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Values sharing results on q-di�erence and
derivative of meromorphic functions

Kai Liu∗† and Tingbin Cao‡

Abstract

In this paper, we mainly deal with the problem that f(qz) and f ′(z)
share common values. One of the purpose is to explore whether the
classical uniqueness results remain valid or not by considering some
uniqueness theorems on f(qz) and f ′(z) sharing common values. Some
examples and remarks are given to show that our results are sharp in
certain senses. We also consider the entire solutions of the equation
f ′(z) = f(qz), which is important for the uniqueness results.
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1. Introduction

We use the standard symbols and fundamental results of Nevanlinna theory [7, 10, 18].
A meromorphic function f(z) means meromorphic in the complex plane C. If f − a and
g − a have the same zeros, then we say that f and g share the value a IM (ignoring
multiplicities). If f − a and g− a have the same zeros with the same multiplicities, then
f and g share the value a CM (counting multiplicities).

Recall a classical result given by Rubel and Yang [16] as follows.

Theorem A. Let f(z) be a non-constant entire function. If f(z) and f ′(z) share two
values a, b ∈ C CM , then f ′(z) = f(z).

Many improvements on Theorem A were investigated afterwards. For example, f ′(z)

was improved to f (k)(z) or di�erential polynomials of f(z), the condition CM was reduced
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to IM , an entire function f(z) was extended to a meromorphic function, and so on. We
only recall the following result given by Mues-Steinmetz [12].

Theorem B. Let f(z) be a non-constant entire function. If f(z) and f ′(z) share two
values a, b ∈ C IM , then f ′(z) = f(z).

Recently, Qi, Liu and Yang [14] considered the problem that f(z) and f(qz) share
common values, where f(z) is a zero-order meromorphic function and |q| = 1. One of
the results can be stated as follows.

Theorem C. [14, Theorem 1.1] Let f(z) be a zero-order meromorphic function and
a1, a2, a3 ∈ C ∪ {∞} be three distinct values. If f(z) and f(qz) share a1, a2 CM and a3
IM , then f(z) = f(qz).

Here, two remarks are given to show that the conditions of Theorem C are indispens-
able, which are not considered in [14].

1.1. Remark. Theorem C is not valid for meromorphic functions with �nite order,
which can be seen by the following two examples.

1.1. Example. If f(z) = ez and q = −1, then f(z) and f(qz) share 0, 1,∞ CM , but
f(z) 6= f(qz).

1.2. Example. If f(z) = ez
2

and q = i, then f(z) and f(qz) share 0, 1,∞ CM , but
f(z) 6= f(qz).

1.2. Remark. The condition a1, a2 CM and a3 IM can not be reduced to a1, a2 CM
in Theorem C, which can be seen by the following example.

1.3. Example. If f(z) = 2z
(z+1)2

and q = −1, then f(qz) = −2z
(1−z)2 . We know that f(z)

and f(qz) share 0, 1 CM , but f(z) 6= f(qz).

However, if f is an entire function with zero-order, then the conditions of Theorem C
can be reduced as follows.

Theorem D. [14, Theorem 1.2] Let f be a zero-order entire function and a1, a2 ∈ C be
two distinct values. If f(z) and f(qz) share a1 and a2 IM , then f(z) = f(qz).

Noticing the above four theorems, Theorem A and Theorem B are related to the value
sharing problem on f(z) and f ′(z), Theorem C and Theorem D are related to the value
sharing problem on f(z) and f(qz). An interesting problem is what can we get if f ′(z)
and f(qz) share common values, where q is a non-zero constant. Some related results can
be found in Section 3. Some results on the zeros distribution of q-di�erence di�erential
polynomials of di�erent types and uniqueness results can be seen in Section 4.

2. The entire solutions of f ′(z) = f(qz)

As we all know that the di�erential equation f ′(z) = f(z) implies that f(z) = Aez,
where A is a constant. Before considering the value sharing problem on f(qz) and f ′(z),
we should consider the solutions properties of the q-di�erence di�erential equation

(2.1) f ′(z) = f(qz),

where q is a non-zero constant. Obviously, the non-trivial entire solutions of (2.1) should
be transcendental. Using the theory of series, we obtain the next result.

2.1. Theorem. The non-trivial entire solutions of (2.1) must be have the form

f(z) =

+∞∑
n=0

a0
n!
q
n(n−1)

2 zn,

where a0 is a free complex parameter.
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Proof. Let f(z) = a0 + a1z + a2z
2 + · · ·+ anz

n + · · · . Thus

(2.2) f(qz) = a0 + a1qz + a2(qz)
2 + · · ·+ an(qz)

n + · · ·

and

(2.3) f ′(z) = a1 + 2a2z + · · ·+ nanz
n−1 + · · · .

By comparing with the coe�cients of (2.2) and (2.3), we get

a1 = a0q
0,

a2 =
a0
2
q1,

a3 =
a0

3× 2
q1+2,

a4 =
a0

4× 3× 2
q1+2+3,

a5 =
a0

5× 4× 3× 2
q1+2+3+4,

a6 =
a0

6× 5× 4× 3× 2
q1+2+3+4+5, . . .

Using mathematical induction, we get f(z) should have the form

f(z) =

+∞∑
n=0

a0
n!
q
n(n−1)

2 zn.

�

2.1. Remark. As we all know that if g(z) =
∑∞
n=0 anz

n is an entire function, the
order's expression

ρ(g) = limn→∞
n logn

log 1
|an|

.

Thus, we conclude that ρ(f) = 0 if |q| 6= 1 and ρ(f) = 1 if |q| = 1 in Theorem 2.1.

Obviously, if q = 1, then f(z) =
∑+∞
n=0

a0
n!
zn = a0e

z.

3. Some results on f(qz) and f ′(z) share common values

Let us recall the classical results in the uniqueness theory of meromorphic functions,
the �ve-point, resp. four-point, theorems due to Nevanlinna [15].

The �ve-point theorem. If two meromorphic functions f, g share �ve distinct values
in the extended complex plane IM , then f ≡ g.

The four-point theorem. If two meromorphic functions f, g share four distinct
values in the extended complex plane CM , then f ≡ T (g), where T is a Möbius trans-
formation.

If the meromorphic function g has a special relationship with f , then the number �ve
or four can be reduced. For example, considering the value sharing problem on f(z) and
f(z+ c) [8, Theorem 2] or f(z) and f(qz) [14, Theorem 1.1], the number is three. Before
stating our results, we need the following lemma [18, Theorem 2.17].

3.1. Lemma. Let f and g be non-constant meromorphic functions with the order less

than one. If f and g share 0 and ∞ CM , then there exists a non-zero constant K
satisfying f = Kg.

Let f1 = f−a1
f−a2

and g1 = g−a1
g−a2

. If f and g share a1 and a2 CM , then f1 and g1 share

0,∞ CM , thus we have f−a1
f−a2

= k g−a1
g−a2

.
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3.2. Theorem. Let f be a meromorphic function with order ρ(f) < 1 and let a1, a2 ∈
C∪ {∞} and a3 ∈ C be three distinct values. If f(qz) and f ′(z) share a1, a2 CM and a3
IM , then f ′(z) = f(qz).

Proof. If a1, a2, a3 ∈ C. Let F (z) = f ′(z)−a1
f ′(z)−a2

.a3−a2
a3−a1

and G(z) = f(qz)−a1
f(qz)−a2

.a3−a2
a3−a1

. Thus,

we have F (z) and G(z) share 0,∞ CM and 1 IM . Since that F (z) and G(z) are
meromorphic functions with ρ(f) < 1, then F (z) = kG(z) follows from Lemma 3.1. If
the value 1 is not the Picard exceptional value, then k = 1, thus F (z) = G(z). If the

value 1 is the Picard exceptional value, we have F (z)−1
G(z)−1

has no zeros and poles. Hence,

we have F (z)−1
G(z)−1

= C, which implies that k = 1, thus F (z) = G(z). We conclude that

f ′(z) = f(qz).

If one of a1, a2 is ∞, without loss of generality, we suppose that a1 =∞. Let F (z) =
f ′(z) − a2 and G(z) = f(qz) − a2. Thus F (z) and G(z) share 0,∞ CM . From Lemma
3.1, we have F (z) = kG(z). Combining the above with the condition that a3 is IM
shared, then k = 1, thus f ′(z) = f(qz). �

3.1. Remark. Theorem 3.2 is not valid for meromorphic functions with ρ(f) ≥ 1, which
can be seen by taking f(z) = ez and q = −1. We see that f(qz) and f ′(z) share 0, 1,−1
CM , but f ′(z) 6= f(qz).

3.3. Theorem. Let f(z) be a non-constant entire function, q be a non-zero constant. If

f(qz) and f ′(z) share two distinct constants a, b ∈ C CM and one of a, b is the Picard

exceptional value, then f ′(z) = f(qz) or f(z) = e−Az+B, −Ae2B = b2 and q = −1.

For the proof of Theorem 3.3, we need the following three lemmas.

3.4. Lemma. [18, Theorem 1.47] Let h(z) be a non-constant entire function and f(z) =

eh(z). Then T (r, h′) = S(r, f).

3.5. Lemma. [18, Theorem 1.56] Let f1, f2, f3 be meromorphic functions such that f1
is not a constant. If f1 + f2 + f3 = 1 and if

3∑
j=1

N(r, 1/fj) + 2

3∑
j=1

N(r, fj) < (λ+ o(1))T (r),

where λ < 1 and T (r) := max1≤j≤3 T (r, fj), then either f2 = 1 or f3 = 1.

3.6. Lemma. [7, Theorem 3.7] Let f(z) be an entire function. If f(z) and f (l)(z) (l ≥ 2)
have no zeros, then f(z) = eAz+B, where A,B are constants.

Proof. One of a, b is the Picard exceptional value, without loss of generality, we suppose
that a is the Picard exceptional value. Thus

(3.1) f(qz)− a = eα(z)

and

(3.2) f ′(z)− a = eβ(z),

where α(z) and β(z) are non-constant entire functions. From Lemma 3.4, we have
T (r, α′(z)) = S(r, f(qz)). Di�erentiating f(qz), we have

(3.3) f ′(qz) =
1

q
eα(z)α′(z) = a+ eβ(qz).

From (3.1) and (3.3), we get

T (r, eα(z)) = T (r, f(qz)) +O(1) ≤ T (r, f ′(qz)) + S(r, f(qz)),(3.4)
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T (r, eβ(qz)) = T (r, f ′(qz)) +O(1).(3.5)

If a 6= 0, from (3.3), we conclude that

(3.6)
1

aq
eα(z)α′(z)− eβ(qz)

a
= 1.

Using the second main theorem for three small functions [7, Theorem 2.5], we have

T (r, eα(z)) ≤ N

(
r,

1

eα(z) − aq
α′(z)

)
+ S(r, eα(z))

= N

(
r,

1

eβ(qz)

)
+ S(r, eα(z))

= S(r, eα(z)),(3.7)

which is a contradiction. Thus, a = 0. From (3.3), then

(3.8) eβ(qz)−α(z) =
α′(z)

q
.

Since that b 6= 0 is CM shared by f ′(z) and f(qz), then we get f ′(z)−b
f(qz)−b = eγ(z), where

γ(z) is an entire function. Thus, combining the above with (3.1), (3.2), (3.8), we have

eβ(z) − b = f ′(z)− b = eγ(z)(f(qz)− b) = eγ(z)(eα(z) − b).

Since b 6= 0, then

eβ(z)

b
+ eγ(z) − eγ(z)+α(z)

b
= 1.

From Lemma 3.5, if eγ(z) ≡ 1, then f ′(z) = f(qz) follows. If eβ(z) ≡ b, which implies

that f ′(z) ≡ b, which is impossible. If e
γ(z)+α(z)

−b ≡ 1, then we also have eβ(z)−γ(z) ≡ −b.
Thus eα(z)+β(z) = b2, which implies that α(z) + β(z) ≡ d, where d is a constant. So
β(qz) ≡ −α(qz) + d. Combining the above with (3.8), we have

(3.9) e−α(qz)−α(z)+d =
α′(z)

q
.

Remark that the left hand of (3.9) has no zeros, we have α′(z) has no zeros, thus either
α(z) = Az + B or α(z) is a transcendental entire function. If α(z) = Az + B, from
(3.9), we have q = −1 and ed−2B = −A. From (3.1), we have f(z) = e−Az+B and
−Ae2B = b2. If α(z) is a transcendental entire function, since β(z) ≡ −α(z) + d, then

β′(z) also has no zeros. Thus from f ′′(z) = β′(z)eβ(z), then we have f(z) and f ′′(z) have
no zeros, f(z) = eaz+b follows by Lemma 3.6, which implies that α(z) is a polynomial, a
contradiction. Thus, we have the proof of Theorem 3.3. �

3.2. Remark. If a, b are not Picard exceptional values, then Theorem 3.3 is not valid,
which can be seen by the function f(z) = 3a − a

e2z
and q = −1. Thus, f ′(z) = 2a

e2z
and

f(qz) = 3a− ae2z share a and 2a CM , but f ′(z) 6= f(qz).

In what follows, we will use the properties of the solutions of Fermat type equations
to consider the problem that two functions share one common value. Recall the classical
Fermat type equation

(3.10) a(z)f(z)n + b(z)g(z)n = 1.

Yang [17, Theorem 1] obtained the following result.
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Theorem E. Let a(z), b(z), f(z), g(z) be meromorphic functions, m,n be positive inte-
gers. Then (3.10) can not hold, if T (r, a(z)) = S(r, f) and T (r, b(z)) = S(r, g), unless
m = n = 3. If f(z) and g(z) are entire, then (3.10) can not hold, even if m = n = 3.

We get the following result, which is an improvement of [14, Corollary 1.4 ].

3.7. Theorem. Let f be a zero-order non-constant entire function, and q 6= 0, n ≥ 2
be an integer, and let F = fn. If F (z) and F (qz) share a non-zero constant a CM, then

f(qz) = tf(z), where tn = 1.

Proof. Suppose that F (z) and F (qz) share a non-zero constant a CM, then we have
F (qz)−a
F (z)−a = C. Thus, we have

(3.11) f(qz)n − Cf(z)n = a(1− C).

If C = 1, then we have f(qz) = tf(z), where tn = 1. If C 6= 1, from Theorem E, we
know that n ≤ 2. From the condition n ≥ 2, then n = 2. In this case f(qz)−

√
cf(z) and

f(qz)+
√
cf(z) have no zeros. Since that f(z) is zero-order entire function and combining

the Hadamard factorization theorem, we obtain f(z) should be a constant. �

3.3. Remark. (1) Theorem 3.7 is not valid for �nite order entire function f(z), which
can be seen by taking f(z) = ez, q = −1. Then f(z)n and f(qz)n share the value 1 CM,
but f(qz) 6= tf(z), where t is a constant.

(2) The condition of a 6= 0 can not be deleted, which can be seen by f(z) = zn and
f(qz) = qnzn and qn 6= 1, thus f(z) and f(qz) share the value 0 CM, but f(z) 6= f(qz).

(3) The condition n ≥ 2 can not be improved to n ≥ 1, which can be seen by

f(z) = zn+ a and qn = c, thus f(qz)−a
f(z)−a = c. Here, f(qz) and f(z) share the value a CM,

but f(qz) 6= tf(z).

Brück conjecture is well-known as a classical problem in value sharing, which can be
stated as follows.

Conjecture. Let f(z) be a non-constant entire function, the hyper-order ρ2(f) is not a

positive integer or in�nite. If f(z) and f ′(z) share a �nite value b CM, then f ′−b
f−b = c,

where c is a non-zero constant.

The conjecture has been veri�ed in special cases only: (1) f is of �nite order, see [5];
(2) b = 0, see [3]; (3) N(r, 1

f ′ ) = S(r, f), see [3]. we also want to summarize some results

on q-di�erence analogue of Brück conjecture.

3.8. Theorem. Let f be a non-constant entire function with ρ(f) < 1, and q 6= 0. If

f ′(z) and f(qz) share a constant a CM, then
f ′(z)−a
f(qz)−a = c.

3.4. Remark. Theorem 3.8 is easily proved. Here, we state it to show a result similar
as Brück conjecture. Theorem 3.8 is not valid for �nite order entire functions, which

can be seen by f(z) = ez, q = −1, thus f ′(z)−1
f(qz)−1

= −ez, where f ′(z) and f(qz) share the
value 1 CM.

4. Results on values shared by f(qz)nf ′(z) and g(qz)ng′(z)

Hayman conjecture [6] is an important problem in the theory of value distribution. It
was also considered by some authors later, such as [2, 4, 13].

Theorem F.[4, Theorem 1] Let f be a transcendental meromorphic function. If n ≥ 1
is a positive integer, then f(z)nf ′(z)− 1 has in�nitely many zeros.
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Recently, some authors investigated the zeros of f(z)nf(z + c)− a, f(z)nf(qz)− a or
their improvements, where a is a non-zero constant. Some related results can be found
in [9, 11, 19]. The main aim of these results is to get the sharp value of n to ensure that
the di�erence polynomials or q-di�erence polynomials admit in�nitely many zeros. It is
interesting to consider the value distribution of f(qz)nf ′(z)− a(z), where a(z) is a small
function with respect to f . We obtain the following result.

4.1. Theorem. Let f(z) be a transcendental entire function with zero-order, q ∈ C\{0}
and n ≥ 1. Then f(qz)nf ′(z)− q(z) has in�nitely many zeros, where q(z) is a non-zero

polynomial.

4.2. Theorem. Let f(z) be a transcendental meromorphic function with zero-order,

q ∈ C \ {0} and n ≥ 9. Then f(qz)nf ′(z)− a(z) has in�nitely many zeros, where a(z) is
a non-zero small function with respect to f(z).

4.1. Remark. Theorem 4.1 is not valid for �nite order entire functions, which can be
seen by f(z) = ez, q = − 1

n
, and a(z) is a non-constant polynomial, thus f(qz)nf ′(z) −

a(z) = 1− a(z) has �nitely many zeros.

For the proofs of Theorems 4.1 and 4.2, we need the following results, which were
�rstly considered by Barnett et al.[1], Zhang and Korhonen [19] obtained the following
version.

4.3. Lemma. [19, Theorem 1.1] Let f(z) be a non-constant zero-order meromorphic

function and q ∈ C \ {0}. Then

T (r, f(qz)) = T (r, f) + S(r, f)

on a set of lower logarithmic density 1.

4.4. Lemma. [1, Theorem 1.1] Let f(z) be a non-constant zero-order meromorphic

function and q ∈ C \ {0}. Then

m

(
r,
f(qz)

f(z)

)
= S(r, f)

on a set of logarithmic density 1.

4.5. Lemma. Let f(z) be a non-constant zero-order meromorphic function and q ∈
C \ {0}. Then

(n− 2)T (r, f) ≤ T (r, f(qz)nf ′(z)) + S(r, f) ≤ (n+ 2)T (r, f)(4.1)

on a set of lower logarithmic density 1. If f(z) is a non-constant zero-order entire

function, then

nT (r, f) ≤ T (r, f(qz)nf ′(z)) + S(r, f) ≤ (n+ 1)T (r, f).(4.2)

Proof. From Lemma 4.3 and the fact that T (r, f ′(z)) ≤ 2T (r, f) + S(r, f) when f(z) is
a meromorphic function, we get

T (r, f(qz)nf ′(z)) ≤ (n+ 2)T (r, f) + S(r, f).
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Hence, the right hand side of (4.1) is true. On the other hand

(n + 1)T (r, f(z)) = T (r, f(qz)n+1) + S(r, f)

= T

(
r,
f(qz)n+1f ′(z)

f ′(z)

)
+ S(r, f)

≤ T

(
r,
f(qz)

f ′(z)

)
+ T

(
r, f(qz)nf ′(z)

)
+ S(r, f)

≤ T

(
r,
f ′(z)

f(qz)

)
+ T

(
r, f(qz)nf ′(z)

)
+ S(r, f)

≤ N

(
r,

1

f(qz)

)
+N(r, f ′(z)) + T

(
r, f(qz)nf ′(z)

)
+ S(r, f)

≤ 3T (r, f) + T (r, f(qz)nf ′(z)) + S(r, f)(4.3)

on a set of lower logarithmic density 1. Thus, the left hand side of (4.1) is proved. If
f(z) is a transcendental zero-order entire function, then we have

(n+ 1)T (r, f(z) = (n+ 1)m(r, f)

≤ m(r, f(qz)n+1) + S(r, f)

≤ m

(
r,
f(qz)

f ′(z)

)
+m

(
r, f(qz)nf ′(z)

)
+ S(r, f)

≤ T

(
r,
f ′(z)

f(qz)

)
+ T

(
r, f(qz)nf ′(z)

)
+ S(r, f)

≤ T (r, f) + T
(
r, f(qz)nf ′(z)

)
+ S(r, f)(4.4)

on a set of lower logarithmic density 1. Combining Lemma 4.3 with the fact that
T (r, f ′(z)) ≤ T (r, f) + S(r, f) when f(z) is an entire function, we get (4.2). �

Proofs of Theorems 4.1 and 4.2: Assume that f(qz)nf ′(z)−q(z) has only �nitely
many zeros, if f(z) is a transcendental zero-order entire function, from Hadmard factor-
ization theorem, we have f(qz)nf ′(z)− q(z) = p(z), where p(z) is a non-zero polynomial.
Thus, we have nT (r, f) + S(r, f) ≤ T (r, f(qz)nf ′(z)) = O(log r), which is impossible.

If f(z) is a transcendental zero-order meromorphic function, using the second main
theorem, we have

(n − 2)T (r, f(z)) ≤ T (r, f(qz)nf ′(z)) + S(r, f) ≤ N(r, f(qz)nf ′(z))

+ N

(
r,

1

f(qz)nf ′(z)

)
+N

(
r,

1

f(qz)nf ′(z)− a(z)

)
+ S(r, f)

≤ 6T (r, f) +N

(
r,

1

f(qz)nf ′(z)− a(z)

)
+ S(r, f),(4.5)

which is a contradiction with n ≥ 9.

Let P (z) = anz
n + an−1z

n−1 + · · · + a1z + a0 be a non-zero polynomial, where
a0, a1, . . . , an( 6= 0) are complex constants and tP is the number of the distinct zeros
of P (z). The following, we will consider the generally case of P (f(qz))f ′(z)−a(z), where
a(z) is a small function with respect to f(z).

4.6. Theorem. Let f(z) be a transcendental entire function with zero-order, q ∈ C\{0}
and n ≥ 1. Then P (f(qz))f ′(z)−q(z) has in�nitely many zeros, where q(z) is a non-zero

polynomial.

4.7. Theorem. Let f(z) be a transcendental meromorphic function with zero-order,

q ∈ C\{0} and n ≥ 2tP +7. Then P (f(qz))f ′(z)−a(z) has in�nitely many zeros, where

a(z) is a non-zero small function with respect to f(z).
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Using the similar method as the proof of Lemma 4.5, we have the following lemma,
which is needed for the proofs of Theorems 4.6 and 4.7.

4.8. Lemma. Let f(z) be a non-constant zero-order meromorphic function, and q ∈
C \ {0}. Then

(n− 2)T (r, f) ≤ T (r, P (f(qz))f ′(z)) + S(r, f) ≤ (n+ 2)T (r, f)(4.6)

on a set of lower logarithmic density 1. If f(z) be a non-constant zero-order entire

function,

nT (r, f) ≤ T (r, P (f(qz))f ′(z)) + S(r, f) ≤ (n+ 1)T (r, f)(4.7)

on a set of lower logarithmic density 1.

Finally, we consider the uniqueness of f(qz)nf ′(z) and g(qz)ng′(z) sharing a non-zero
polynomial and obtain the following result.

4.9. Theorem. Let f(z) and g(z) be transcendental entire functions with zero-order,

q ∈ C \ {0} and n ≥ 5. If f(qz)nf ′(z) and g(qz)ng′(z) share a non-zero polynomial p(z)
CM, then we have f(qz)nf ′(z) = g(qz)ng′(z).

Proof. From the conditions, we get f(qz)nf ′(z)−p(z)
g(qz)ng′(z)−p(z) = c. If c = 1, then f(qz)nf ′(z) =

g(qz)ng′(z) follows. If c 6= 1, then we have

(4.8) f(qz)nf ′(z)− cg(qz)ng′(z) = p(z)(1− c).
Using the second main theorem, we get

T (r, f(qz)nf ′(z)) ≤ N(r, f(qz)nf ′(z)) +N

(
r,

1

f(qz)nf ′(z)

)
+ N

(
r,

1

f(qz)nf ′(z)− (1− c)p(z)

)
+ S(r, f(qz)nf ′(z))

≤ N

(
r,

1

f(qz)

)
+N

(
r,

1

f ′(z)

)
+N

(
r,

1

g(qz)ng′(z)

)
+ S(r, f)

≤ 2T (r, f) + 2T (r, g) + S(r, f).(4.9)

Similar as the above, we also get

T (r, g(qz)ng′(z)) ≤ 2T (r, f) + 2T (r, g) + S(r, g).(4.10)

Combining (4.9), (4.10) with (4.2), we have

n[T (r, f) + T (r, g)] ≤ 4[T (r, f) + T (r, g)] + S(r, f) + S(r, g),

which is a contradiction with the condition n ≥ 5. �
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