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Gelfand numbers of diagonal matrices
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Abstract
In this work , a connection between Gelfand numbers of infinite diago-
nal matrix with linear bounded operator-elements in the direct sum of
Banach spaces and its coordinate operators has been investigated.
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1. Introduction
The general theory of so-called singular numbers(singuläre zahlen) for linear compact

operators has been explained in the famous book of I.Z.Gohberg and M.G.Krein [1].
But the first results in this area can be found in the papers of E.Schmidt [2] and J.von
Neumann, R. Schatten [3] who used this concept in the theory of non-selfadjoint integral
equations.

In recent times much attention has been separated to the study of linear bounded
operators in Hilbert space and Banach space by means of geometric quantities such as
approximation numbers, Gelfand numbers, Weyl numbers and etc. In the last years of
20th century research activity in this area grew considerably. Many of classical problems
were solved, interesting new developments started.Deep connections between Banach
space geometry and other areas of mathematics were discovered.

The axiomatic theory of Gelfand numbers has been given by A.Pietsch in [4,5]. In
generally, in studies concerning to Gelfand numbers have been estimated or found for the
special mapping on some functional Banach spaces or Banach spaces of sequences. For
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instance, A.Pietsch in [4] proved that for identity operator id : lnp −→ lnq , n ∈ N , 1 ≤
q ≤ p ≤ ∞ the formula is valid that

ck(id : lnp −→ lnq ) = (n− k + 1)
1
q
− 1

p , , k ≥ 1

In classical papers mainly identity maps were considered in form

id : lnp −→ lnq , n ∈ N, 1 ≤ q ≤ p ≤ ∞

For example, for the infinite diagonal matrix

S(xn) = (σnxn), (xn) ∈ lu, 1 ≤ u ≤ ∞, σ1 ≥ σ2 ≥ ... ≥ σn ≥ ... ≥ 0

has been established such that cn(S : lu −→ lu) = σn, n ≥ 1 and

cn(S : lu −→ lv) = (

∞∑
k=n

σr
k)

1
r , 1 ≤ v ≤ u ≤ ∞, 1

r
=

1

v
− 1

u
[4]

In special case B.S. Kashin [6] and B.S. Mitiagin [7] proved that very striking result

cn(id : lm1 −→ lm2 ) ≤ ρ [log(m+ 1)]
3
2

n
1
2

, n = 1, 2, ...,m

In this work these studies will be continued.
It is known that infinite direct sum of Banach spaces Xm , m ≥ 1 in the sense of lp ,

1 ≤ p <∞ and infinite direct sum of linear densely defined closed operators Am in Xm

, m ≥ 1 are defined as

X = (⊕∞m=1Xm)p =

{
x = (xm) : xm ∈ Xm , m ≥ 1, ‖x‖p = (

∞∑
m=1

‖xm‖pXm
)
1
p <∞

}
and

A = ⊕∞m=1Am , A : D(A) ⊂ X −→ X ,

D(A) = {x = (xm) ∈ X : xm ∈ D(Am),m ≥ 1, Ax = (Amxm) ∈ X} [8]

In second section the general facts concerning to the boundedness and compactness
properties of direct sum operators in the direct sum of Banach spaces will be given.

In third section, some estimate formulas for the Gelfand numbers of the diagonal
matrix with operator elements in form

S =



S1

S2 0
S3

. . .
0 Sm

. . .


, S : X −→ X,

where Sm ∈ L(Xm) , m ≥ 1 and S ∈ L(X) will be investigated.
Note that many physics problems of today in the modelling of processes of multiparti-

cle quantum mechanics, quantum field theory and in the physics of rigid bodies support
to study a theory of direct sum of linear operators in the direct sum of Banach spaces
[9].

In this paper, the norms ‖·‖p in X and ‖·‖Xm
in Xm , m ≥ 1 will be denoted by ‖·‖

and ‖·‖
m

, m ≥ 1 respectively. In any Banach space B the class of linear bounded and
compact operators will be denoted by L(B) and C∞(B) respectively.



2. Direct sum of bounded and compact operators
In this section continuity and compactness properties of the operator A = ⊕∞m=1Am

in X will be investigated when Am ∈ L(Xm) and Am ∈ C∞(Xm), m ≥ 1 respectively.
Using the techniques of the Banach spaces lp , 1 ≤ p <∞ and Operator Theory the

following two propositions can be proved in general.
2.1. Theorem. Let Am ∈ L(Xm), m ≥ 1, A = ⊕∞m=1Am in X. In order to A ∈ L(X) the
necessary and sufficient condition is sup

m≥1
‖Am‖ <∞.Morever, in the case when A ∈ L(X)

it is true that ‖A‖ = sup
m≥1
‖Am‖.

Note that from the definition of compactness of operators [10] it is implied that if
A ∈ C∞(Xm), then for each m ≥ 1 , Am ∈ C∞(Xm).

In general, the following result is true.
2.2. Theorem. Let Am ∈ C∞(Xm) for each m ≥ 1, A = ⊕∞m=1Am : X −→ X. In this
case A ∈ C∞(X) if and only if lim

m−→∞
‖Am‖ = 0.

Proof. Assume that lim sup
(m)

‖Am‖ > 0. Then there exists a number c > 0 and a sequence

(km) ⊂ N such that

‖Akm‖ = sup

{
‖Akmxkm‖km

‖xkm‖km

: xkm ∈ Xkm� {0} ,m ≥ 1

}
≥ c > 0

In this case there exist a sequence (x∗km
) ∈ Xkm , such that

‖Akmx∗km‖km∥∥∥x∗km

∥∥∥
km

≥ c, m ≥ 1.

Now consider the following set in X in form

M :=

{{
0, 0, ..., 0,

x∗km∥∥Akmx
∗
km

∥∥
km

, 0, ...

}
∈ X : m ≥ 1

}
It is clear that for x ∈ M, ‖x‖ ≤ 1

c
< ∞, that is, M is a bounded set in X. On the

other hand AM =

{{
0, 0, ..., 0,

Akmx∗km∥∥∥Akmx∗
km

∥∥∥
km

, 0, ...

}
∈ X : m ≥ 1

}
.

From this it is easy to see that a set AM ⊂ X is not compact. Consequently,
lim sup

(m)

‖Am‖ = 0, that is, it is obtained that lim
(m)
‖Am‖ = 0.

On the contrary, define the following operators Kn : X −→ X, n ≥ 1 in form

Kn := A1 ⊕A2 ⊕ ...⊕An ⊕ 0⊕ 0⊕ ...

In this case for x ∈ X we have

‖(A−Kn)x‖p ≤
∞∑

m=n+1

‖Am‖p ‖xm‖pm

≤ sup
m≥n+1

‖Am‖p
∞∑

m=n+1

‖xm‖pm

≤
(

sup
m≥n+1

‖Am‖p
)
‖x‖p

From this it is obtained that ‖A−Kn‖ ≤ sup
m≥n+1

‖Am‖ , n ≥ 1. Since lim sup
(n)

‖An‖ = 0,

then from last relation it is implied that sequence of operators (Kn) in L(X) is convergent
to the operators A in operator norm. On the other hand Kn ∈ C∞(X), n ≥ 1, then by



the important theorem of the compact operators theory the operator A belong to the
class C∞(X) [10]. �

3. Gelfand numbers of direct sum operators
In this section, the relationship between the Gelfand numbers of the direct sum of

operators in the direct sum of Banach spaces and its coordinate operators will be inves-
tigated.

Note that firstly the concept of s-number functions (particularly Gelfand number
functions) for the operators in Banach spaces was introduced by A.Pietsch in [11].

Now give definitions of these number functions from works [4] and [12].
3.1. Definition. Let L(E,F ) be a Banach spaces of linear bounded operators from
Banach space E to a Banach space F with operator norm. For the operator T ∈ L(E,F )
the following number

cn(T ) := inf
{
‖T‖Z : Z ⊂ E, codimZ < n

}
, n ≥ 1

is called the n-th Gelfand number of the operator T .
3.2. Definition. Let E,F,E0, F0 be Banach spaces. A map s which to every operators
S ∈ L(E,F ) a unique sequence (sn(S)) is called an s-function (or s-number function) if
the following conditions are satisfied:

(1) For S ∈ L(E,F ) ‖S‖ = s1(S) ≥ s2(S) ≥ ... ≥ 0 ;
(2) For S, T ∈ L(E,F ) sn(S + T ) ≤ sn(S) + ‖T‖;
(3) For T ∈ L(E0, E), S ∈ L(E,F ) and R ∈ L(F, F0) sn(RST ) ≤ ‖R‖ sn(S) ‖T‖;
(4) If S ∈ L(E,F ) and dim(S) < n , then sn(S) = 0;
(5) If id : ln2 −→ ln2 is the identity map, then sn(id) = 1.
On the other hand sn(S), n ≥ 1 is called the n-th s-number of the operator S.

The advanced analysis of these numbers has been given in books of A.Pietsch [4,5].Par-
ticularly, in Hilbert spaces case for any n ≥ 1 cn(S) = sn(S) = λn(|S|) = λn(|S∗S|

1
2 )

(for the more informations see [1]). On the other hand for S ∈ C∞(H), where H is a
Hilbert space, the significant method for computation of sn(S), n ≥ 1 has been given by
Dzh.E. Allakhverdiev in [13].
3.3. Theorem. If S = ⊕∞m=1Sm, S ∈ L(X) and for any m ≥ 1, nm = dimXm < ∞,
then for n > m1 +m2 + ...+mk, k ≥ 1 it is true that cn(S) ≤ sup

m≥k+1
‖Sm‖ .

Proof. Firstly, for any k ∈ N define the operator Pk : X −→ X in following form

Pk(xm) := {x1, x2, ..., xk, 0, ...} , for x = (xm) ∈ X

In this case for k ∈ N
SPk(xm) = (⊕∞m=1Sm) (Pk(xm)) = {S1x1, S2x2, ..., Skxk, 0, 0, 0, ...}

and SPk ∈ L(X).
Therefore, for any x = (xm) ∈ X it is clear that

‖(S − SPk)(xm)‖ = ‖{0, ..., 0, Sk+1xk+1, ...}‖ =

(
∞∑

m=k+1

‖Smxm‖pm

) 1
p

≤

(
∞∑

m=k+1

‖Sm‖p ‖xm‖pm

) 1
p

≤ sup
m≥k+1

‖Sm‖ ‖x‖

Hence ‖S − SPk‖ ≤ sup
m≥k+1

‖Sm‖ . From this and definition of Gelfand numbers it is

implied that for n > m1 +m2 + ...+mk, k ≥ 1 it is true that cn(S) ≤ sup
m≥k+1

‖Sm‖.



�

3.4. Theorem. Let S = ⊕∞m=1Sm ∈ L(X) and the operator S : X −→ X is invertible,
i.e. there exist S−1 and S−1 ∈ L(X). Then inf

1≤m≤n

1

‖S−1
m ‖ ≤ cn(S), n ≥ 1.

Proof. It is known that in this case S−1 = ⊕∞m=1S
−1
m and

∥∥S−1
∥∥ = sup

m≥1

∥∥S−1
m

∥∥.
Now define

Jn = (⊕n
m=1Xm)p −→ (⊕∞m=1Xm)p , n ≥ 1,

Qn = (⊕∞m=1Xm)p −→ (⊕n
m=1Xm)p , n ≥ 1,

Jn({x1, ..., xn}) = {x1, x2, ...xn, 0, ...} ,
Qn({x1, ..., xn, xn+1, ...}) = {x1, x2, ...xn}

From these definitions it is obtained that the operator

Rn := QnSJn : (⊕n
m=1Xm)p −→ (⊕n

m=1Xm)p

is in form Rn ({x1, x2, ..., xn}) = {S1x1, S2x2, ..., Snxn}, n ≥ 1 for any {x1, x2, ..., xn} ∈
(⊕n

m=1Xm)p.
Therefore, there exist R−1

n ,the inverse of the operator Rn, n ≥ 1 and

R−1
n = ⊕n

m=1S
−1
m , R−1

n : (⊕n
m=1Xm)p −→ (⊕n

m=1Xm)p ,
∥∥R−1

n

∥∥ = sup
1≤m≤n

∥∥S−1
m

∥∥ , n ≥ 1

Since the mapping c : S −→ (cn(S)), S ∈ L(X) is a s-number function, then from the
property of s-number function it is clear that

1 = cn(id : (⊕n
m=1Xm)p −→ (⊕n

m=1Xm)p) = cn(RnR
−1
n ) ≤ cn(QnSJn)

∥∥R−1
n

∥∥
≤ ‖Qn‖ cn(S) ‖Jn‖

∥∥R−1
n

∥∥ ≤ cn(S) ∥∥R−1
n

∥∥ , n ≥ 1

Hence 1

‖R−1
n ‖ ≤ cn(S), i.e. 1

sup
1≤m≤n

‖S−1
m ‖ ≤ cn(S), n ≥ 1. In other words, for each

n ≥ 1 it is true that inf
1≤m≤n

1

‖S−1
m ‖ ≤ cn(S).

�

3.5. Corollary. If S = ⊕∞m=1Sm, Sm = αmid , αm ∈ C , id : Xm −→ Xm for each
m ≥ 1, then inf

1≤m≤n
|αm| ≤ cn(S) ≤ sup

m≥n
|αm| , n ≥ 1.

3.6. Remark. In case when αm ∈ R , α1 ≥ α2 ≥ ... ≥ αm ≥ ... ≥ 0 and dimXm =
1,m ≥ 1 , then from Corollary 3.5 it is obtained that for every n ≥ 1 cn(S) = αn, n ≥ 1.

This result has been obtained in [4].
Now prove the following results which explained some relation between Gelfand num-

bers of direct sum operator and its coordinate operators.
3.7. Theorem. Let us S = ⊕∞m=1Sm, S : X −→ X. In this case for every n ≥ 1

sup
n≥1

c(m)
n (Sm) ≤ cn(S),

where c(m)
n (Sm) is denoted by the n-th Gelfand number of the operator Sm ∈ L(Xm),

m ≥ 1.

Proof. If the following operators

Dm : Xm −→ X , Tm : X −→ Xm, m ≥ 1

define in forms

Dmxm = {0, 0, ..., 0, xm, 0, ...} , xm ∈ Xm,

Tm(xm) = xm, (xm) ∈ X, xm ∈ Xm, m ≥ 1,



then Dm, Tm are linear bounded operators and ‖Dm‖ ≤ 1, ‖Tm‖ ≤ 1,m ≥ 1. Moreover,
it is clear that Sm = TmSDm, m ≥ 1.

Hence from third condition in definition of s-functions for any n ≥ 1 and m ≥ 1 it is
established that c(m)

n (Sm) = c
(m)
n (TmSDm) ≤ ‖Tm‖ cn(S) ‖Dm‖ ≤ cn(S).

From last relation the validity of claim is evident.
On the other hand the following assertion is true. �

3.8. Theorem. If S = ⊕∞m=1Sm ∈ L(X), then for any n,m ≥ 1 it is valid that

cn(S) ≤ cn(Sm) + sup
n6=m
‖Sn‖

Proof. Indeed, from second condition in definition of s-functions it is established that

cn(S) = cn(0⊕ 0⊕ ...⊕ 0⊕ Sm ⊕ 0⊕ ...+ S1 ⊕ S2 ⊕ ...⊕ Sm−1 ⊕ 0⊕ Sm+1 ⊕ ...)
≤ cn(0⊕ 0⊕ ...⊕ 0⊕ Sm ⊕ 0⊕ ...) + ‖S1 ⊕ S2 ⊕ ...⊕ Sm−1 ⊕ 0⊕ Sm+1 ⊕ ...‖
= cn(Sm) + sup

n 6=m
‖Sn‖ , n ≥ 1, m ≥ 1

�

3.9. Theorem. If S = ⊕∞m=1Sm ∈ L(X) and S(p) := S1 ⊕ S2 ⊕ ... ⊕ Sp ⊕ 0 ⊕ ...,

S(p) : X −→ X, p ≥ 1, then
∣∣∣cn(S)− cn(S(p))

∣∣∣ ≤ sup
m≥p+1

‖Sm‖ , n ≥ 1.

In particular, if S ∈ C∞(X), then lim
p−→∞

cn(S
(p)) = cn(S), n ≥ 1.

Proof. Since Gelfand number function is a s-number function, then in this case the va-
lidity of assertion is clear from inequality

∥∥∥cn(S)− cn(S(p))
∥∥∥ ≤ ∥∥∥S − S(p)

∥∥∥ , p ≥ 1 and
2.2. Theorem. �

3.10. Remark. In Hilbert spaces case the analogous results have been obtained in [14].
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