Sharp Wilker and Huygens type inequalities for trigonometric and hyperbolic functions

Yun Hua* ${ }^{* \dagger}$

Abstract

In the article, some sharp Huygens and Wilker type inequalities involving trigonometric and hyperbolic functions are established.

Keywords: Huygens inequality, Wilker inequality, Trigonometric function, Hyperbolic function.
2000 AMS Classification: 26D05, 26D15, 33B10.

Received: 16.12.2013 Accepted: 14.05.2015 Doi: 10.15672/HJMS. 20164513099

1. Introduction

The trigonometric and hyperbolic inequalities have been in recent years in the focus of many researchers. For many results and a long list of references we quote the papers $[6,10,24]$, where many further references may be found. The following inequality

$$
\begin{equation*}
\left(\frac{\sin x}{x}\right)^{2}+\frac{\tan x}{x}>2 . \quad 0<x<\frac{\pi}{2} \tag{1.1}
\end{equation*}
$$

is due to Wilker [13]. It has attracted attention of several researchers(see, e. g.,[4],[7], [8], [9],[14],[15],[21]). A hyperbolic counterpart of Wilker's inequality

$$
\begin{equation*}
\left(\frac{\sinh x}{x}\right)^{2}+\frac{\tanh x}{x}>2 \tag{1.2}
\end{equation*}
$$

$(x \neq 0)$ has been established by L. Zhu[16].
In [12], it was proved that

$$
\begin{equation*}
2+\frac{8}{45} x^{3} \tan x>\left(\frac{\sin x}{x}\right)^{2}+\frac{\tan x}{x}>2+\left(\frac{2}{\pi}\right)^{4} x^{3} \tan x, \tag{1.3}
\end{equation*}
$$

for $0<x<\frac{\pi}{2}$. The constants $\frac{8}{45}$ and $\left(\frac{2}{\pi}\right)^{4}$ in the inequality (1.3) are the best possible.

[^0]The famous Huygens inequality[11] for the sine and tangent functions states that for $x \in\left(0, \frac{\pi}{2}\right)$
(1.4) $2 \sin x+\tan x>3 x$.

The hyperbolic counterpart of (1.4) was established in [6] as follows: For $x>0$
(1.5) $2 \sinh x+\tanh x>3 x$.

The inequalities (1.4) and (1.5) were respectively refined in [6, Theorem 2.6] as

$$
\begin{equation*}
2 \frac{\sin x}{x}+\frac{\tan x}{x}>2 \frac{x}{\sin x}+\frac{x}{\tan x}>3, \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \frac{\sinh x}{x}+\frac{\tanh x}{x}>2 \frac{x}{\sinh x}+\frac{x}{\tanh x}>3, \quad x \neq 0 . \tag{1.7}
\end{equation*}
$$

In the most recent paper [5], the inequalities (1.6),(1.7) and (1.1) were respectively further refined as

$$
\begin{equation*}
2 \frac{\sin x}{x}+\frac{\tan x}{x}>\frac{\sin x}{x}+2 \frac{\tan (x / 2)}{x / 2}>2 \frac{x}{\sin x}+\frac{x}{\tan x}>3 . \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \frac{\sinh x}{x}+\frac{\tanh x}{x}>\frac{\sinh x}{x}+2 \frac{\tanh (x / 2)}{x / 2}>2 \frac{x}{\sinh x}+\frac{x}{\tanh x}>3 . \tag{1.9}
\end{equation*}
$$

and

$$
\begin{align*}
& \left(\frac{\sin x}{x}\right)^{2}+\frac{\tan x}{x}>\left(\frac{x}{\sin x}\right)^{2}+\frac{x}{\tan x}>\frac{\sin x}{x}+\left(\frac{\tan (x / 2)}{x / 2}\right)^{2} \\
> & \frac{x}{\sin x}+\left(\frac{x / 2}{\tan (x / 2)}\right)^{2}>2 . \tag{1.10}
\end{align*}
$$

The hyperbolic counterparts of the last two inequalities in (1.10) were also given in [5] as follows:

$$
\begin{equation*}
\frac{\sinh x}{x}+\left[\frac{\tanh (x / 2)}{x / 2}\right]^{2}>\frac{x}{\sinh x}+\left[\frac{x / 2}{\tanh (x / 2)}\right]^{2}>2 \tag{1.11}
\end{equation*}
$$

Inspired by (1.3), Jiang et al. [19] first proved

$$
\begin{equation*}
3+\frac{1}{60} x^{3} \sin x<2 \frac{x}{\sin x}+\frac{x}{\tan x}<3+\frac{8 \pi-24}{\pi^{3}} x^{3} \sin x . \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
2+\frac{17}{720} x^{3} \sin x<\frac{x}{\sin x}+\left(\frac{\frac{x}{2}}{\tan \frac{x}{2}}\right)^{2}<2+\frac{\pi^{2}+8 \pi-32}{2 \pi^{3}} x^{3} \sin x \tag{1.13}
\end{equation*}
$$

holds for $0<|x|<\frac{\pi}{2}$. Furthermore the constants $\frac{1}{60}, \frac{8 \pi-24}{\pi^{3}}$ in (1.12) and the constants $\frac{17}{720}, \frac{\pi^{2}+8 \pi-32}{2 \pi^{3}}$ in (1.13) are the best possible.

Recently, Chen and Sándor [20] proved that

$$
3+\frac{3}{20} x^{3} \tan x<2\left(\frac{\sin x}{x}\right)+\frac{\tan x}{x}<3+\left(\frac{2}{\pi}\right)^{4} x^{3} \tan x
$$

for $0<|x|<\frac{\pi}{2}$. The constants $\frac{3}{20}$ and $\left(\frac{2}{\pi}\right)^{4}$ are the best possible.
This paper is a continuation of our work [25] and is organized as follows. In Section 2, we give some lemmas and preliminary results. In Section 3, we prove some new sharp Wilker- and Huygens-type inequalities for trigonometric and hyperbolic functions.

2. some Lemmas

In order to establish our main result we need several lemmas, which we present in this section.
2.1. Lemma. The Bernoulli numbers $B_{2 n}$ for $n \in \mathbb{N}$ have the property
(2.1) $\quad(-1)^{n-1} B_{2 n}=\left|B_{2 n}\right|$,
where the Bernoulli numbers B_{i} for $i \geq 0$ are defined by

$$
\begin{equation*}
\frac{x}{e^{x}-1}=\sum_{i=0}^{\infty} \frac{B_{i}}{i!} x^{i}=1-\frac{x}{2}+\sum_{i=1}^{\infty} B_{2 i} \frac{x^{2 i}}{(2 i)!}, \quad|x|<2 \pi . \tag{2.2}
\end{equation*}
$$

Proof. In [2, p. 16 and p. 56], it is listed that for $q \geq 1$

$$
\begin{equation*}
\zeta(2 q)=(-1)^{q-1} \frac{(2 \pi)^{2 q}}{(2 q)!} \frac{B_{2 q}}{2} \tag{2.3}
\end{equation*}
$$

where ζ is the Riemann zeta function defined by

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

In [22, p.18, theorem 3.4], the following formula was given
(2.4) $\quad \sum_{n=1}^{\infty} \frac{1}{n^{2 q}}=\frac{2^{2 q-1} \pi^{2 q}\left|B_{2 q}\right|}{(2 q)!}$.

From (2.3) and (2.4), the formula (2.1) follows.
2.2. Lemma. $[17,18]$ Let $B_{2 n}$ be the even-indexed Bernoulli numbers. Then

$$
\frac{2(2 n)!}{(2 \pi)^{2 n}} \frac{1}{1-2^{-2 n}}<\left|B_{2 n}\right|<\frac{2(2 n)!}{(2 \pi)^{2 n}} \frac{1}{1-2^{1-2 n}}, n=1,2,3, \cdots .
$$

2.3. Lemma. For $0<|x|<\pi$, we have

$$
\begin{equation*}
\frac{x}{\sin x}=1+\sum_{n=1}^{\infty} \frac{2\left(2^{2 n-1}-1\right)\left|B_{2 n}\right|}{(2 n)!} x^{2 n} \tag{2.5}
\end{equation*}
$$

Proof. This is an easy consequence of combining the equality

$$
\begin{equation*}
\frac{1}{\sin x}=\csc x=\frac{1}{x}+\sum_{n=1}^{\infty} \frac{(-1)^{n-1} 2\left(2^{2 n-1}-1\right) B_{2 n}}{(2 n)!} x^{2 n-1} \tag{2.6}
\end{equation*}
$$

see [1, p. 75, 4.3.68], with Lemma 2.1.
2.4. Lemma ([1, p. 75, 4.3.70]). For $0<|x|<\pi$,

$$
\begin{equation*}
\cot x=\frac{1}{x}-\sum_{n=1}^{\infty} \frac{2^{2 n}\left|B_{2 n}\right|}{(2 n)!} x^{2 n-1} \tag{2.7}
\end{equation*}
$$

The following Lemma 2.5 and Lemma 2.6 can be found in [25].
2.5. Lemma. For $0<|x|<\pi$,

$$
\begin{equation*}
\frac{1}{\sin ^{2} x}=\frac{1}{x^{2}}+\sum_{n=1}^{\infty} \frac{2^{2 n}(2 n-1)\left|B_{2 n}\right|}{(2 n)!} x^{2(n-1)} . \tag{2.8}
\end{equation*}
$$

2.6. Lemma. For $0<|x|<\pi$,

$$
\begin{equation*}
\frac{\cos x}{\sin ^{2} x}=\frac{1}{x^{2}}-\sum_{n=1}^{\infty} \frac{2(2 n-1)\left(2^{2 n-1}-1\right)\left|B_{2 n}\right|}{(2 n)!} x^{2(n-1)} \tag{2.9}
\end{equation*}
$$

2.7. Lemma. For $0<|x|<\pi$,

$$
\begin{align*}
\frac{1}{\sin ^{3} x}= & \frac{1}{x^{3}}+\frac{1}{2} \sum_{n=2}^{\infty} \frac{2^{2 n}-2}{(2 n)!}\left|B_{2 n}\right|(2 n-1)(2 n-2) x^{2 n-3} \\
& +\frac{1}{2 x}+\frac{1}{2} \sum_{n=1}^{\infty} \frac{2^{2 n}-2}{(2 n)!}\left|B_{2 n}\right| x^{2 n-1}, \tag{2.10}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\cos x}{\sin ^{3} x}=\frac{1}{x^{3}}-\sum_{n=2}^{\infty} \frac{(2 n-1)(n-1) 2^{2 n}\left|B_{2 n}\right|}{(2 n)!} x^{2 n-3} \tag{2.11}
\end{equation*}
$$

Proof. Combining

$$
\frac{1}{\sin ^{3} x}=\frac{1}{2 \sin x}-\frac{1}{2}\left(\frac{\cos x}{\sin ^{2} x}\right)^{\prime}
$$

with Lemma 2.6, the identity (2.6), and Lemma 2.1 gives (2.10).
The equality (2.11) follows from combination of

$$
\frac{\cos x}{\sin ^{3} x}=-\frac{1}{2}\left(\frac{1}{\sin ^{2} x}\right)^{\prime}
$$

with Lemma 2.5.
2.8. Lemma. $[23,3,15]$ Let a_{n} and $b_{n}(n=0,1,2, \cdots)$ be real numbers, and let the power series $A(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$ and $B(t)=\sum_{n=0}^{\infty} b_{n} t^{n}$ be convergent for $|t|<R$. If $b_{n}>0$ for $n=0,1,2, \cdots$, and if $\frac{a_{n}}{b_{n}}$ is strictly increasing (or decreasing) for $n=0,1,2, \cdots$, then the function $\frac{A(t)}{B(t)}$ is strictly increasing (or decreasing) on $(0, R)$.

3. Main results

Now we are in a position to state and prove our main results.

3.1. Theorem. For $0<|x|<\frac{\pi}{2}$, we have

$$
\begin{equation*}
2+\frac{23}{720} x^{3} \sin x<\frac{\sin x}{x}+\left(\frac{\tan \frac{x}{2}}{\frac{x}{2}}\right)^{2}<2+\frac{128-16 \pi^{2}+16 \pi}{\pi^{5}} x^{3} \sin x \tag{3.1}
\end{equation*}
$$

The constants $\frac{23}{720}$ and $\frac{128-16 \pi^{2}+16 \pi}{\pi^{5}}$ in (3.1) are the best possible.
Proof. Let

$$
\begin{aligned}
f(x) & =\frac{\frac{\sin x}{x}+\left(\frac{\tan \frac{x}{2}}{\frac{x}{2}}\right)^{2}-2}{x^{3} \sin x} \\
& =\frac{x \sin ^{3} x-8 \cos x-4 \sin ^{2} x-2 x^{2} \sin ^{2} x+8}{x^{5} \sin ^{3} x} \\
& =\frac{1}{x^{5}}\left(x+\frac{8}{\sin ^{3} x}-\frac{8 \cos x}{\sin ^{3} x}-\frac{4}{\sin x}-\frac{2 x^{2}}{\sin x}\right)
\end{aligned}
$$

for $x \in\left(0, \frac{\pi}{2}\right)$. By virtue of (2.10), (2.11), and (2.6), we have

$$
\begin{aligned}
& f(x)=\frac{1}{x^{5}}\left[x+\frac{8}{x^{3}}+\sum_{n=2}^{\infty} \frac{4(2 n-1)(2 n-2)\left(2^{2 n}-2\right)}{(2 n)!}\left|B_{2 n}\right| x^{2 n-3}\right. \\
& +\frac{4}{x}+\sum_{n=1}^{\infty} \frac{4\left(2^{2 n}-2\right)}{(2 n)!}\left|B_{2 n}\right| x^{2 n-1} \\
& -\frac{8}{x^{3}}+\sum_{n=2}^{\infty} \frac{8 \cdot 2^{2 n}(2 n-1)(n-1)}{(2 n)!}\left|B_{2 n}\right| x^{2 n-3} \\
& -\frac{4}{x}-\sum_{n=1}^{\infty} \frac{4\left(2^{2 n}-2\right)}{(2 n)!}\left|B_{2 n}\right| x^{2 n-1} \\
& \left.-2 x-\sum_{n=1}^{\infty} \frac{2\left(2^{2 n}-2\right)}{(2 n)!}\left|B_{2 n}\right| x^{2 n+1}\right] \\
& =\frac{1}{x^{5}}\left[-x+\sum_{n=2}^{\infty} \frac{16(2 n-1)(n-1)\left(2^{2 n}-1\right)}{(2 n)!}\left|B_{2 n}\right| x^{2 n-3}-\sum_{n=1}^{\infty} \frac{2\left(2^{2 n}-2\right)}{(2 n)!}\left|B_{2 n}\right| x^{2 n+1}\right] \\
& =\frac{1}{x^{5}}\left[\sum_{n=3}^{\infty} \frac{16(2 n-1)(n-1)\left(2^{2 n}-1\right)}{(2 n)!}\left|B_{2 n}\right| x^{2 n-3}-\sum_{n=1}^{\infty} \frac{2\left(2^{2 n}-2\right)}{(2 n)!}\left|B_{2 n}\right| x^{2 n+1}\right] \\
& =\frac{1}{x^{5}}\left[\sum_{n=1}^{\infty} \frac{16(2 n+3)(n+1)\left(2^{2 n+4}-1\right)}{(2 n+4)!}\left|B_{2 n+4}\right| x^{2 n+1}-\sum_{n=1}^{\infty} \frac{2\left(2^{2 n}-2\right)}{(2 n)!}\left|B_{2 n}\right| x^{2 n+1}\right] \\
& =\sum_{n=2}^{\infty}\left[\frac{16(2 n+3)(n+1)\left(2^{2 n+4}-1\right)}{(2 n+4)!}\left|B_{2 n+4}\right|-\frac{2\left(2^{2 n}-2\right)}{(2 n)!}\left|B_{2 n}\right|\right] x^{2 n-4} .
\end{aligned}
$$

Let $a_{n}=\frac{16(2 n+3)(n+1)\left(2^{2 n+4}-1\right)}{(2 n+4)!}\left|B_{2 n+4}\right|-\frac{2\left(2^{2 n}-2\right)}{(2 n)!}\left|B_{2 n}\right|$ for $n \geq 2$.
By a simple computation, we have $a_{2}=\frac{23}{720}$.
Furthermore, when $n \geq 3$, From Lemma 2.2 one can get

$$
\begin{aligned}
a_{n}= & \frac{16(2 n+3)(n+1)\left(2^{2 n+4}-1\right)}{(2 n+4)!}\left|B_{2 n+4}\right|-\frac{2\left(2^{2 n}-2\right)}{(2 n)!}\left|B_{2 n}\right| \\
> & \frac{16(2 n+3)(n+1)\left(2^{2 n+4}-1\right)}{(2 n+4)!} \cdot \frac{2(2 n+4)!}{(2 \pi)^{2 n+4}} \frac{1}{1-2^{-2 n-4}} \\
& -\frac{2\left(2^{2 n}-2\right)}{(2 n)!} \cdot \frac{2(2 n)!}{(2 \pi)^{2 n}} \frac{1}{1-2^{1-2 n}} \\
= & \frac{4}{(\pi)^{2 n}}\left[\frac{8(2 n+3)(n+1)}{\pi^{4}}-1\right]>0 .
\end{aligned}
$$

So the function $f(x)$ is strictly increasing on $\left(0, \frac{\pi}{2}\right)$. Moreover, it is easy to obtain

$$
\lim _{x \rightarrow 0^{+}} f(x)=a_{2}=\frac{23}{720} \quad \text { and } \quad \lim _{x \rightarrow(\pi / 2)^{-}} f(x)=\frac{128-16 \pi^{2}+16 \pi}{\pi^{5}}
$$

The proof of Theorem 3.1 is complete.
3.2. Remark. Since $f(x)$ is an even function we conclude that Theorem 3.1 holds for all x which satisfy $0<|x|<\frac{\pi}{2}$.
3.3. Theorem. For $x \neq 0$, we have

$$
\begin{equation*}
3+\frac{1}{40} x^{3} \tanh x<\frac{\sinh x}{x}+2\left(\frac{\tanh \frac{x}{2}}{\frac{x}{2}}\right)<3+\frac{1}{40} x^{3} \sinh x . \tag{3.2}
\end{equation*}
$$

The constant $\frac{1}{40}$ is the best possible.
Proof. Without loss of generality, we assume that $x>0$.
We firstly prove the first inequality of (3.2).
Consider the function $F(x)$ defined by

$$
\begin{aligned}
F(x) & =\frac{\frac{\sinh x}{x}+2 \frac{\tanh \frac{x}{2}}{\frac{x}{2}}-3}{x^{3} \tanh x} \\
& =\frac{\cosh 3 x-17 \cosh x+8 \cosh 2 x-6 x \sinh 2 x+8}{2 x^{4}(\cosh 2 x-1)}
\end{aligned}
$$

and let

$$
f(x)=\cosh 3 x-17 \cosh x+8 \cosh 2 x-6 x \sinh 2 x+8 \quad \text { and } \quad g(x)=2 x^{4}(\cosh 2 x-1)
$$

From the power series expansions

$$
\begin{equation*}
\sinh x=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!} \quad \text { and } \quad \cosh x=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!} \tag{3.3}
\end{equation*}
$$

it follows that

$$
\begin{aligned}
f(x) & =\cosh 3 x-17 \cosh x+8 \cosh 2 x-6 x \sinh 2 x+8 \\
& =\sum_{n=0}^{\infty} \frac{3^{2 n} x^{2 n}}{(2 n)!}-\sum_{n=0}^{\infty} \frac{17 x^{2 n}}{(2 n)!}+\sum_{n=0}^{\infty} \frac{2^{2 n+3} x^{2 n}}{(2 n)!}-\sum_{n=0}^{\infty} \frac{6 \cdot 2^{2 n+1} x^{2 n+2}}{(2 n+1)!}+8 \\
& =\sum_{n=0}^{\infty} \frac{\left(3^{2 n}+2^{2 n+3}-17\right) x^{2 n}}{(2 n)!}-\sum_{n=0}^{\infty} \frac{6 \cdot 2^{2 n+1} x^{2 n+2}}{(2 n+1)!}+8 \\
& =\sum_{n=1}^{\infty} \frac{\left(3^{2 n}+2^{2 n+3}-17\right) x^{2 n}}{(2 n)!}-\sum_{n=1}^{\infty} \frac{6 n 2^{2 n} x^{2 n}}{(2 n)!} \\
& =\sum_{n=3}^{\infty} \frac{3^{2 n}+2^{2 n+3}-17-6 n 2^{2 n}}{(2 n)!} x^{2 n} \\
& \triangleq \sum_{n=3}^{\infty} a_{n} x^{2 n}
\end{aligned}
$$

and

$$
\begin{aligned}
g(x) & =2 x^{4}(\cosh 2 x-1) \\
& =\sum_{n=1}^{\infty} \frac{2^{2 n+1} x^{2 n+4}}{(2 n)!} \\
& =\sum_{n=3}^{\infty} \frac{4 n(n-1)(2 n-3)(2 n-1) 2^{2 n-3} x^{2 n}}{(2 n)!} \\
& \triangleq \sum_{n=3}^{\infty} b_{n} x^{2 n}
\end{aligned}
$$

It is easy to see that the quotient

$$
c_{n}=\frac{a_{n}}{b_{n}}=\frac{3^{2 n}+2^{2 n+3}-17-6 n 2^{2 n}}{4 n(n-1)(2 n-3)(2 n-1) 2^{2 n-3}}
$$

satisfies $c_{3}=\frac{1}{40}, c_{4}=\frac{51}{1120}, c_{5}=\frac{507}{8960}$ and

$$
c_{n+1}-c_{n}=\frac{f_{1}+f_{2}+f_{3}}{2 n(2 n+3)\left(4 n^{2}-1\right)\left(n^{2}-1\right)},(n \geq 6)
$$

where

$$
\begin{aligned}
& f_{1}=\left(\frac{9}{4}\right)^{n}\left(10 n^{2}-57 n+23\right)=\left(\frac{9}{4}\right)^{n}(10 n(n-6)+3(n-6)+41)>0, \\
& f_{2}=\frac{1}{4^{n}}\left(102 n^{2}+298 n+17\right)>0, \\
& f_{3}=144 n^{2}-184 n-8=144 n(n-6)+680(n-6)+4072>0 .
\end{aligned}
$$

for $n \geq 6$. This means that the sequence c_{n} is increasing. By Lemma 2.8 , the function $F(x)$ is increasing on $(0, \infty)$. Moreover, it is not difficult to obtain $\lim _{x \rightarrow 0^{+}} F(x)=c_{3}=$ $\frac{1}{40}$. Therefore, the first inequality in (3.2) holds.

Finally, we prove the second inequality of (3.2).
Define a function $G(x)$ by

$$
\begin{aligned}
G(x) & =\frac{\frac{\sinh x}{x}+2 \frac{\tanh \frac{x}{2}}{\frac{x}{2}}-3}{x^{3} \sinh x} \\
& =\frac{\cosh 2 x+8 \cosh x-6 x \sinh x-9}{x^{4}(\cosh 2 x-1)} .
\end{aligned}
$$

and let

$$
f(x)=\cosh 2 x+8 \cosh x-6 x \sinh x-9 \quad \text { and } \quad g(x)=x^{4}(\cosh 2 x-1) .
$$

By using (3.3), it follows that

$$
\begin{aligned}
f(x) & =\cosh 2 x+8 \cosh x-6 x \sinh x-9 \\
& =\sum_{n=0}^{\infty} \frac{2^{2 n} x^{2 n}}{(2 n)!}+\sum_{n=0}^{\infty} \frac{8 x^{2 n}}{(2 n)!}-\sum_{n=0}^{\infty} \frac{6 x^{2 n+2}}{(2 n+1)!}-9 \\
& =\sum_{n=1}^{\infty} \frac{\left(2^{2 n}+8\right) x^{2 n}}{(2 n)!}-\sum_{n=0}^{\infty} \frac{6 x^{2 n+2}}{(2 n+1)!} \\
& =\sum_{n=1}^{\infty} \frac{\left(2^{2 n}+8\right) x^{2 n}}{(2 n)!}-\sum_{n=1}^{\infty} \frac{12 n x^{2 n}}{(2 n)!} \\
& =\sum_{n=3}^{\infty} \frac{\left(2^{2 n}+8-12 n\right) x^{2 n}}{(2 n)!} \\
& \triangleq \sum_{n=3}^{\infty} a_{n} x^{2 n}
\end{aligned}
$$

and

$$
\begin{aligned}
g(x) & =x^{4}(\cosh 2 x-1) \\
& =\sum_{n=1}^{\infty} \frac{2^{2 n} x^{2 n+4}}{(2 n)!} \\
& =\sum_{n=3}^{\infty} \frac{4 n(n-1)(2 n-1)(2 n-3) 2^{2 n-4} x^{2 n}}{(2 n)!} \\
& \triangleq \sum_{n=3}^{\infty} b_{n} x^{2 n} .
\end{aligned}
$$

Let

$$
c_{n}=\frac{a_{n}}{b_{n}}=\frac{2^{2 n}-12 n+8}{4 n(n-1)(2 n-1)(2 n-3) 2^{2 n-4}}
$$

satisfies $c_{3}=\frac{1}{40}$. Furthermore, when $n \geq 3$, by a simple computation, we have

$$
c_{n+1}-c_{n}=-4 \frac{(8 n-2) 4^{n}-\left(18 n^{3}+33 n^{2}-16 n-11\right)}{n(2 n-3)\left(4 n^{2}-1\right)\left(n^{2}-1\right) 4^{n}},
$$

for $n \geq 3$.
Since

$$
\begin{aligned}
& (8 n-2) 4^{n}-\left(18 n^{3}+33 n^{2}-16 n-11\right) \\
& >(8 n-2) 4 n^{2}-\left(18 n^{3}+33 n^{2}-16 n-11\right) \\
& =14 n^{3}-41 n^{2}+16 n+11 \\
& =14 n(n-3)^{2}+43 n(n-3)+19(n-3)+68>0 .
\end{aligned}
$$

This means that the sequence c_{n} is decreasing. By Lemma 2.8, the function $G(x)$ is decreasing on $(0, \infty)$. Moreover, it is not difficult to obtain $\lim _{x \rightarrow 0^{+}} G(x)=c_{3}=\frac{1}{40}$.

This completes the proof of Theorem 3.3 .
3.4. Remark. Since $F(x)$ and $G(x)$ both are even functions, we conclude that Theorem 3.3 holds for all $x \neq 0$.
3.5. Theorem. For $x \neq 0$,

$$
\begin{equation*}
2+\frac{23}{720} x^{3} \tanh x<\frac{\sinh x}{x}+\left[\frac{\tanh (x / 2)}{x / 2}\right]^{2}<2+\frac{23}{720} x^{3} \sinh x . \tag{3.4}
\end{equation*}
$$

The both constants $\frac{23}{720}$ in (3.4) are the best possible.

Proof. The left-hand side of inequality in (3.4) has been proved in [19], so we only need to prove the right-hand side of the inequality in (3.4).

Without loss of generality, we assume that $x>0$.
Consider the function $H(x)$ defined by

$$
\begin{aligned}
H(x) & =\frac{\frac{\sinh x}{x}+\left[\frac{\tanh (x / 2)}{x / 2}\right]^{2}-2}{x^{3} \sinh x} \\
& =\frac{x \sinh x \cosh x+x \sinh x+4 \cosh x-2 x^{2} \cosh x-2 x^{2}-4}{x^{5} \sinh x(1+\cosh x)}
\end{aligned}
$$

and let

$$
f(x)=x \sinh x \cosh x+x \sinh x+4 \cosh x-2 x^{2} \cosh x-2 x^{2}-4
$$

and

$$
g(x)=x^{5} \sinh x(1+\cosh x) .
$$

By the power series expansions in (3.3), we obtain

$$
\begin{aligned}
f(x) & =x \sinh x \cosh x+x \sinh x+4 \cosh x-2 x^{2} \cosh x-2 x^{2}-4 \\
& =\sum_{n=0}^{\infty} \frac{2^{2 n}}{(2 n+1)!} x^{2 n+2}+\sum_{n=0}^{\infty} \frac{x^{2 n+2}}{(2 n)!}+\sum_{n=0}^{\infty} \frac{4 x^{2 n}}{(2 n)!}-\sum_{n=0}^{\infty} \frac{2 x^{2 n+2}}{(2 n)!}-2 x^{2}-4 \\
& =\sum_{n=0}^{\infty} \frac{2^{2 n}+1-2(2 n+1)}{(2 n+1)!} x^{2 n+2}+\sum_{n=2}^{\infty} \frac{4}{(2 n)!} x^{2 n} \\
& =\sum_{n=1}^{\infty} \frac{2^{2 n-2}+1-2(2 n-1)}{(2 n-1)!} x^{2 n}+\sum_{n=2}^{\infty} \frac{4}{(2 n)!} x^{2 n} \\
& =\sum_{n=3}^{\infty} \frac{2 n\left(2^{2 n-2}-4 n+3\right)+4}{(2 n)!} x^{2 n} \\
& \triangleq \sum_{n=3}^{\infty} a_{n} x^{2 n}
\end{aligned}
$$

and

$$
\begin{aligned}
g(x) & =x^{5}\left[\frac{1}{2} \sinh (2 x)+\sinh x\right] \\
& =\sum_{n=0}^{\infty} \frac{1+2^{2 n}}{(2 n+1)!} x^{2 n+6}=\sum_{n=3}^{\infty} \frac{1+2^{2 n-6}}{(2 n-5)!} x^{2 n} \\
& =\sum_{n=3}^{\infty} \frac{\left(1+2^{2 n-6}\right)(2 n-4)(2 n-3)(2 n-2)(2 n-1) 2 n}{(2 n)!} x^{2 n} \\
& \triangleq \sum_{n=3}^{\infty} b_{n} x^{2 n} .
\end{aligned}
$$

Let

$$
c_{n}=\frac{a_{n}}{b_{n}}=\frac{2 n\left(2^{2 n-2}-4 n+3\right)+4}{\left(1+2^{2 n-6}\right)(2 n-4)(2 n-3)(2 n-2)(2 n-1) 2 n}
$$

satisfies

$$
c_{3}=\frac{23}{720}=0.031 \ldots, \quad c_{4}=\frac{17}{336}=0.01226 \ldots
$$

Furthermore, when $n \geq 4$, by a simple computation, we have

$$
c_{n+1}-c_{n}=-4 \frac{f_{1}(n)+f_{2}(n)+f_{3}(n)}{n\left(16+4^{n}\right)\left(64+4^{n}\right)(n-2)(2 n-3)\left(4 n^{2}-1\right)\left(n^{2}-1\right)},
$$

where

$$
\begin{aligned}
& f_{1}(n)=16^{n}\left(8 n^{2}+2 n-6\right) \\
& f_{2}(n)=4^{n}\left(-24 n^{4}-138 n^{3}+391 n^{2}+153 n-382\right) \\
& f_{3}(n)=-1536 n^{3}-256 n^{2}+2944 n-256
\end{aligned}
$$

Since $n \geq 4$, one can easily check that $4^{n} \geq 16 n^{2}$, this implies that

$$
\begin{aligned}
f_{1}(n)+f_{2}(n) & >4^{n} 16 n^{2}\left(8 n^{2}+2 n-6\right)+4^{n}\left(-24 n^{4}-138 n^{3}+391 n^{2}+153 n-382\right) \\
& =4^{n}\left(104 n^{4}-106 n^{3}+295 n^{2}+153 n-382\right)
\end{aligned}
$$

By a simple computation, one has

$$
\begin{aligned}
& 104 n^{4}-106 n^{3}+295 n^{2}+153 n-382 \\
& =104 n(n-4)^{3}+1142 n(n-4)^{2}+4439 n(n-4)+6293(n-4)+24790>0 .
\end{aligned}
$$

On the other hand, when $n \geq 4$, one has $4^{n}>16$, Hence

$$
\begin{aligned}
& f_{1}(n)+f_{2}(n)+f_{3}(n) \\
& >4^{n}\left(104 n^{4}-106 n^{3}+295 n^{2}+153 n-382\right)-1536 n^{3}-256 n^{2}+2944 n-256 \\
& >16\left(104 n^{4}-106 n^{3}+295 n^{2}+153 n-382\right)-1536 n^{3}-256 n^{2}+2944 n-256 \\
& =1664 n^{4}-3232 n^{3}+4464 n^{2}+5392 n-6368 \\
& =1664 n(n-4)^{3}+16736 n(n-4)^{2}+58480 n(n-4)+78032(n-4)+305760>0 .
\end{aligned}
$$

This means that the sequence c_{n} is decreasing. By Lemma 2.8, the function $H(x)$ is decreasing on $(0, \infty)$. Moreover, it is not difficult to obtain $\lim _{x \rightarrow 0^{+}} H(x)=c_{3}=\frac{23}{720}$.
3.6. Remark. Since $H(x)$ is an even function, we conclude that Theorem 3.5 holds for all $x \neq 0$.

ACKNOWLEDGEMENTS The author is deeply indebted to the editor and the referee for useful suggestions and valuable comments.

References

[1] M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 4th printing, with corrections, Washington, 1965.
[2] G. E. Andrews, R. Askey, and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications 71, Cambridge University Press, Cambridge, 1999.
[3] H. Alzer and S.-L. Qiu, Monotonicity theorems and inequalities for complete elliptic integrals, J. Comput. Appl. Math., 172 (2004), no. 2, 289-312.
[4] C. Mortici, The natural approach of Wilker-Cusa-Huygens inequalities, Math. Inequal. Appl., 14 (2011), no. 3, 535-541.
[5] E. Neuman, On Wilker and Huygnes type inequalities, Math. Inequal. Appl., 15 (2) (2012), 271-279.
[6] E. Neuman and J. Sándor, On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities, Math. Inequal. Appl. 13 (2010), no. 4, 715-723.
[7] E. Neuman, One- and two-sided ineualities for Jacobian elliptic functions and related results, Integral Transform. Spec. Funct. 21, 6 (2010), 399-407.
[8] E. Neuman, Inequalities for weighted sums of powers and their applications, Math. Inequal. Appl., 15 (4) (2012), 995-1005
[9] E. Neuman, Refinements and generalizations of certain inequalities involving trigonometric and hyperbolic functions, Adv. Inequal. Appl., 1 (1) (2012), 1-11.
[10] J. Sándor, Trigonometric and hyperbolic inequalities, Available online at http: //arxiv. org/abs/1105. 0859.
[11] J. Sándor and M. Bencze, On Huygens' trigonometric inequality, RGMIA Res. Rep. Coll. 8 (2005), no. 3, Art. 14.
[12] J. S. Sumner, A. A. Jagers, M. Vowe, and J. Anglesio, Inequalities involving trigonometric functions, Amer. Math. Monthly., 98 (1991), no. 3, 264-267.
[13] J. B. Wilker, Problem E 3306, Amer. Math. Monthly., 96 (1989), no. 1, 55.
[14] S.-H. Wu and H. M. Srivastava, A further refinement of Wilker's inequality, Integral Transforms Spec. Funct., 19 (2008), no. 10, 757-765.
[15] L. Zhu, Some new Wilker-type inequalities for circular and hyperbolic functions, Abstr. Appl. Anal., 2009 (2009), Article ID 485842, 9 pages.
[16] L. Zhu, On Wilker-type inequalities, Math. Inequal. Appl., 10, 4 (2007), 727-731.
[17] C. Daniello, On Some Inequalities for the Bernoulli Numbers, Rend. Circ. Mat. Palermo., 43(1994), 329-332.
[18] H. Alzer, Sharp bounds for the Bernoulli Numbers, Arch. Math., 74 (2000), 207-211.
[19] W. -D. Jiang, Q. -M. Luo and F. Qi, Refinements and Sharpening of some Huygens and Wilker type inequalities. Turkish Journal of Analysis and Number Theory, 2(2014), no. 4, 134-139.
[20] C. -P. Chen and J. Sándor, Inequality chains for Wilker, Huygens and Lazarević type inequalities. J. Math. Inequal., 8(2014), no. 1, 55-67.
[21] B. -N. Guo, B. -M. Qiao, F. Qi and W. Li, On new proofs of Wilker inequalities involving trigonometric functions, Math. Inequal. Appl., 6, 1 (2003), 19-22.
[22] W. Scharlau, H. Opolka, from Fermat to Minkowski: Lectures on the Theory of Numbers and Its Historical Development, Springer-Verlag New York Inc., 1985.
[23] M. Biernacki, J. Krzyz, On the monotonicity of certain functionals in the theory of analytic functions, Ann. Univ. Mariae. Curie-Sklodowska 2 (1955), 134-145.
[24] F. Qi, D.-W. Niu, and B.-N. Guo, Refinements, generalizations, and applications of Jordan's inequality and related problems, J. Inequal. Appl. 2009 (2009), Article ID 271923, 52 pages;
[25] Y. Hua, Refinements and sharpness of some new Huygens type inequalities, J. Math. Inequal., 6(2012), no. 3, 493-500.

[^0]: *Department of Information Engineering, Weihai Vocational College, Weihai City 264210, ShanDong province, P. R. CHINA., Email: xxgcxhy@163.com
 ${ }^{\dagger}$ Corresponding Author.

