open question the study of similar functional equations in the frame-
work of generalized metric spaces of any kind (see e.g. [39]), as, in particular, cone metric
spaces (see e.g. [1]), pseudo-metrics, quasi-pseudo metrics (see e.g. [19]), probabilistic
and statistical metric and quasi-metric spaces (see e.g. [27, 42, 36, 14]), and/or partial
metrics, as well as to extend some results arising in the classical crisp context to the
fuzzy setting (see e.g. [30]).
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