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Abstract

In this work, firstly based on the M.I.Vishik’s results and using meth-
ods of operator theory all solvable extensions of a minimal operator
generated by linear delay differential-operator expression of first order
in the Hilbert space of vector-functions in finite interval are described.
Later on, sharp formulas for the spectrums of these solvable extensions
have been found. Finally, the obtained results has been supported by
applications.
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1. Introduction
Delay or time-delay differential equations or compound systems as generalization of

an ordinary differential equations have been studied for at least 200 years. While some of
the early investigation had its origins in certain types of geometric problems and number
theory, much of the impetus for the development of the theory came from studies of
viscoelasticity, population dynamics and control theory. More recent work has involved
models from a wide variety of scientific fields, including nonlinear optics, economies, biol-
ogy and as well population dynamics, engineering, ecology, chemistry, circadian rhythms,
epidemiology, the respiratory system, tumor growth, neural networks.

Note that the fundamental theory of delay differential equations has been given in
many of books. The detail analysis of this theory can be found in monographs of A.
Ashyralyev and P.E. Sobolevskii [1], J.K. Hale and S.M.V. Lunel [2], O. Diekmann et
al.[3], L. Edelstein-Keshet [4], L.E. El’sgol’ts and S.B. Norkin [5], T. Erneux [6], H. Smith
[7] and etc.

One of the basis questions of this theory is to investigate the spectral properties of
the corresponding problems.

The spectral analysis for the some delay differential equations with large delay first or-
der with matrix coefficients has been investigated in work of M.Lichther, M.Wolfrum and
S.Yanchuk [8]. Some aspects of the spectral theory have been investigated by A.Politi,
G.Giacomelli, W.Huang, M.Lichther, M.Wolfrum and S.Yanchuk. In particular J.Mallet-
Paret and R.D.Nussbaum [9] have studied in detail the appearance of periodic solutions
for compound differential equation of first order with single delay in scalar and special
cases.

Since analytical computation of solutions, eigenvalues and corresponding eigenfunc-
tions problem is very theoretically and technically difficult, then here play significant role
method of numerical analysis. Numerically computing of solutions, eigenvalues and cor-
responding eigenfunctions of the considered delay differential equations have been done,
for example in works A. Ashyralyev with his group[10-12] and E. Jarlebring [13].

Recall that an operator S : D(S) ⊂ H → H in Hilbert space H is called solvable, if S
is one-to-one, SD(S) = H and S−1 ∈ L(H).

In this work, by using methods of operator theory the all solvable extensions of min-
imal operator generated by delay differential operator expression for first order in the
Hilbert space of vector functions at finite interval have been described in terms of bound-
ary values. In addition, in section 3 sharp formula for the spectrum of these extensions
has been given.Applications of obtained results to concrete models have been applied in
section 4.

2. Description of Solvable Extensions
In the Hilbert space L2(H, (0, 1)) of vector-functions consider a linear delay differential-

operator expression for first order in the form

(2.1) l(u) = u′(t) +A(t)u(t− τ),

where:
(1) H is a separable Hilbert space with inner product ( . , . )H and norm ‖ . ‖H ;
(2) operator-function A( . ) : [0, 1]→ L(H) is continuous on the uniformly operator
topology;
(3) 0< τ <1.

On the other hand here will be considered the following differential expression

(2.2) m(u) = u′(t),
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in the Hilbert space L2(H, (0, 1)) corresponding to (2.1). It is clear that formally adjoint
expression of (2.2) is of the form

(2.3) m+(v) = −v′(t),

Now let us define operator M ′0 on the dense in L2(H, (0, 1)) set of vector-functions D′0

D′0 :=
{
u(t) ∈ L2(H, (0, 1)) : u(t) =

n∑
k=1

ϕk(t)fk,

ϕk ∈ C∞0 (0, 1), fk ∈ H, k = 1, 2, . . . , n, n ∈ N
}

as M ′0u = m(u).
The closure of M ′0 in L2(H, (0, 1)) is the minimal operator generated by differential-

operator expression(2.2) and is denoted by M0.
In a similar way the minimal operatorM+

0 in L2(H, (0, 1)) corresponding to differential
expression (2.3) can be defined.

The adjoint operator of M+
0 (M0) in L2(H, (0, 1)) is called the maximal operator

generated by (2.2)((2.3)) and it is denoted by M(M+). Now here define a operator Sτ ,
0< τ < 1 in L2(H, (0, 1)) in form

Sτu(t) :=

{
u(t− τ), if τ < t < 1,

0, if 0 < t < τ.

From this it is obtained that

‖Sτu‖2L2(H,(0,1)) =

1∫
τ

(u(t− τ), u(t− τ))Hdt

=

1−τ∫
0

(u(x), u(x))Hdx

≤
1∫

0

‖u(x)‖2Hdx

= ‖u‖L2(H,(0,1))

for all u ∈ L2(H, (0, 1)).
Then ‖Sτ‖≤1, 0< τ <1. On the other words Sτ ∈ L(L2(H, (0, 1))) for any τ ∈ (0, 1).

In this situation the tensor product A with Sτ

Aτ (t) = A(t)⊗ Sτ , 0 < τ < 1

is a linear bounded operator in L2(H, (0, 1)).
Along of this work the following defined operators

L0 :=M0 +Aτ (t),

L0 :
o

W
1

2 (H, (0, 1)) ⊂ L2(H, (0, 1))→ L2(H, (0, 1))

and

L :=M +Aτ (t),

L :W 1
2 (H, (0, 1)) ⊂ L2(H, (0, 1))→ L2(H, (0, 1))

will be called the minimal and maximal operators corresponding to differential expression
(2.1) in L2(H, (0, 1)) respectively.
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Now let U(t, s), t, s ∈ [0, 1], be the family of evolution operators corresponding to the
homogeneous differential equation{

U ′t(t, s)f +Aτ (t)U(t, s)f = 0, t, s ∈ (0, 1)
U(s, s)f = f, f ∈ H

The operator U(t, s), t, s ∈ [0, 1] is a linear continuous boundedly invertible in H and

U−1(t, s) = U(s, t), s, t ∈ [0, 1].

(for more detail analysis of this concept see [14]).
Let us introduce the operator

Uz(t) := U(t, 0)z(t), U : L2(H, (0, 1))→ L2(H, (0, 1)).

In this case it is easy to see that for the differentiable vector-function z ∈ L2(H, (0, 1)),
z : [0, 1]→ H, is valid the following relation:

l(Uz) = (Uz)′(t) +A(t)(Uz)(t− τ) = U(z′(t)) + (U ′t +Aτ (t)U)z(t) = Um(z)

From this U−1lU(z) = m(z). Hence it is clear that if the L̃ is some extension of the
minimal operator L0, that is, L0 ⊂ L̃ ⊂ L, then

U−1L0U =M0, M0 ⊂ U−1L̃U = M̃ ⊂M, U−1LU =M.

For example, can be easily to prove the validity of last relation. It is known that

D(M) =W 1
2 (H, (0, 1)), D(M0) =

o

W
1

2 (H, (0, 1)).

If u ∈ D(M),then l(Uz) = Um(z) ∈ L2(H, (0, 1)), that is, Uu ∈ D(L). From last relation
M ⊂ U−1LU . Contrary, if a vector-function u ∈ D(L), then

m(U−1v) = U−1l(v) ∈ L2(H, (0, 1)),

that is, U−1v ∈ D(M). From last relation U−1L ⊂ MU , that is U−1LU ⊂ M . Hence
U−1LU =M .

The following assertions are true.

2.1. Theorem. KerL0 = {0} and R(L0) 6= L2(H, (0, 1)).

2.2. Theorem. Each solvable extension L̃ of the minimal operator L0 in L2(H, (0, 1))
is generated by the differential-operator expression (2.1) and boundary condition

(2.4) (K + E)u(0) = KU(0, 1)u(1),

where K ∈ L(H) and E is a identity operator in H. The operator K is determined
uniquely by the extension L̃, i.e L̃ = LK .

On the contrary, the restriction of the maximal operator L0 to the manifold of vector-
functions satisfy the condition (2.4) for some bounded operator K ∈ L(H) is a solvable
extension of the minimal operator L0 in the L2(H, (0, 1)).

Proof. Firstly, it is described all solvable extensions M̃ of the minimal operator M0 in
L2(H, (0, 1)) in terms of boundary values.

Consider the following so-called Cauchy extension Mc

Mcu = u′(t), Mc : D(Mc) = {u ∈W 1
2 (H, (0, 1)) : u(0) = 0} ⊂ L2(H, (0, 1))→ L2(H, (0, 1))

of the minimal operator M0. It is clear that Mc is a solvable extension of M0 and

M−1
c f(t) =

t∫
0

f(x)dx, f ∈ L2(H, (0, 1)),

M−1
c : L2(H, (0, 1))→ L2(H, (0, 1)).
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Now assume that M̃ is a solvable extension of the minimal operatorM0 in L2(H, (0, 1)).
In this case it is known that domain of M̃ can be written in direct sum in form

D(M̃) = D(M0)⊕ (M−1
c +K)V,

where V = KerM = H,K ∈ L(H) (see[15]). Therefore for each u(t) ∈ D(M̃) it is true

u(t) = u0(t) +M−1
c f +Kf, u0 ∈ D(M0), f ∈ H.

That is,

u(t) = u0(t) + tf +Kf, u0 ∈ D(M0), f ∈ H.

Hence

u(0) = Kf, u(1) = f +Kf = (K + E)f

and from these relations it is obtained that

(2.5) (K + E)u(0) = Ku(1).

On the other hand uniqueness of operator K ∈ L(H) it is clear from the work [15].
Therefore M̃ =MK . This completes of necessary part of this assertion.

On the contrary, if MK is a operator generated by differential expression (2.2) and
boundary condition (2.5), then MK is boundedly invertible and

M−1
K : L2(H, (0, 1))→ L2(H, (0, 1)),

M−1
K f(t) =

t∫
0

f(x)dx+K

1∫
0

f(x)dx, f ∈ L2(H, (0, 1)).

Consequently, all solvable extension of the minimal operator M0 in L2(H, (0, 1)) is
generated by differential expression (2.2) and boundary condition (2.5) with any linear
bounded operator K.

Now consider the general case. For the this in the L2(H, (0, 1)) introduce a operator
in form

U : L2(H, (0, 1))→ L2(H, (0, 1)), (Uz)(t) := U(t, 0)z(t), z ∈ L2(H, (0, 1)).

From the properties of family of evolution operators U(t, s), t, s ∈ [0, 1] imply that a
operator U is a linear bounded, boundedly invertible and

(U−1z)(t) = U(0, t)z(t).

On the other hand from the relations

U−1L0U =M0, U
−1L̃U = M̃, U−1LU =M

it is implies that a operator U is a one-to-one between of sets of solvable extensions of
minimal operators L0 and M0 in L2(H, (0, 1)).

Extension L̃ of the minimal operator L0 is solvable in L2(H, (0, 1)) if and only if the
operator M̃ = U−1L̃U is a extension of the minimal M0 in L2(H, (0, 1)). Then u ∈ D(L̃)
if and only if

(K + E)U(0, 0)u(0) = KU(0, 1)u(1),

that is,

(K + E)u(0) = KU(0, 1)u(1).

This proves the validity of the claims in theorem. �
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2.3. Remark. In general case A(t)Sτ 6= SτA(t) in L2(H, (0, 1)). Indeed, if

(Af)(t) = tf(t), f ∈ L2(H, (0, 1)), A : L2(0, 1)→ L2(0, 1),

then for 0 < τ < 1, f ∈L2(0, 1) we have

(ASτ )f(t) = A(Sτf(t)) = A(f(t− τ)) = tf(t− τ), 0 < t < 1

and

(SτA)f(t) = Sτ (Af(t)) = Sτ (tf(t)) = (t− τ)f(t− τ), 0 < t < 1.

2.4. Corollary. Assume that A(t) = A = const a.e. in (0, 1).
In this case all solvable extensions of minimal operator L0 are generated by delay

differential expression

l(u) = u′(t) +Au(t− τ), 0 < τ < 1

and boundary condition

(K + E)u(0) = K[u(1)− Au(1− τ)
1!

+
A2u(1− 2τ)

2!
+ ...]

= K

∞∑
n=0

(−1)n

n!
Anu(1− nτ), K ∈ L(H)

in the Hilbert L2(H, (0, 1)) and vice versa.

2.5. Remark. Since for any 0 < τ < 1 there exists n0 = n0(τ) ∈ N such that

0 ≤ 1− n0τ < 1 and 1− (n0 + 1)τ < 0.

Then
∞∑
n=0

(−1)n

n!
Anu(1− nτ) =

n0∑
n=0

(−1)n

n!
Anu(1− nτ).

2.6. Remark. All solvable extensions of minimal operator are generated by delay dif-
ferential expression

l(u) = u′(t) + u(t− τ), 0 < τ < 1

and boundary condition

(K + E)u(0) = K[u(1)− u(1− τ)
1!

+
u(1− 2τ)

1!
+ ...

+
(−1)nu(1− nτ)

n!
+ ...], K ∈ L(H),

in the space L2(H, (0, 1)) and vice versa.
In addition note that following boundary value problem

u′(t) = −u(t− τ), τ < t < 1, τ > 0, u(t) = 1, τ < t < 0

by changing the function u(t) with y(t) = u(t)− 1, τ < t < 1 can be reduced to problem

y′(t) = −y(t− τ)− 1, y(t) = 0, τ < t < 0.
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3. Spectrum of Solvable Extension
In this section will be investigated spectrum structure of solvable extensions of minimal

operator L0 in L2(H, (0, 1)).
Firstly, prove the following fact.

3.1. Theorem. If L̃ is a solvable extension of a minimal operator L0 and M̃ = U−1L̃U
corresponding for the solvable extension of a minimal operator M0, then for the spectrum
of these extensions is true σ(L̃)=σ(M̃) .

Proof. Let us consider a problem for the spectrum for a solvable extension LK of a
minimal operator L0 generated by delay differential-operator expression (2.1), that is,

LKu = λu+ f, λ ∈ C, f ∈ L2(H, (0, 1)).

From this it is obtained that

(LK − λE)u = f or (UMKU
−1 − λE)u = f

Hence

U(MK − λ)(U−1u) = f

the last equation explains the validity of the theorem. �

Now prove the following result for the spectrum of solvable extension.

3.2. Theorem. If LK a solvable extension of the minimal operator L0 in the space
L2(H, (0, 1)), then spectrum of LK has the form:

σ(LK) = {λ ∈ C : λ = ln |µ+ 1

µ
|+ i arg(

µ+ 1

µ
) + 2nπi;

µ ∈ σ(K) \ {0,−1}, n ∈ Z}.

Proof. Firstly, will be investigated the spectrum of the solvable extensionMK = U−1LKU
of the minimal operatorM0 in L2(H, (0, 1)). Consider the following problem for the spec-
trum, MKu = λu+ f, λ ∈ C, f ∈ L2(H, (0, 1)). Then

u′ = λu+ f, (K + E)u(0) = Ku(1), λ ∈ C, f ∈ L2(H, (0, 1)),K ∈ L(H).

It is clear that a general solution of a above differential equation in L2(H, (0, 1)) has the
form

uλ(t) = eλtf0 +

t∫
0

eλ(t−s)f(s)ds, f0 ∈ H.

Therefore from the boundary condition (K + E)uλ(0) = Kuλ(1) it is obtained that

(E +K(1− eλ))f0 = K

1∫
0

eλ(1−s)f(s)ds.

For the λm = 2mπi, m ∈ N from the last relation it is established that

f
(m)
0 = K

1∫
0

eλm(1−s)f(s)ds,m ∈ N.

Consequently, in this case the resolvent operator of MK is in form

Rλm(MK)f(t) = Keλmt
1∫

0

eλm(1−s)f(s)ds+

t∫
0

eλm(t−s)f(s)ds, f ∈ L2(H, (0, 1)),m ∈ Z.
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On the other hand it is clear that Rλm(MK) ∈ L((L2(H, (0, 1)) , m ∈ Z.
If λ 6= 2mπi,m ∈ Z, λ ∈ C, then from boundary condition we have

(K − 1

eλ − 1
E)f0 =

1

1− eλK
1∫

0

eλ(1−s)f(s)ds, f0 ∈ H, f ∈ (L2(H, (0, 1)).

Therefore, for λ ∈ σ(MK) if and only if µ = 1
eλ−1

∈ σ(K).

In this case since eλ = µ+1
µ
, µ ∈ σ(K), then λn = ln|µ+1

µ
|+ iarg(µ+1

µ
) + 2nπi, n ∈ Z.

Later on, using the last relation and Theorem 3.1 it is proved the validity of claim in
theorem. �

3.3. Corollary. Let LK be a solvable extension of minimal operator L0 in L2(H, (0, 1)).

(1) If σ(K) ⊂ {0, 1}, then σ(LK) = ∅;
(2) If σ(K) \ {0, 1} 6= ∅, then σ(LK) is infinite.

Now will be proved one result on the asymptotically behaviour of eigenvalues of solv-
able extensions in special case.

3.4. Theorem. If K ∈ L(H),K 6= 0, σ(K) = σp(K), there exist α, β > 0 such that for
any µ ∈ σp(K) is true

|µ| ≥ α > 0 and |µ+ 1| ≥ β > 0,

then λn(MK) ∼ 2nπ, as n→∞.

Proof. In this case for n ≥ 1

|λn(MK)|2 = ln2|µ+ 1

µ
|+ |arg(µ+ 1

µ
) + 2nπ|2.

Since for any µ∈σp(K)

|µ+ 1

µ
| ≥ β

|µ| ≥
β

‖K‖ > 0, |µ+ 1

µ
| ≤ 1 +

1

|µ| ≤ 1 +
1

α
,

then

ln
β

‖K‖ ≤ ln|
µ+ 1

µ
| ≤ ln(1 + 1

α
).

Therefore for any µ∈σp(K) is true

min{|ln( β

‖K‖ )|, |ln(1 +
1

α
)|} ≤ |ln|µ+ 1

µ
|| ≤ max{|ln( β

‖K‖ )|, |ln(1 +
1

α
)|}.

On the other hand for any n ∈Z

(2nπ)2 ≤ |arg(µ+ 1

µ
) + 2nπ|2 ≤ (2(n+ 1)π)2.

Consequently, for any n ∈N

(2nπ)2
(
1 +

1

4n2π2
min2{|ln( β

‖K‖ )|, |ln(1 +
1

α
)|}
)

≤ |λn(MK)|2 ≤ (2nπ)2
(
(
2(n+ 1)π

2nπ
)2 +

1

(2nπ)2
max2{|ln( β

‖K‖ )|, |ln(1 +
1

α
)|}
)

This means that λn(MK) ∼ 2nπ, as n→∞. �
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4. Applications
4.1. Example. Assume that

H = C, (H, ‖ . ‖H) = (C, | . |), A( . ) = a( . ) ∈ C(R)

and consider the following delay differential equation in from

u′(t) = a(t)u(t− τ), 0 < τ < 1

with history function u(t) = 0,−τ < t < 0 in the Hilbert space L2(0, 1).
Then the all solvable extension Lk of minimal operator L0 is generated by delay

differential expression

l(u) = u′(t)− a(t)u(t− τ)

and boundary condition

(k + 1)u(0) = kexp(

1∫
0

a(t)dt)u(1), k ∈ C

in L2(0, 1). In addition, spectrum of Lk is in form

σ(Lk) = {λ ∈ C : λ = ln |k + 1

k
|+ i arg(

k + 1

k
) + 2nπi, n ∈ Z}.

4.2. Example. Let us

(H, ‖ . ‖H) = (C, | . |), a( . ), b( . ) ∈ C(R)

and consider the delay differential expression in form l(u) = u′(t)+a(t)u(t)+b(t)u(t−τ),
0 < t < 1, 0 < τ < 1 with history function u(t) = 0, −τ < t < 0. If change of function
u( . ) by y( . )

y(t) = λ(t)u(t), λ(t) = exp(

t∫
0

a(x)dx),

then

l(λ−1y) = y′(t) + c(t)y(t− τ),

where

c(t) =
λ(t)b(t)

λ(t− τ) = b(t)exp(

t∫
t−τ

a(x)dx).

In this case all solvable extension Pk of minimal operator P0 is generated by delay
differential expression

P (y) = y′(t) + c(t)y(t− τ)

and boundary condition

(k + 1)y(0) = kexp(−
1∫

0

c(t)dt)y(1), k ∈ C

and vice versa.
Consequently, all solvable extension Pk of the minimal operator P0 is generated by

delay differential expression

l(u) = u′(t) + a(t)u(t) + b(t)u(t− τ)
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and boundary condition

(k + 1)u(0) = kexp(−
1∫

0

b(t)exp(

t∫
t−τ

a(x)dx)dt)exp(

1∫
0

a(x)dx)u(1), k ∈ C

and vice versa.
Moreover, spectrum of solvable extension Lk is in form

σ(Lk) = {λ ∈ C : λ = ln |k + 1

k
|+ i arg(

k + 1

k
) + 2nπi, n ∈ Z}, k ∈ C.
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