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Suborbital graphs for the group Γ2
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Abstract
In this paper, we investigate suborbital graphs formed by the action of
Γ2 which is the group generated by the second powers of the elements
of the modular group Γ on Q̂. Firstly, conditions for being an edge,
self-paired and paired graphs are provided, then we give necessary and
sufficient conditions for the suborbital graphs to contain a circuit and
to be a forest. Finally, we examine the connectivity of the subgraph
Fu,N and show that it is connected if and only if N ≤ 2.
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1. Introduction
Let PSL(2,R) denote the group of all linear fractional transformations

T : z → az + b

cz + d
,where a, b, c and d are real and ad− bc = 1.

In terms of matrix representation, the elements of PSL(2,R) correspond to the matrices

±
(
a b
c d

)
; a, b, c, d ∈ R and ad− bc = 1.

This is the automorphism group of the upper half plane H := {z ∈ C : Im(z) > 0} .
The modular group Γ=PSL(2,Z), is the subgroup of PSL(2,R) such that a, b, c and d

are integers. It is generated by the matrices

U =

(
0 −1
1 0

)
; V =

(
0 −1
1 1

)
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with defining relationships U2 = V 3 = I, where I is the identity matrix. Γ is a Fuchsian
group of signature (0; 2, 3,∞), so it is isomorphic to a free product C2 ∗ C3.

Define Γm as the subgroup of Γ generated by the mth powers of all elements of Γ.
Especially, Γ2 and Γ3 have been studied extensively by Newman [13,14,15]. It turns out
that,

Γ2 =

{(
a b
c d

)
∈ Γ : ab+ bc+ cd ≡ 0 (mod 2)

}
,

by Rankin [Eq. 1.7.1, 16]. From the equation ab + bc + cd ≡ 0 (mod 2), we see that at
least one of the integers a, b, c, d must be even. Suppose first that a = 2a0. Then using
the determinant, we have that b and c are odd. So, d must be odd as well. Hence, we

get the elements of Γ2 as the matrices
(

2a b
c d

)
. Similarly, supposing d = 2d0, we can

get the elements of the form
(
a b
c 2d

)
. Lastly, if a or d is not even, then both b and

c will be even. To sum up, Γ2 has three types of elements(
2a b
c d

)
,

(
a 2b
2c d

)
,

(
a b
c 2d

)
where b, c and d of the first, a and d of the second and a, b, c of the third matrix are odd.

1.1. Theorem. [13] The group Γ2 is the free product of two cyclic groups of order 3,
and

|Γ : Γ2| = 2 , Γ = Γ2 +

(
0 −1
1 0

)
Γ2.

The elements of Γ2 may be characterized by the requirement that the sum of the exponents

of
(

0 −1
1 0

)
be divisible by 2.

The idea of a suborbital graph has been used mainly by finite group theorists. In
[7], Jones, Singerman and Wicks showed that this idea is also useful in the study of the
modular group, where they proved that the well-known Farey Graph is an example of a
suborbital graph. Furthermore, they proved the following result:

Theorem A. The suborbital graph Gu,n of Γ contains directed triangles if and only
if u2 ± u+ 1 ≡ 0 (mod n).

Morever they posed the conjecture: Gu,n is a forest if and only if it contains no
triangles, that is, if and only if u2 ± u + 1 6≡ 0 (mod n). Akbas proved in [2] that this
conjecture is true. By similar arguments, we concern with suborbital graphs of Picard
group P, which is the subgroup of PSL(2,C) with entries coming from Z[i] in [3]. Since
Z[i] is a unique factorization domain with finitely many units, our expectation was to
find similar formulas. Consequently, theorem A was improved as

Theorem B. The suborbital graph Gu,N of P contains directed triangles if and only
if ε2u2 ∓ εu± 1 ≡ 0 (mod N).

In this study, we will continue to investigate the combinatorial properties of these
graphs for the group Γ2. It is an important subgroup of Γ since all the groups Γm can
be expressed in the terms of Γ,Γ2,Γ3. The purpose of this paper is to characterize all
circuits in the suborbital graph and connectedness for Γ2. As it can be seen from Section
3, we show that the main difference is in connectedness of related graphs.
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2. The action of Γ2 on Q̂
Every element of Q̂ can be represented as a reduced fraction x

y
with x, y ∈ Z and

(x, y) = 1. This representation is not unique, because x
y

= −x
−y . We represent ∞ as

1
0

= −1
0
. The action of the matrix

(
a b
c d

)
on x

y
is(

a b
c d

)
:
x

y
−→ ax+ by

cx+ dy
.

Hence, the actions of a matrix on x
y
and on −x−y are identical. If the determinant of the

matrix
(
a b
c d

)
is 1 and (x, y) = 1, then (ax+ by, cx+ dy) = 1.

2.1. Transitive Action.

2.1. Lemma. (i) The action of Γ2 on Q̂ is transitive.
(ii) The stabilizer of a point is an infinite cyclic group.

Proof. (i) Here we only prove the case that any element of the form a
2b

of Q̂ is sent ∞
by an element of Γ2. The rest are similar. Let a

2b
∈ Q̂, (a, 2b) = 1. There exist integers

x0 and y0 such that ay0 − 2bx0 = 1 (known as Bezout’s identity [8]). Hence, we have

that T :=

(
a x0
2b y0

)
∈ Γ. All solutions of the equation ay − 2bx = 1 are x = x0 + an

, y = y0 + 2bn for n ∈ Z. If x0 is odd, x would be even by taking n-odd. So, x0 can be
chosen as an even number. Hence, T ∈ Γ2 and T (∞) = a

2b
means that a

2b
is in the orbit

of ∞.
(ii) By (i), since the stabilizers of any two points in Q̂ are conjugate in Γ2, it is

sufficient to consider the stabilizer Γ2
∞ of ∞. It is clear that Γ2

∞ =

〈(
1 2
0 1

)〉
.

We remark that Lemma 2.1 (i) can be proven by using the signature of Γ2 as well.
There is a homomorphism θ : Γ −→ C2 = {e, α} defined by θ(U) = α, and θ(V ) = e. The
kernel is Γ2. By the permutation theorem [19], Γ2 has signature (0; 3, 3,∞). It means
that there is only one orbit, so the action is transitive.

2.2. Imprimitive Action. We now discuss the imprimitivity of the action of Γ2 on Q̂.
For this, let (G,Ω) be a transitive permutation group, consisting of a group G acting on
a set Ω transitively. An equivalence relation ≈ on Ω is called G-invariant if, whenever
α, β ∈ Ω satisfy α ≈ β, then g(α) ≈ g(β) for all g ∈ G. The equivalence classes are called
blocks.

We call (G,Ω) imprimitive if Ω admits some G-invariant equivalence relation different
from

(i) the identity relation, α ≈ β if and only if α = β;

(ii) the universal relation, α ≈ β for all α, β ∈ Ω.

Otherwise, (G,Ω) is called primitive. These two relations are supposed to be trivial
relations.

2.2. Lemma. [4] Let (G,Ω) be a transitive permutation group. (G,Ω) is primitive if
and only if Gα, the stabilizer of α ∈ Ω, is a maximal subgroup of G for each α ∈ Ω.

From the above lemma we see that whenever, for some α, Gα � H � G, then Ω admits
some G-invariant equivalence relation other than the trivial one and the universal one.
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Because of the transitivity, every element of Ω has the form g(α) for some g ∈ G. Thus
one of the non-trivial G-invariant equivalence relations on Ω by H is given as follows:

g(α) ≈ g′(α) if and only if g′ ∈ gH.

The number of blocks ( equivalence classes ) is the index |G : H| and the block containing
α is just the orbit H(α).

Let N ∈ N and let Γ2
0(N) be defined by

Γ2
0(N) :=

{(
a b
c d

)
∈ Γ2 : c ≡ 0 (mod N)

}
.

Then Γ2
0(N) is a subgroup of Γ2. It is clear that Γ2

∞ ≤ Γ2
0(N) ≤ Γ2 for N ∈ N and

Γ2
∞ � Γ2

0(N) � Γ2 for N > 1.

2.3. Lemma. |Γ0(N) : Γ2
0(N)| = 2. In fact,

Γ0(N) =


Γ2
0(N) ∪

(
1 0
N 1

)
Γ2
0(N), N is odd

Γ2
0(N) ∪

(
N + 1 −1
N 1

)
Γ2
0(N), N is even

Proof. First, we suppose that N is even. Let’s show that Γ2
0(N)∪(

N + 1 −1
N 1

)
Γ2
0(N) = Γ0(N). We have that T :=

(
a b
cN d

)
∈ Γ0(N) with ad −

bcN = 1. Here, a and d are odd. If b is even, T would be an element of Γ2
0(N). We

suppose that b is odd. Hence, it can be written as T =

(
N + 1 −1
N 1

)(
x y
cN z

)
.

Then, we have that
(

1 1
−N N + 1

)(
a b
cN d

)
=

(
x y
cN z

)
. Let’s say that(

a+ cN b+ d
−aN + cN(N + 1) −bN + dN(N + 1)

)
︸ ︷︷ ︸

A

=

(
x y
cN z

)
.

As b+ d is even, A ∈ Γ2
0(N).

Now, let N be odd. In this case, assume that b and c are even in T . Then a
and d are odd. Hence, T is an element of Γ2

0(N). Moreover, it can be written as

T =

(
1 0
N 1

)(
x y
cN z

)
. As above, let’s say that

(
a b

(c− a)N d− bN

)
︸ ︷︷ ︸

B

=

(
x y
cN z

)
. Since d − bN is even, B ∈ Γ2

0(N). In the case: b-even and c-odd, it is

clear that B ∈ Γ2
0(N). If a and d are even in the equation ad − bcN = 1, B ∈ Γ2

0(N)
again. Finally if a is odd and d is even (or vice versa), the result is the same. Conse-
quently, we obtain that |Γ0(N) : Γ2

0(N)| = 2.

Therefore, from the above constructed equivalence relation “≈", we get Γ2-invariant
equivalence relation on Q̂ by Γ2

0(N). It is clear that, by Lemma 2.3, Γ2 acts imprimitively
on Q̂.

Let v = r
s
and w = x

y
be elements of Q̂. Because of the transitive action, we have

that v = g1(∞) and w = g2(∞) for some elements g1, g2 ∈ Γ2 of the form
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g1 :=

(
r ∗
s ∗

)
, g2 :=

(
x ∗
y ∗

)
.

From the relation
v ≈ w if and only if g−1

1 g2 ∈ Γ2
0(N),

we get
v ≈ w if and only if ry − sx ≡ 0 (mod N).

By our general discussion of imprimitivity, the number of blocks under ≈ is given by
Ψ(N) =

∣∣Γ2 : Γ2
0(N)

∣∣. So the block of ∞ is obtained as

[∞] :=

{
x

y
∈ Q̂ | y ≡ 0 (mod N)

}
.

2.4. Lemma. Ψ(N) = N
∏
p|N

(
1 +

1

p

)
where the product is over the distinct primes p

dividing N .

Proof. To calculate Ψ(N) we use two decomposition of the index
∣∣Γ : Γ2

0(N)
∣∣ as the

following

|Γ : Γ2||Γ2 : Γ2
0(N)| = |Γ : Γ0(N)||Γ0(N) : Γ2

0(N)|.

Here, |Γ : Γ2| = 2 and |Γ : Γ0(N)| = N
∏
p|N

(
1 + 1

p

)
are well-known by [13,16] and

[16,17] respectively. We prove that the index of |Γ0(N) : Γ2
0(N)| is equal to 2 in Lemma

2.3. Writing these values in above equation, the result is obvious.

3. Suborbital Graphs for Γ2 on Q̂
In[18], Sims introduced the idea of the suborbital graphs of a permutation group G act-

ing on a set ∆ , these are graphs with vertex-set ∆, on which G induces automorphisms.
We summarise Sims’theory as follows:

Let (G,∆) be transitive permutation group. Then G acts on ∆ × ∆ by g(α, β) =
(g(α), g(β))(g ∈ G,α, β ∈ ∆). The orbits of this action are called suborbitals of G. The
orbit containing (α, β) is denoted by O(α, β). From O(α, β) we can form a suborbital
graph G(α, β) : its vertices are the elements of ∆, and there is a directed edge from γ to δ
if (γ, δ) ∈ O(α, β). A directed edge from γ to δ is denoted by γ → δ. If (γ, δ) ∈ O(α, β),
then we will say that there exists an edge γ → δ in G(α, β). In this paper our calculation
concerns Γ2, so we can draw this edge as a hyperbolic geodesic in the upper half-plane
H, that is, as euclidean semi-circles or half-lines perpendicular to the real line.

The orbit O(β, α) is also a suborbital graph and it is either equal to or disjoint from
O(α, β). In the latter case G(β, α) is just G(α, β) with the arrows reversed and we call,
in this case, G(α, β) and G(β, α) paired suborbital graphs. In the former case G(α, β) =
G(β, α) and the graph consists of pairs of oppositely directed edges; it is convenient to
replace each such pair by a single undirected edge, so that we have an undirected graph
which we call self paired.

3.1. Definition. By a directed circuit in a graph we mean a sequence v1, v2, . . . , vm of
different vertices such that v1 −→ v2 −→ . . . −→ vm −→ v1, where m ≥ 3.

If m = 3, then the circuit, directed or not, is called a triangle.
If m = 2, then we will say the configuration v1 −→ v2 −→ v1 is self paired.
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A graph which contains no circuit is called a forest.

The above ideas are also described in a paper by Neumann [12] and in books by
Tsuzuku [20] and by Biggs and White [4], the emphasis being on applications to finite
groups. The reader is refereed to [1, 2, 3, 6, 7, 9, 10, 11] for some relevant previous work
on suborbital graphs.

If α = β, then O(α, α) = {(γ, γ) | γ ∈ ∆} is the diagonal of ∆×∆. The corresponding
suborbital graph G(α, α), called the trivial suborbital graph, is self-paired: it consists
of a loop based at each vertex γ ∈ ∆. We shall be mainly interested in the remaining
non-trivial suborbital graphs.

Since Γ2 acts transitively on Q̂, each suborbital contains a pair (∞, v) for some v ∈ Q̂;
writing v = u

N
, (u,N) = 1 and N ≥ 0. We denote this suborbital by Ou,N and the

corresponding suborbital graph by Gu,N .

3.1. Graph Gu,N . If v = ∞, we would have the simplest suborbital graph, namely
G1,0 = G−1,0. Therefore, we can take v ∈ Q. Let v′ = u′

N′ ∈ Q. The necessary and
sufficient condition for O(∞, v) = O(∞, v′) is that v and v′ are in the same orbit of Γ2

∞.
Since Γ2

∞ is generated by z : v → v + 2, then z
(
u
N

)
= u+2N

N
= u′

N′ . Therefore, we have
that N = N ′ and u ≡ u′ (mod 2N). Hence, Gu,N = Gu′,N′ if and only if N = N ′

and u ≡ u′ (mod 2N). Consequently, for a fixed N there are 2ϕ(N) distinct suborbital
graphs Gu,N where ϕ(N) is Euler’s phi function.

3.2. Theorem. r
s
→ x

y
∈ Gu,N if and only if

(i) If r is even, then x ≡ ±ur (mod N), y ≡ ±us (mod N), y 6≡ ±us (mod 2N)
and ry − sx = ∓N .

(ii) If s is even, then x ≡ ±ur (mod 2N), y ≡ ±us (mod N) and ry − sx = ∓N .
(iii) If r and s are odd, then x ≡ ±ur (mod N), y ≡ ±us (mod 2N) and ry − sx =

∓N .

Proof. (i) Let r be even. By the transitivity of Γ2, without loss of generality, we assume
that r

s
< x

y
where all letters are positive integers. Thus, we have that ry− sx < 0. Since

r
s
→ x

y
∈ Gu,N , there exist some T =

(
a b
c d

)
∈ Γ2 such that T

(
1
0
, u
N

)
=
(
r
s
, x
y

)
.

As ry − sx < 0, the multiplication of
(
a b
c d

)(
1 u
0 N

)
is equal to

(
−r x
−s y

)
or(

r −x
s −y

)
. If the first case is valid, we have that a = −r, c = −s, au + bN = x and

cu + dN = y. That is, x ≡ −ur (mod N) and y ≡ −us (mod N). Since r is even, then
a is also even. To have T ∈ Γ2, d must be odd. From −us + dN = y, we have that
y 6≡ ±us (mod 2N).

(ii) Suppose s is even. In a similar way, we see that b and c must be even because

T
(
1
0

)
= −r
−s = a

c
. As in (i), we may assume that

(
a b
c d

)(
1 u
0 N

)
=

(
−r x
−s y

)
.

Hence, we have that a = −r, c = −s, au+bN = x, cu+dN = y and ry−sx = −N . That
is, −ur + bN = x and −us+ dN = y. Since b is even, we have that x ≡ −ur (mod 2N)
and y ≡ −us (mod N).

(iii) Let r and s be odd. With similar argument, it can be seen that d must be
even. From the same matrix equation in (ii), we obtain that x ≡ −ur (mod N) and
y ≡ −us (mod 2N).
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In the opposite direction, we shall prove (i) for minus sign. Suppose that r is even,
x ≡ −ur (mod N), y ≡ −us (mod N), y 6≡ −us (mod 2N) and ry − sx = −N . In
this case, there exist integers b, d such that x = −ur − bN , y = −us − dN . So, it is

clear that
(
−r −b
−s −d

)
∈ Γ2 which means r

s
→ x

y
∈ Gu,N . Because −N = ry − sx =

r(−us− dN)− s(−ur − bN). This implies −rd+ sb = 1. As r is even, d must be even.
Otherwise, it contradicts our hypothesis. With similar argument, we obtain the elements

of Γ2 which are
(
−r 2b
−s d

)
and

(
−r −b
−s −2d

)
for (ii) and (iii) respectively.

3.3. Theorem. All suborbital graphs for Γ2 on Q̂ are paired.

Proof. Because of the transitivity of Γ2, it is sufficient to show that G
(
∞, u

N

)
6=

G
(
u
N
,∞
)
. It means that there is no T ∈ Γ2 which sends the pair

(
∞, u

N

)
to the pair(

u
N
,∞
)
. On the contrary, assume that T (∞) = u

N
and T

(
u
N

)
= ∞. By comparing the

determinants, we have that(
a b
c d

)(
1 u
0 N

)
=

(
−u 1
−N 0

)
or
(
a b
c d

)(
1 u
0 N

)
=

(
u −1
N 0

)
.

In the first case, we obtain a = −u, c = −N , au + bN = 1 and cu + dN = 0. That

is, d = u and u2 = −1 + bN . Taking T =

(
−u b
−N u

)
we see that the only case for

T to be an element of Γ2 is that N and b must be even. Since u2 = −1 + bN , then
u2 ≡ −1 (mod bN). As N and b are even, u2 ≡ −1 (mod 4) which has no solution. For

the second case, taking T =

(
u b
N −u

)
, similar contradiction is obtained.

3.4. Corollary. There are no self-paired suborbital graphs for Γ2 on Q̂.

In section 2 we introduced, for each integer N , a Γ2-invariant equivalence relation ≈
N

on Q̂, with r
s
≈
N

x
y
if and only if ry − sx ≡ 0 (mod N). If r

s
→ x

y
in Gu,N , then Theorem

3.2 implies that ry− sx = ±N , so r
s
≈
N

x
y
. Thus, each connected component of Gu,N lies

in a single block for ≈
N
, of which there are Ψ(N), so we have:

3.5. Corollary. The graph Gu,N is a disjoint union of Ψ(N) subgraphs.

3.2. Subgraph Fu,N . We represent the subgraph of Gu,N whose vertices form the block
[∞] = {x/y ∈ Q̂ | y ≡ 0 (mod N)} by Fu,N .

3.6. Corollary. The graph Gu,N consists of Ψ(N) disjoint copies of Fu,N .

Proof. The vertices of each subgraph form a single block with respect to the Γ2-invariant
equivalence relation ≈

N
defined by ry− sx ≡ 0 (mod N). Therefore, if x1 → x2 is an edge

in the subgraph Fu,N , T (x1)→ T (x2) is also an edge in any other subgraph with T ∈ Γ2

because of the transitivity of Γ2 on Q̂.
Now, Theorem 3.2 immediately gives:

3.7. Theorem. r
s
→ x

y
∈ Fu,N if and only if

(i) If r is even, then x ≡ ±ur (mod N), y ≡ ±us (mod N), y 6≡ ±us (mod 2N)
and ry − sx = ∓N .

(ii) If s is even, then x ≡ ±ur (mod 2N), y ≡ ±us (mod N) and ry − sx = ∓N .
(iii) If r and s are odd, then x ≡ ±ur (mod N), y ≡ ±us (mod 2N) and ry − sx =

∓N .
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3.8. Theorem. Γ2
0(N) permutes the vertices and the edges of Fu,N transitively.

Proof. Let v, w be any vertices of Fu,N . Since Γ2 acts on Q̂ transitively, there exist

T ∈ Γ2 such that T (v) = w. Taking T =

(
a b
c d

)
, v = k1

l1N
and w = k2

l2N
we see that

N |c. It means that Γ2
0(N) permutes the vertices of Fu,N .

Let x1
y1N

e1−→ b1 and x2
y2N

e2−→ b2 be any edges of Fu,N . We can give following diagram:(
1
0
, u
N

) T2−→
(
x2
y2N

, b2
)

↓T1 ↗T2◦T−1
1(

x1
y1N

, b1
)

By this representation, we have T1 =

(
x1 ∗
y1N ∗

)
and T2 =

(
x2 ∗
y2N ∗

)
. Since

T2 ◦T−1
1 has the form

(
∗ ∗
kN ∗

)
for some integer k, then T := T2 ◦T−1

1 ∈ Γ2
0(N). It is

clear that T
(
x1
y1N

)
= x2

y2N
and T (b1) = b2. Since T is an element of a group of hyperbolic

isometries of H, geodesics are sent to geodesics under its action. So, T transform the
edges e1 to e2. Consequently, Γ2

0(N) permutes the edges of Fu,N .

3.9. Lemma. There is an isomorphism Fu,N −→ F−u,N given by v −→ −v.

Proof. It is clear that v −→ −v is one-to-one and onto. Let’s show that the structure
is preserved. Here, it means that if a → b ∈ Fu,N , then −a → −b ∈ F−u,N . Suppose
that r

s
→ x

y
∈ Fu,N and r is even. By Theorem 3.7(i), taking r

s
< x

y
, we have that

x ≡ −ur (mod N), y ≡ −us (mod N), y 6≡ −us (mod 2N) and ry − sx = −N .
Since r

s
< x

y
, then −r

s
> −x

y
. Taking −x ≡ (−u)(−r) (mod N), y ≡ (−u)s (mod N),

y 6≡ (−u)s (mod 2N) and −ry + sx = N , we have that −r
s
→ −x

y
∈ Fu,N . For other

conditions, the rest are similar.

3.10. Lemma. If M |N , then there is a homomorphism Fu,N −→ F−u,M given by v −→
−Nv/M .

Proof. We suppose that r
sN

, x
yN

are adjacent vertices in Fu,N and r
sN

< x
yN

and

that is written as r
sN

<−→ x
yN
∈ Fu,N . If r is even, then x ≡ −ur (mod N), yN ≡

−usN (mod N), yN 6≡ −us (mod 2N) and ry−sx = −1. SinceM |N , x ≡ −ur (mod M),
yM ≡ −usM (mod M), yM 6≡ −us (mod 2M). ry − sx = −1 is also true for M . For
other conditions, the rest are similar.

3.11. Theorem. Fu,N contains directed triangles if and only if u2∓u+1 ≡ 0 (mod N).

Proof. Suppose that Fu,N contains a directed triangle. Because of the transitive action,
the form of directed triangle can be taken as ∞ → u

N

<−→ r
N
→ ∞ for some integer r.

First, let u be even. From the second edge, we have u−r = −1 and r ≡ −u2 (mod N) by
Theorem 3.2. So, we obtain u2 + u+ 1 ≡ 0 (mod N). Similarly, if u

N

>−→ r
N
, then we see

that u2 − u+ 1 ≡ 0 (mod N). Now, N is even. By applying Theorem 3.2 to the second
edge, we have u− r = −1 and r ≡ −u2 (mod 2N), giving u2 + u+ 1 ≡ 0 (mod 2N). It is
impossible, because there is no solution for this equivalence. Finally, suppose that u,N
are odd. Again, from the second edge, we have u− r = −1 and r ≡ −u2 (mod N), giving
u2 + u+ 1 ≡ 0 (mod N). If u

N

>−→ r
N
, it would be u2 − u+ 1 ≡ 0 (mod N). Combining

all of the equivalences, we obtain u2 ∓ u+ 1 ≡ 0 (mod N).
Conversely, if u2 ∓ u + 1 ≡ 0 (mod N), we see that either u + 1 ≡ −u2 (mod N) or

−u + 1 ≡ −u2 (mod N). Theorem 3.2. implies that there is an edge u
N
→ u+1

N
with
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u
N
< u+1

N
in Fu,N or u

N
→ u−1

N
with u

N
> u+1

N
in Fu,N . Consequently, there is a directed

triangle ∞→ u
N
→ u±1

N
→∞ in Fu,N .

Let us give some examples. For u,N -odd, 1
0
→ 3

13
→ 4

13
→ 1

0
or 1

13
→ 10

9·13 →
9

8·13 →
1
13

is a directed triangle in F3,13. For u-even and N -odd, 1
0
→ 2

7
→ 3

7
→ 1

0
or

1
7
→ 5

4·7 →
4
3·7 →

1
7
is a directed triangle in F2,7. For N -even, we know that there is no

triangle.

Observation. We know that there is no triangle in Fu,2N0 for N -even by Theorem 3.11.
Because of the relationships between elliptic elements with circuits, our expectation is

that there is no elliptic element of order 3 of the form
(

u 2b
2N0 d

)
∈ Γ2. Indeed, being

an elliptic element of order 3, it is well-known that u + d = ±1. Taking determinant

of
(

1− d 2b
2N0 d

)
, we have d − d2 − 4bN0 = 1. It is clear that there is no solution for

d− d2 ≡ 1 (mod 4).
On the other hand, we know that the suborbital graph for modular group is a forest if

and only if it contains no triangles [2]. Using this fact, we can give the following result;

3.12. Corollary. The graph Gu,N is a forest if and only if u2 ± u+ 1 6≡ 0 (mod N).

3.3. Connectedness. In this last section, we examine the connectedness of Fu,N .

3.13. Definition. A subgraph K of Gu,N is called connected if any pair of its vertices
can be joined by a path in K.

3.14. Theorem. The subgraphs F0,1 and F1,1 are connected.

Proof. Here, to see the situation better, we write the edge conditions for F0,1 and F1,1

by Theorem 3.2 explicitly.

Case F0,1: r
s
→ x

y
∈ F0,1 if and only if

(i) If r-even, then y-odd and ry − sx = ∓1.
(ii) If s-even, then x-even and ry − sx = ∓1.
(iii) If r, s-odd, then y-even and ry − sx = ∓1.

We will show that each vertex a
b
of F0,1 can be joined to ∞ by a path in F0,1. It is clear

for b = 1. Since (a, b) = 1, we can write the equation ad− bc = −1 by Bezout’s identity.
For this pair (c, d) satisfying the equation we claim that a

b
can be joined with c

d
by above

edge condition.

Subcase1. Suppose a-even. By the equation we have that b, c must be odd and there are
two possibilities for d. If d-odd, then a

b

i−→ c
d
(means that we have c

d
→ a

b
by (i) ). If

d-even, then c
d

ii−→ a
b
.

Subcase2. Let b-even. By the equation we have that a, d must be odd and there are two
possibilities for c. If c-odd, then c

d

iii−→ a
b
. If d-even, then a

b

ii−→ c
d
.

Subcase3. Assume that a-odd and b-odd. By the equation it is impossible that c, d are
odd or even at once, so there are two possibilities. If c-odd and d-even, then a

b

iii−→ c
d
. If

c-even and d-odd, then c
d

i−→ a
b
.

Consequently F0,1 is connected.

Case F1,1: r
s
→ x

y
∈ F1,1 if and only if

(i) If r-even, then y-even and ry − sx = ∓1.
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(ii) If s-even, then x-odd and ry − sx = ∓1.
(iii) If r, s-odd, then y-odd and ry − sx = ∓1.

Taking a vertex a
b
in F1,1, there exists the equation ad − bc = −1 by Bezout’s identity.

We shall show that a
b
is adjacent to vertex c

d
in F1,1.

Subcase1. Suppose a-even. By the equation we have that b, c must be odd and there are
two possibilities for d. If d-odd, then c

d

iii−→ a
b
. If d-even, then a

b

i−→ c
d
.

Subcase2. Let b-even. By the equation we have that a, d must be odd and there are two
possibilities for c. If c-odd, then a

b

ii−→ c
d
. If c-even, then c

d

i−→ a
b
.

Subcase3. Assume that a-odd and b-odd. By the equation it is impossible that c, d are
odd or even at once, so there are two possibilities. If c-odd and d-even, then c

d

ii−→ a
b
. If

c-even and d-odd, then a
b

iii−→ c
d
.

Consequently, F1,1 is connected.

3.15. Theorem. The subgraphs F1,2 and F3,2 are connected.

Proof. We shall show that each vertex v = a
2b

(b ≥ 1) of F1,2 is joined to ∞ by a path
in F1,2. Since the pattern is periodic with period 2, we can show by induction on b. If
b = 1, then v = a

2
can be joined with ∞. If a = 1, it is clear that 1

0
→ 1

2
. If a = 1, then

3
2
→ 1

0
because 1 ≡ −3 (mod 4) and 3 · 0− 2 · 1 = −2. If a = 5, then 1

0
→ 5

2
. The same

holds for the rest periodically. So we can assume that b ≥ 2.
To complete the proof, we show that v is adjacent to a vertex w = a

2b1
with b1 < b.

It means that, w is connected by a path to ∞, and hence so is v. As (a, b) = 1, there
exist integers c, d such that ad− bc = 1. For some k ∈ Z, replacing c and d by c+ ka and
d+ kb, we can suppose 0 < d < b.

(i) If c is odd, then w = c
2d

can be joined with a
2b
. Indeed, a

2b

>−→ c
2d

gives that
a · 2d− c · 2b = 2 and c ≡ a (mod 4). If c 6≡ a (mod 4), taking c ≡ −a (mod 4) we obtain
a
2b

<←− c
2d

by 2bc− 2ad = −2. Hence, if c is odd, a
2b

is adjacent to c
2d

in F1,2.
(ii) If c is even, then a − c is odd. As 0 < b − d < b, we can take w = a−c

2(b−d) ,
adjacent to a

2b
because 2(bc− cd) = −2. Here, if 2a− c 6≡ 0 (mod 4), then we have that

a− c ≡ a (mod 4) and 2(ad− bc) = 2.
Consequently, F1,2 is connected. By the isomorphism F1,2

v

−→
→

F−1,2
−v

= F3,2, F3,2 is

also connected.

3.16. Corollary. All graphs Fu,2 are connected.

3.17. Corollary. The graph Gu,2 has 2 · ψ(2) = 6 connected components. Its blocks are
[∞], [1], [0]. The connected components of [∞] are F1,2 and F3,2.

3.18. Theorem. The subgraphs F1,3, F2,3, F4,3 and F5,3 are not connected.

Proof. It is sufficient to study with F1,3 and F2,3. Because there is an isomorphism from
F1,3(F2,3) to F5,3(F4,3) respectively.
Case F1,3: If F1,3 is connected, then each vertex v = a

3b
would be joined to ∞. We shall

show that no vertices of F1,3 where 1 < v < 2 are adjacent to∞. Further, we assert that
there is no such a vertex v adjacent to vertices outside this interval. Of course, there is
at least some vertex of F1,3 in this strip. Suppose 2

3
≤ c

3d
< 1 < a

3b
< 2. Then we have

c
d
< 3 < a

b
. This is impossible because cd− ad = −1. Similarly, if 1 < k

3l
< f

3e
≤ 7

3
, then

k
l
< 4 < f

e
contradicts ke− lf = −1. It means that no vertices of F1,3 between 1 and 2

are adjacent to ∞ and that F1,3 is not connected.
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Figure 1. The subgraph F1,3

Case F2,3: As above, let’s show that no vertices of F2,3 between 3
2
and 2 are adjacent to

vertices outside this interval. Suppose that 1 ≤ x
3y
< 3

2
< a

3b
< 2 and x

3y

<−→ a
3b
∈ F2,3.

Then we have that x
y
< 9

2
< a

b
and xb − ay = −1. By [7], we obtain that x = 4, y = 1,

a = 5 and b = 1. But 4
3
→ 5

3
is not in F2,3. If 2

3
< x

3y
< 2 < a

3b
< 8

3
and x

3y

<−→ a
3b
∈ F2,3,

then we would have x
y
< 6 < a

b
and xb−ay = −1. It is impossible because of well-known

Farey sequence. Consequently, F2,3 is not connected.

3.19. Corollary. All graphs Fu,3 are not connected.

Figure 2. The subgraph F2,3

3.20. Theorem. The subgraphs F1,4, F3,4, F5,4 and F7,4 are not connected.

Proof. As remarked in the proof of Theorem 3.18, it is sufficient to study with F1,4 and
F3,4.
Case F1,4: We will show that no vertices in F1,3 between 1

2
and 1 are adjacent to vertices

outside this interval. Suppose 1
4
≤ a

4b
< 1

2
< x

4y
< 1. Then we have a

b
< 2 < x

y
. This is
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impossible because ay − bx = −1. Similarly, if a
4b
< 1 < x

4y
≤ 7

4
, then a

b
< 4 < x

y
< 7 is

a contradiction. So F1,4 is not connected.
Case F3,4: As above, it is seen that no vertices of F3,4 between 1 and 2 are adjacent to
vertices outside this interval. Consequently, F3,4 is not connected.

3.21. Theorem. The subgraph Fu,N is connected if and only if N ≤ 2.

Proof. If Fu,N is connected, we know that N ≤ 4 by [7]. For N = 3, 4, we proved
that Fu,N is not connected by Theorem 3.18 and 3.20. Conversely, if N ≤ 2, the result
immediately follows from Theorem 3.14 and 3.15.
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