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Simple groups with m-regular first prime graph
component
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Abstract
Let G be a finite simple group and GK(G) be the prime graph of G. The
connected component of GK(G) whose vertex set contains 2 is denoted
by π1(G). In this paper, our purpose is to classify the finite simple
groups G such that π1(G) is regular. We prove that π1(G) is regular if
and only if all the connected components of GK(G) are cliques.
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1. Introduction
For a positive integer n, let π(n) denote the set of all prime divisors of n. Given a

finite group G, we set π(G) = π(|G|). The prime graph (or Gruenberg-Kegel graph )
GK(G) of G is a simple graph which is defined as follows. The vertex set of GK(G) is the
set π(G) and two distinct vertices p and q are adjacent (we write (p, q) ∈ GK(G)) if G
contains an element of order pq. If 2 ∈ π(G), then the connected component of GK(G)
whose vertex set contains 2 is denoted by π1(G).

The concept of prime graph arose during the investigation of certain cohomological
questions associated with integral representations of finite groups. And after that, prime
graphs have received some attention in the theory of finite groups. For instance, it has
been proved that some of finite simple groups can be characterized by their prime graphs
(see [2, 3, 5, 17]). Moreover, some graph properties of this graph have been studied. It
has been showed that for every finite group G, the number of connected components of
GK(G) is at most 6 (see [6, 16]) and the diameter of GK(G) is at most 5 (see [8]). Also, in
[9] the groups G such that GK(G) is a tree, have been investigated. Moreover, according
to [12, 16], we know that if ∆ is a connected component of GK(G) whose vertex set does
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not contain 2, then ∆ is a clique. Note that a clique in a graph is a subset of its vertices
such that every two vertices in the subset are connected by an edge. Motivated by this
result, Lucido and Moghaddamfar in [10], described the finite nonabelian simple groups
G such that π1(G) is a clique. Finally, in [4, 11, 18], the finite simple groups G such that
π1(G) is m-regular, where m ∈ {0, 1, 2}, have been obtained. For a nonnegative integer
m, a graph is called m-regular, when the degree of each vertex is m. Also, a graph is
regular if the degrees of all vertices are the same. The aim of this paper is to extend
them-regularity results, for an arbitrarym. In fact, we prove the following main theorem:

Main theorem. Let G be a finite nonabelian simple group and let m be a nonnegative
integer. If π1(G) is m-regular, then π1(G) is a clique and one of the following statements
holds:

• G = A5, A6, A2(4), A1(2k), where k > 1, 2B2(22k+1), where k ≥ 1 and m = 0;
• G = M11,M22, A7 and m = 1;
• G = J1, J2, J3, HiS,A9,

3D4(2), 2A3(3), 2A5(2), C3(2), D4(2) and m = 2;
• G = A12, A13 and m = 3;
• G = A1(q), where q ≡ 1 (mod 4) and m = |R1(q)| − 1;
• G = A1(q), where q ≡ 3 (mod 4), q > 3, and m = |R2(q)| − 1;
• G = A2(q), where (q − 1)3 6= 3, q + 1 = 2k, and m = |R1(q)|+ 1;
• G = 2A2(q), where (q + 1)3 6= 3, q − 1 = 2k, C2(q), where q > 2 or G2(3k),

where k ≥ 1 and m = |R1(q)|+ |R2(q)|.
It is worth remarking that by Rk(q) we mean the set of all primitive prime divisors of

qk − 1.
As an immediate consequence of the main theorem, we have the following corollary:

Corollary. Let G be a finite nonabelian simple group. Then π1(G) is regular if and
only if all the connected components of the prime graph GK(G) are cliques.

2. Notation and preliminary results
Throughout this paper, we use the following notation and definitions: By gcd(k, l) we

denote the greatest common divisor of k and l. Let G be a finite group. For p ∈ π(G),
put deg(p) := |{q ∈ π(G)| (p, q) ∈ GK(G)}|.
The notation for groups of Lie type is according to [1] and sometimes for abbreviation,
we write Aεn(q) and Dε

n(q), where ε ∈ {+,−}, and A+
n (q) = An(q), A−n (q) = 2An(q),

D+
n (q) = Dn(q), D−n (q) = 2Dn(q). Also, for an integer n, by η(n), ν(n) and νε(n) we

denote the following functions:

η(n) =

{
n if n is odd;
n/2 otherwise.

ν(n) =


n if n ≡ 0 (mod 4);
n/2 if n ≡ 2 (mod 4);
2n if n ≡ 1 (mod 2).

νε(n) =

{
n if ε = +;
ν(n) if ε = −.

All further unexplained group theory notation is standard and can be found in [1].
The following lemma describes the finite nonabelian simple groups G such that π1(G)

is m-regular, where m ∈ {0, 1, 2}:

2.1. Lemma. [4, 11, 18] Let G be a finite nonabelian simple group.
1. If π1(G) is 0-regular, then G = A5, A6;A2(4), A1(q), where q is a Fermat prime,

a Mersenne prime or a prime power of 2; 2B2(q), where q is an odd prime power
of 2.
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2. If π1(G) is 1-regular, thenG = A7;M11,M22;A2(3), 2A2(3), 2A3(2), G2(3); A1(q),
where q is a prime power such that 3 < q ≡ ε1 (mod 4) and |π(q − ε1)| = 2, for
ε ∈ {+,−}.

3. If π1(G) is 2-regular, thenG = A9; J1, J2, J3, HiS;C3(2), 2A2(9), 2A3(3), 3D4(2),
G2(9), D4(2); C2(q), where q = 4, 5, 7, 8, 9, 17; A1(q), where q is a prime power
such that 3 < q ≡ ε1 (mod 4) and |π(q − ε1)| = 3, for ε ∈ {+,−}.

The finite nonabelian simple groups G such that all the connected components of
GK(G) are cliques, have been determined in [10]. Since this result plays a role in the
proof of the main theorem, in the following, we state its revised version from [14]:

2.2. Lemma. Let G be a finite nonabelian simple group. Then all the connected com-
ponents of GK(G) are cliques if and only if G is one of the following:

1. Sporadic groups M11,M22, J1, J2, J3, HiS;
2. Alternating groups An, where n = 5, 6, 7, 9, 12, 13;
3. Groups of Lie type A1(q), where q > 3; A2(4); A2(q), where (q − 1)3 6= 3,

q+ 1 = 2k; 2A3(3); 2A5(2); 2A2(q), where (q+ 1)3 6= 3, q−1 = 2k; C3(2), C2(q),
where q > 2; D4(2); 3D4(2); 2B2(q), where q = 22k+1; G2(q), where q = 3k.

2.3. Remark. According to Table 1 in [7], we have π1(2A5(2)) = {2, 3, 5} and
π1(2A2(17)) = {2, 3, 17}. Moreover, by Lemma 2.2, the prime graph components of the
groups 2A5(2) and 2A2(17) are cliques. Thus these mentioned groups should be added
to the list of groups in Lemma 2.1(3).

3. Proof of the main theorem
If G is a finite nonabelian simple group, then by the classification of the finite simple

groups, it follows that G is a sporadic simple group, an alternating group or a simple
group of Lie type. We will consider each case separately.

According to [1], we can easily conclude the next statement for the sporadic simple
groups:

3.1. Lemma. Let G be a sporadic simple group. If π1(G) is m-regular, then one of the
following cases holds:

(1) G = M11,M22 and m = 1;
(2) G = J1, J2, J3, HiS and m = 2.

For considering the alternating groups, we need the following lemma:

3.2. Lemma. [7, Lemma 1] If n ≥ 19 is a natural number, then there are at least three
prime numbers qi such that (n+ 1)/2 < qi < n.

3.3. Lemma. Let G = An be an alternating group of degree n. If π1(G) is m-regular,
then π1(G) is a clique and one of the following cases holds:

(1) G = A5, A6 and m = 0;
(2) G = A7 and m = 1;
(3) G = A9 and m = 2;
(4) G = A12, A13 and m = 3.

Proof. According to Lemma 2.1, we can assume that m ≥ 3. Note that for odd primes
r, s ∈ π(An), (r, s) 6∈ GK(An) if and only if r + s > n. Also, (r, 2) 6∈ GK(An) if and
only if r + 4 > n (see [14]). So, it easy to see that if (s, r) ∈ GK(An) and (p, s) 6= (2, 3),
where 2 ≤ p < s < r, then (p, r), (p, s) ∈ GK(An). Moreover, if (p, r) ∈ GK(An), then
(p, s) ∈ GK(An).
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If we denote the i-th prime number, by pi, then since deg(2) = m, according to π(G),
we see that {2, p2, p3, · · · , pm, pm+1} ⊆ π1(G) and hence, pm+1 ≤ n. We know that
pm+2 ≤ n, otherwise,

π(G) = {2, p2, p3, · · · , pm, pm+1}
which implies that GK(G) is complete and this is impossible according to Lemma 2.2.
Since m ≥ 3, we have pm+2 ≥ 11. Also, since π1(G) is m-regular, we conclude that
(3, pm+2) 6∈ GK(G), otherwise, deg(3) = m + 1 which is a contradiction. Therefore,
n ≤ 2 + pm+2. On the other hand, since pm+1 ∈ π1(G) and deg(pm+1) = m, we deduce
that (pm, pm+1) ∈ GK(G) and hence, pm + pm+1 ≤ n. Thus pm + pm+1 ≤ n ≤ 2 + pm+2

which implies that

pm+2 − (pm + pm+1) ≥ −2(3.1)

Now, if pm+2 ≥ 19, then by Lemma 3.2 there exist at least three distinct primes qi such
that (pm+2 − 1)/2 < qi < pm+2. Thus we conclude that (pm+2 − 1)/2 < pm−1 < pm <
pm+1 < pm+2 and hence,

1 + (pm+2 − 1)/2 ≤ pm−1,

2 + (pm+2 − 1)/2 ≤ pm,(3.2)

3 + (pm+2 − 1)/2 ≤ pm+1.(3.3)

Summing 3.2 and 3.3, implies that 5 + 2 × (pm+2 − 1)/2 ≤ pm + pm+1 and hence,
pm+2 − (pm + pm+1) ≤ −4, which contradicts 3.1. Thus pm+2 ∈ {11, 13, 17}. If
pm+2 = 11, 13 or 17, then m = 3, 4 or 5 respectively. But according to 3.1, the
last two cases cannot happen. So, m = 3 and by 3.1, we see that n ∈ {12, 13}, as desired.
2

The rest of the paper will be devoted to the proof of the main theorem for the simple
groups of Lie type. We will consider the classical and the exceptional groups of Lie type
separately. For the classical simple groups, our method is based on the results of [14],
concerning the arithmetic criterion of adjacency in their prime graphs.

Let s be a prime and let k be a natural number. The s-part of k which is denoted
by ks is equal to st if st | k and st+1 - k. If q is a natural number, r is an odd prime
and gcd(r, q) = 1, then by e(r, q) we denote the smallest natural number k such that
qk ≡ 1 (mod r). If q is odd, we put e(2, q) = 1 whenever q ≡ 1 (mod 4), and e(2, q) = 2
otherwise. The following lemma is considered as a corollary to Zsigmondy’s theorem:

3.4. Lemma. [14, Lemma 1.4] Let q be a natural number greater than 1. For every
natural number k, there exists a prime r with e(r, q) = k, but for the cases q = 2 and
k = 1, q = 3 and k = 1, and q = 2 and k = 6.

A prime r with e(r, q) = k is called a primitive prime divisor of qk − 1. It is obvious
that qk − 1 can have more than one primitive prime divisor. We denote by Rk(q) the set
of all primitive prime divisors of qk − 1 and by rk(q) any element of Rk(q). When no
confusion can arise, we will write rk instead of rk(q) and Rk instead of Rk(q).

3.5. Lemma. [14, Propositions 2.1-2.2],[15, Propositions 2.4-2.5] Let G be a finite
simple group of Lie type over a field of order q = pα, for some prime p. Let r and s be
odd primes and r, s ∈ π(G) \ {p}. Put k = e(r, q) and l = e(s, q).

(1) If G = Aεn−1(q) and 2 ≤ νε(k) ≤ νε(l), then r and s are nonadjacent if and only
if νε(k) + νε(l) > n and νε(k) does not divide νε(l).

(2) If G = Bn(q) or Cn(q) and 1 ≤ η(k) ≤ η(l), then r and s are nonadjacent if and
only if η(k) + η(l) > n and l/k is not an odd natural number.
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(3) If G = Dε
n(q) and 1 ≤ η(k) ≤ η(l), then r and s are nonadjacent if and only

if 2η(k) + 2η(l) > 2n − (1 − ε(−1)k+l) and l/k is not an odd natural number.
Moreover, if ε = +, then the chain of equalities n = l = 2η(l) = 2η(k) = 2k, is
not true as well.

3.6. Lemma. [14, Proposition 3.1] Let G be a finite simple classical group of Lie type
over a field of characteristic p, and let r ∈ π(G) and r 6= p. Then r and p are nonadjacent
if and only if one of the following holds:

(1) G = Aεn−1(q), r is odd, and νε(e(r, q)) > n− 2;
(2) G = Cn(q) or G = Bn(q), η(e(r, q)) > n− 1;
(3) G = Dε

n(q), η(e(r, q)) > n− 2;
(4) G = A1(q), r = 2;
(5) G = Aε2(q), r = 3 and (q − ε1)3 = 3.

3.7. Lemma. [14, Proposition 4.1-4.2] Let G = Aεn−1(q) be a finite simple group of Lie
type, r be a prime divisor of q−ε1, and s be an odd prime distinct from the characteristic.
Put k = e(s, q). Then s and r are nonadjacent if and only if one of the following holds:

(1) νε(k) = n, nr ≤ (q − ε1)r, and if nr = (q − ε1)r, then 2 < (q − ε1)r;
(2) νε(k) = n− 1 and (q − ε1)r ≤ nr.

3.8. Lemma. [14, Propositions 4.3-4.4] Let G be a finite simple group of Lie type over
a field of order q = pα, for some prime p. Let r be an odd prime divisor of |G|, r 6= p,
and k = e(r, q).

(1) If G = Bn(q) or Cn(q), then r and 2 are nonadjacent if and only if η(k) = n and
one of the following holds:
(a) n is odd and k = (3− e(2, q))n;
(b) n is even and k = 2n.

(2) If G = Dε
n(q), then r and 2 are nonadjacent if and only if one of the following

holds:
(a) η(k) = n and gcd(4, qn − ε1) = (qn − ε1)2;
(b) η(k) = k = n− 1, n is even, ε = +, and e(2, q) = 2;
(c) η(k) = k/2 = n− 1, ε = +, and e(2, q) = 1;
(d) η(k) = k/2 = n− 1, n is odd, ε = −, and e(2, q) = 2.

3.9. Remark. Let G be a finite simple group over a field of order q, where q = pα for
an odd prime p. According to the above lemmas, it is evident that 2 and p are adjacent
in all classical simple groups except A1(q). Moreover, for a fixed k, every two elements
in Rk(q) are adjacent in GK(G).

From now on, we assume that q = pα, where p is a prime number.

3.10. Lemma. Let G be a finite simple classical group of Lie type. If π1(G) ism-regular,
then π1(G) is a clique and one of the following cases holds:

(1) G = C2(q), where q > 2, and m = |R1(q)|+ |R2(q)|.
(2) G = A1(q), where q > 3. In this case, if q ≡ 1 (mod 4), then m = |R1(q)| − 1;

and if q ≡ 3 (mod 4), then m = |R2(q)| − 1; also if q is even, then m = 1.
(3) G = A2(q), where (q − 1)3 6= 3, q + 1 = 2k, and m = 1 + |R1(q)|;
(4) G = A2(4), and m = 0;
(5) G = 2A3(3), 2A5(2), C3(2) or D4(2), and m = 2;
(6) G = 2A2(q), where (q + 1)3 6= 3, q − 1 = 2k, and m = |R1(q)|+ |R2(q)|;

Proof. According to the types of the classical groups, the proof will be divided into five
parts.
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Part A. G = Bn(q) or G = Cn(q), where n ≥ 2 and (n, q) 6= (2, 2):
If (n, q) = (3, 2), then Bn(q) ∼= Cn(q) and according to Lemma 2.1(3), the result is
obvious. Also, if n = 2, then q > 2 and Bn(q) ∼= Cn(q) and hence, Lemma 2.2 implies
that π1(G) is a clique. Thus according to Remark 3.9, it is enough to calculate deg(p).
Since π(G) = {p} ∪ R1(q) ∪ R2(q) ∪ R4(q), Lemma 3.6(2) implies that m = |R1| + |R2|
as desired. So we may assume that n ≥ 3 and (n, q) 6= (3, 2).
Case 1. Let n be an odd number.
• If 2 6∈ R2(q), then q ≡ 1 (mod 4) or p = 2. Since n ≥ 3, we can see that R2n ∩R2 =

∅. Also, Lemma 3.4 and the fact that (n, q) 6= (3, 2) imply that R2n(q) is nonempty.
Moreover, since n ≥ 3 is odd, according to Lemmas 3.8(1), 3.6(2) and 3.5(2), we have
(2, r2), (r2, r2n) ∈ GK(G). Thus {r2n, r2} ⊆ π1(G). Now, we claim that if (r, r2n) ∈
GK(G), then (r, r2) ∈ GK(G):

Since n ≥ 3 is odd, by Lemmas 3.8(1) and 3.6(2), we see that (r2, 2), (r2, p) ∈ GK(G).
Thus, we may assume that r ∈ Rl(q) \ {2}, where l ∈ N. Considering Lemma 3.5(2)
implies that 2n/l is an odd number, so is l/2. Lemma 3.5(2) now yields r and r2 are
adjacent in GK(G).

Moreover, since n ≥ 3 and 2 6∈ R2(q), considering Lemma 3.5(2) implies that
(r2, r2(n−1)) ∈ GK(G) but (r2n, r2(n−1)) 6∈ GK(G). Thus, deg(r2) > deg(r2n) and hence,
in this case π1(G) cannot be m-regular.
• If 2 ∈ R2(q), then q ≡ −1 (mod 4) and hence, q is odd. In this case, according to

Lemma 3.8(1), we have (2, r) ∈ GK(G) if and only if r 6∈ Rn(q). Also, Lemma 3.5(2)
implies that (rn, r2n) 6∈ GK(G). Thus if the vertex r is adjacent to r2n, then r and 2
are adjacent as well. On the other hand, according to Lemma 3.5(2), we have r2n and
r2(n−1) are nonadjacent and hence deg(2) > deg(r2n), which implies that π1(G) cannot
be m-regular.
Case 2. If n is even, then n ≥ 4. In this case, by Lemmas 3.6(2) and 3.8(1), we conclude
that r and 2 are adjacent if and only if r 6∈ R2n. Thus if r2n 6∈ π1(G), then π1(G) is a
clique, which is impossible according to Lemma 2.2. Thus r2n ∈ π1(G) and GK(G) is
connected. In this case, we have n = 2k ×m, where m ≥ 1 is odd and k ≥ 1. If m = 1,
then Lemmas 3.6(2), 3.5(2) and 3.8(1) imply that R2n(q) is an odd connected component
of GK(G), which is a contradiction. Therefore, m ≥ 3 and n 6= 2k. Now we claim that,
if (r, r2n) ∈ GK(G), then (r, r2k+1) ∈ GK(G):

Since n is even, by Lemmas 3.6(2) and 3.8(1), we conclude that

(2, r2n), (p, r2n) 6∈ GK(G).

If (r, r2n) ∈ GK(G), then r ∈ Rl(q) \ {2}, where l ∈ N and according to Lemma 3.5(2),
l = 2k+1 × j, where j | m. Therefore, we can easily infer our assertion by using Lemma
3.5(2).

On the other hand, since n 6= 2k, Lemma 3.8(1) implies that (2, r2k+1) ∈ GK(G).
Thus deg(r2n) < deg(r2k+1) and π1(G) cannot be m-regular.

Consequently, if G = Bn(q) or Cn(q), according to Cases 1 and 2, π1(G) is m-regular
if and only if (n, q) = (3, 2) or n = 2 and q > 2. Moreover, Lemma 2.2 implies that π1(G)
is a clique.
Part B. G = Dn(q), where n ≥ 4:
Case 1. If 2 ∈ R2(q), then q ≡ −1 (mod 4) and hence, p 6= 2. In this case, if n is even,
then according to Lemma 3.6(3) and |G|, we conclude that (r, p) ∈ GK(G) if and only if
r 6∈ Rn−1 ∪R2(n−1). Also, considering Lemma 3.8(2) and |G| imply that (r, 2) ∈ GK(G)
if and only if r 6∈ Rn−1. Thus R2(n−1) ⊆ π1(G) and deg(2) > deg(p). If n is odd, then
by the same procedure, we can conclude that (r, 2) ∈ GK(G) if and only if r 6∈ Rn and
(r, p) ∈ GK(G) if and only if r 6∈ Rn ∪R2(n−1). Thus deg(2) > deg(p) and π1(G) cannot
be m-regular.
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Case 2. If 2 6∈ R2(q), then p = 2 or q ≡ 1 (mod 4). If (n, q) = (4, 2), then according to
Lemma 2.1(3), the result is obvious. Thus we may assume that (n, q) 6= (4, 2) and hence,
R2∩R2(n−1) = ∅. Lemma 3.4 now implies R2(n−1) is nonempty. Also, by Lemmas 3.6(3)
and 3.8(2), we have (p, r2), (2, r2) ∈ GK(G). Moreover, by Lemma 3.5(3), we can easily
see that if r is an odd number which is adjacent to r2(n−1), then r is adjacent to r2 as
well. On the other hand, if n ≥ 5, then (r2, r3) ∈ GK(G), but (r3, r2(n−1)) 6∈ GK(G).
Also, if n = 4, then (r2, r4) ∈ GK(G), but (r4, r2(n−1)) 6∈ GK(G). Therefore, deg(r2) >
deg(r2(n−1)) and π1(G) cannot be m-regular.
Consequently, if G = Dn(q), according to Cases 1 and 2, π1(G) is m-regular if and only
if (n, q) = (4, 2) and m = 2. Moreover, Lemma 2.2 implies that π1(G) is a clique.
Part C. G = 2Dn(q), where n ≥ 4:
Case 1. In this case, we assume that 2 6∈ R2(q) and hence, q ≡ 1 (mod 4) or p = 2.
• If n is odd, then according to Lemmas 3.8(2), 3.6(3) and 3.5(3), we see that

(p, r2), (2, r2), (r2, r2n) ∈ GK(G) and hence, {r2, r2n} ⊆ π1(G). Now, we claim that
if (r, r2n) ∈ GK(G), then (r, r2) ∈ GK(G):

Since (2, r2), (p, r2) ∈ GK(G), it is sufficient to consider the case r ∈ π1(G) \ {2, p}.
Thus if (r, r2n) ∈ GK(G), then there exists a natural number l, such that r ∈ Rl(q).
Applying Lemma 3.5(3) implies that 2n/l is an odd number, so is l/2. Thus by Lemma
3.5(3), we have (r, r2) ∈ GK(G).

Moreover, Lemma 3.5(3) implies that (r2, r4) ∈ GK(G), but (r2n, r4) 6∈ GK(G). Thus
deg(r2) > deg(r2n) and π1(G) cannot be m-regular.
• If n ≥ 4 is even and (n, q) 6= (4, 2), then r2(n−1) ∈ π(G) and it is enough to

replace r2n with r2(n−1) in the previous argument and conclude that r2(n−1) ∈ π1(G)

and deg(r2) > deg(r2(n−1)). If G = 2D4(2), then according to Lemma 3.6(3), we see that
2 is just adjacent to 3 and 5. Thus π1(G) should be 2-regular. But according to Lemma
3.5(3), 3 is adjacent to 2,5,7 and hence, π1(G) cannot be m-regular.
Case 2. If 2 ∈ R2(q), then q ≡ −1 (mod 4) and hence, q is odd and q ≡ ε0 (mod 8),
where ε0 ∈ {3, 7}.
• If n is even, then according to Lemma 3.8(2), we have (2, r) ∈ GK(G) if and

only if r ∈ π(G) \ R2n. Thus (R2(n−1) ∪ Rn−1) ⊆ π1(G). Also, Lemma 3.6(3) implies
that (r, p) ∈ GK(G) if and only if r ∈ π(G) \ (R2n ∪ R2(n−1) ∪ Rn−1). Consequently,
deg(2) > deg(p) and Remark 3.9 implies that π1(G) cannot be m-regular.
• If n is odd and q ≡ 7 (mod 8), then as in the even case we can see that (2, r) ∈ GK(G)

if and only if r ∈ π(G) \ R2(n−1). Also, (r, p) ∈ GK(G) if and only if r ∈ π(G) \ (R2n ∪
R2(n−1)). Thus similarly, we can conclude that π1(G) in not m-regular. Therefore, we
may assume that n is odd and q ≡ 3 (mod 8). Now, by Lemma 3.8(2), (2, r) ∈ GK(G) if
and only if r ∈ π(G) \ (R2n ∪R2(n−1)). Thus (r3, 2), (2, r2(n−2)) ∈ GK(G). Also, Lemma
3.5(3) implies that (r3, r2(n−1)), (r3, r2n), (r3, r2(n−2)) 6∈ GK(G). Thus {r3, r2(n−2)} ⊆
π1(G) and the same argument in the above discussion conclude that deg(2) > deg(r3).

Consequently, if G = 2Dn(q), according to Cases 1 and 2, π1(G) cannot be m-regular.
Part D. G = An−1(q), where n ≥ 2 and (n, q) 6= (2, 2), (2, 3):
Case 1. In this case, we consider n ∈ {2, 3}. If n = 2, then Lemma 2.2 implies that the
simple group G has complete prime graph components. Also, we can see that π(G) =
{p} ∪R1 ∪R2. So, we can easily conclude the result by Lemmas 3.6(1,4) and 3.7. Thus
it remains to consider the case n = 3. In this case, if p 6= 2, then π(G) = {p}∪Ri, where
1 ≤ i ≤ 3, and according to Remark 3.9 and Lemma 3.7, we infer that (r, 2) 6∈ GK(G)
if and only if r ∈ R3(q). Thus since 2 ∈ R1 ∪ R2 and (2, p) ∈ GK(G), we conclude that
deg(2) = |R1|+ |R2|. Lemma 3.6(1,5) now yields (r, p) ∈ GK(G) if and only if

r ∈ R1(q) ∪ {2}, where (q − 1)3 6= 3;(3.4)

r ∈ (R1(q) ∪ {2}) \ {3}, where (q − 1)3 = 3.(3.5)



712

Now we find the possible cases which π1(A2(q)) is m-regular:
• If {2, 3} ∩ R1(q) = ∅, then 2 ∈ R2(q) and (q − 1)3 6= 3. Thus according to 3.4 we

have deg(p) = 1 + |R1| and since π1(G) is m-regular and deg(2) = |R1| + |R2|, we are
supposed to have |R2(q)| = 1. Therefore, q + 1 = 2k and by Lemma 2.2, the result is
obtained.
• If 2 ∈ R1 and 3 6∈ R1, then according to 3.4, deg(p) = |R1| and hence deg(2) > deg(p)

which implies that π1(G) is not m-regular.
• If 2 6∈ R1 and 3 ∈ R1, then since p 6= 2, we conclude that 2 ∈ R2. Also, by 3.4 and

3.5, we have deg(p) = 1 + |R1|, where (q−1)3 > 3 and deg(p) = |R1|, where (q−1)3 = 3.
Thus since π1(G) is m-regular, we infer that deg(2) = deg(p). Since R2 is nonempty, we
conclude that q + 1 = 2k. Therefore, the result is obvious by Lemma 2.2.
• If {2, 3} ⊆ R1. As in the previous case, we conclude that deg(p) = |R1| − 1, where

(q − 1)3 = 3 and deg(p) = |R1|, where (q − 1)3 > 3. Thus both cases imply that
deg(2) > deg(p) and hence, in this case π1(G) is not m-regular.
Now it remains to consider the case n = 3 and q = 2α ≥ 4:
• If R1 = {3}, then according to Lemma 3.6(1,5), we conclude that 2 is a vertex with

degree zero. On the other hand, since 3 | (2α−1), we conclude that α = 2k, where k ∈ N.
Thus 2α − 1 = (2k − 1)(2k + 1). But since R1 = {3}, we have 2k − 1 = 1 and hence,
G ∼= A2(4) and π1(G) is 0-regular.
• If R1 6= {3}, then there is r1 ∈ R1 \ {3}. Now, according to Lemmas 3.6(5) and 3.7,

we conclude that (r, r1) ∈ GK(G) if and only if r ∈ π(G)\R3. Thus deg(r1) = |R1|+|R2|.
Lemma 3.6(1,5) now yields deg(2) ≤ |R1| and hence, deg(2) < deg(r1) and in this case
π1(G) cannot be m-regular.
Case 2. Let n ≥ 4. If 2 ∈ R2(q), then q ≡ −1 (mod 4) and hence, p 6= 2. According to
Lemma 3.6(1), (p, r) ∈ GK(G) if and only if r ∈ π(G) \ (Rn ∪Rn−1). On the other hand,
since 4 | (q + 1), so (q − 1)2 = 2 and Lemma 3.7 implies that (2, r) ∈ GK(G) if and only
if either r ∈ π(G) \Rn or r ∈ π(G) \Rn−1. Thus deg(2) > deg(p) and in this case π1(G)
cannot be m-regular.
If 2 6∈ R2(q), then Lemmas 3.5(1), 3.6(1) and 3.7 imply that (r2, r4), (r2, 2) ∈ GK(G)
and hence, {r2, r4} ⊆ π1(G). Now, we claim that if (r, r4) ∈ GK(G), then r and r2 are
adjacent as well:

Since 2 6∈ R2(q) and n ≥ 4, according to Lemmas 3.6(1) and 3.7, we conclude that
(p, r2), (2, r2), (r1, r2) ∈ GK(G). Thus if (r, r4) ∈ GK(G), then it is enough to consider
the case r ∈ Rl(q), where l ≥ 2. Since (rl, r4) ∈ GK(G), by Lemma 3.5(1), we have
l + 4 ≤ n or 4 | l or l | 4. In each case, by using Lemma 3.5(1), we conclude that
(rl, r2) ∈ GK(G).

If n ≥ 5, then we can choose l ∈ {n − 2, n − 3} as an odd integer greater than 1.
Now by Lemma 3.5(1), we can easily check that (rl, r4) 6∈ GK(G), but (rl, r2) ∈ GK(G).
Therefore, deg(r2) > deg(r4). Now it remains to consider the case n = 4. In this case,
we have π(G) = {p}∪Ri, where 1 ≤ i ≤ 4, and since 2 6∈ R2, we have p = 2 or 4 | (q−1).
Lemmas 3.7, 3.6(1) and 3.5(1) now yields (r, r4) ∈ GK(A3(q)) if and only if r ∈ R4 ∪R2.
Also, (r, r2) ∈ GK(A3(q)) if and only if r ∈ π(A3(q)) \ R3. Thus deg(r2) > deg(r4) and
in this case π1(G) cannot be m-regular.

Consequently, according to Cases 1 and 2, we conclude that π1(An−1(q)) is m-regular
if and only if π1(An−1(q)) is a clique.
Part E. G = 2An−1(q), where n ≥ 3 and (n, q) 6= (3, 2):
Case 1. If n = 3, we consider the cases “q is even” and “q is odd”, separately:
• If q is even, then π(G) = {2} ∪R1 ∪R2 ∪R6. According to Lemma 3.6(1), we know

that 2 is nonadjacent to r1 and r6. If R2 6= {3}, then Lemmas 3.7 and 3.6(1,5) imply that
(r2, r) ∈ GK(G), where r2 ∈ R2\{3} and r ∈ R1∪R2∪{2}. Thus deg(2) ∈ {|R2|, |R2|−1}
and deg(r2) = |R1|+ |R2| which imply that deg(2) < deg(r2). But this is a contradiction
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to the fact that π1(G) is m-regular and hence, R2 = {3}. Now, since q 6= 2 is even we
deduce that (q + 1) = 3k and (q + 1)3 6= 3. Thus by Lemmas 3.7, 3.5(1) and 3.6(1,5) we
can see that (2, r) ∈ GK(G) if and only if r = 3 and also, (3, r) ∈ GK(G) if and only if
r ∈ {2} ∪ R1. Therefore, deg(2) = 1 < deg(3) = |R1| + 1 and in this case π1(G) cannot
be m-regular.
• If q is odd, then by Lemma 3.7 and Remark 3.9, we can easily see that deg(2) = |R1|+

|R2|. Since π1(G) is m-regular, Remark 3.9 implies that deg(p) = deg(2) = |R1|+ |R2|.
On the other hand, according to Lemma 3.6(1,5) and Remark 3.9, we conclude that
(r, p) ∈ GK(G) if and only if

r ∈ ({2} ∪R2) \ {3} and (q + 1)3 = 3(3.6)

or

r ∈ {2} ∪R2 and (q + 1)3 6= 3(3.7)

Thus if 3.6 holds, then deg(p) = |R2| or deg(p) = |R2| − 1, where 2 ∈ R1 or 2 ∈ R2

respectively. If 3.7 holds, then deg(p) = |R2| + 1 or deg(p) = |R2|, where 2 ∈ R1 or
2 ∈ R2 respectively.
Therefore, according to the above statements, we can easily conclude that (q + 1)3 6= 3,
q − 1 = 2k and m = |R1|+ |R2|. Moreover, Lemma 2.2 implies that π1(G) is a clique.
Case 2. If n ≥ 4, then we consider the following two subcases:
Subcase a. If R1(q) = ∅, then q ∈ {2, 3}. First we deal with the case q = 2. Since
2A3(2) ∼= C2(3) is 1-regular by Lemma 2.1(2), we can assume that n 6= 4. In this case,
according to Lemma 3.6(1), (r, 2) 6∈ GK(G) if and only if r ∈ Rl, where ν(l) ∈ {n, n−1}.
Since (n, q) 6= (4, 2), Lemma 3.7 implies that deg(2) < deg(3). Similarly, if n3 > 3, then
we can conclude that deg(2) < deg(3). Therefore, it remains to consider the case n3 = 3.
If n = 6, then by Lemmas 3.6(1), 3.7 and 3.5(1), we have π1(G) = {2, 3, 5} is 2-regular.
Thus we may assume that n ≥ 12 and in this case we know that R4(2)∪R8(2) = {5, 17} ⊆
π(G). According to Lemmas 3.6(1) and 3.7, we have (2, r4), (3, r4) ∈ GK(G). Now we
claim that if (r, r8) ∈ GK(G), then (r, r4) ∈ GK(G):

Since r4 is adjacent to 2 and 3 and R2(2) = {3}, it is enough to consider the case
r ∈ Rl(2), where ν(l) ≥ 2. Thus if (rl, r8) ∈ GK(G), then by Lemma 3.5(1), we can see
that ν(l) + 8 ≤ n, ν(l) | 8 or 8 | ν(l) which imply that ν(l) + 4 ≤ n, ν(l) ∈ {2, 4, 8} or
8 | ν(l), respectively and hence, (rl, r4) ∈ GK(G).

Set l be an integer, where ν(l) ∈ {n−5, n−4} and ν(l) is odd. Thus by Lemma 3.5(1),
we can conclude that (rl, r4) ∈ GK(G), but (rl, r8) 6∈ GK(G). Therefore, deg(r4(2)) >
deg(r8(2)). Thus if n ≥ 4, then π1(2An−1(2)) is m-regular if and only if (n,m) = (4, 1)
or (n,m) = (6, 2). Moreover, according to Lemma 2.2, in both cases π1(2An−1(2)) is a
clique.

If q = 3, then according to Lemma 3.6(1), we have (r, 3) 6∈ GK(G) if and only if
ν(e(r, 3)) ∈ {n − 1, n}. On the other hand, if n2 6= 4, then by Lemma 3.7 and as in
the above discussion, we can see that deg(2) = deg(r2(3)) > deg(3). Thus it is enough
to consider the case n2 = 4. Since according to Lemma 2.1(3), π1(2A3(3)) is 2-regular,
we may assume that n ≥ 8. Also, we know that Rn(3) ⊆ π(G). Now, we claim that if
(r, rn) ∈ GK(G), then (r, r4) ∈ GK(G):

Since n ≥ 8, according to Lemmas 3.6(1) and 3.7, we can see that (3, r4), (2, r4) ∈
GK(G) and since R2(3) = {2} we may assume that r ∈ Rl(3), where ν(l) ≥ 2. Now
Lemma 3.5(1) implies that ν(l) | n. If ν(l) = n, then since 4 | n, by Lemma 3.5(1), we
conclude that (r, r4) ∈ GK(G). If ν(l) 6= n, then ν(l) ≤ n/2 and since n ≥ 8, so we have
ν(l) + 4 ≤ /2 + 4 ≤ n. Now, using Lemma 3.5(1) completes the proof of our claim.

Since (2, r4) ∈ GK(G) and (2, rn) 6∈ GK(G), according to the above discussion, we
conclude that deg(r4) > deg(rn). As n ≥ 4, we can see that π1(2An−1(3)) is m-regular if
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and only if (n,m) = (4, 2). Moreover, according to Lemma 2.2, in this case π1(2An−1(3))
is a clique.
Subcase b. If R1(q) 6= ∅, then we have the following cases:
• If 2 ∈ R1, then q ≡ 1 (mod 4) and hence q is odd. According to Lemma 3.6(1) and

Remark 3.9, we conclude that (r, p) 6∈ GK(G) if and only if ν(e(r, q)) ∈ {n− 1, n}. Since
π1(G) is m-regular, we should have deg(2) = deg(p) and hence, Lemma 3.7 implies that
n2 = (q + 1)2 > 2, which is impossible according to q ≡ 1 (mod 4).
• If 2 6∈ R1 and n ≥ 5, then by using Lemmas 3.6(1), 3.7 and 3.5(1), we can easily see

that (p, r1), (2, r1), (r1, r4) ∈ GK(G) and each vertex which is adjacent to r4 is adjacent
to r1, as well. On the other hand, according to Lemma 3.5(1), the vertex rl, where ν(l) ∈
{n− 3, n− 2} is odd, is adjacent to r1 but is nonadjacent to r4. Thus deg(r1) > deg(r4)
and π1(G) cannot be m-regular. If 2 6∈ R1 and n = 4, then p = 2 or q ≡ −1 (mod
4). Thus Lemmas 3.6(1) and 3.7 imply that (2, r4), (p, r4) 6∈ GK(G). Now, by Lemma
3.5(1), we conclude that (r, r4) ∈ GK(G) if and only if r ∈ R1 ∪ R4. Also, we can see
that (r, r1) ∈ GK(G) if and only if r ∈ {p} ∪R1 ∪R2 ∪R4. Thus deg(r1) > deg(r4) and
hence, π1(G) cannot be m-regular.

Consequently, according to Cases 1 and 2, we conclude that π1(2An−1(q)) ism-regular
if and only if π1(2An−1(q)) is a clique. 2

In order to complete the proof of the main theorem, we need the following lemmas for
considering the Ree groups 2G2(32n+1) and 2F4(22n+1), where n is a natural number.

3.11. Lemma. [14, Lemma 1.5(2-3)] Let n be a natural number.
(1) Let m1(G,n) = 32n+1 − 1, m2(G,n) = 32n+1 + 1, m3(G,n) = 32n+1 − 3n+1 +

1, m4(G,n) = 32n+1 + 3n+1 + 1. Then gcd(m1(G,n),m2(G,n)) = 2 and
gcd(mi(G,n),mj(G,n)) = 1 otherwise.

(2) Letm1(F, n) = 22n+1−1, m2(F, n) = 22n+1+1, m3(F, n) = 24n+2+1, m4(F, n) =
24n+2 − 22n+1 + 1, m5(F, n) = 24n+2 − 23n+2 + 22n+1 − 2n+1 + 1, m6(F, n) =
24n+2 + 23n+2 + 22n+1 + 2n+1 + 1.
Then gcd(m2(F, n),m4(F, n)) = 3 and gcd(mi(F, n),mj(F, n)) = 1 otherwise.

3.12. Lemma. [14, Propositions 3.3(2-3)] Let G be a finite simple Ree group over a
field of characteristic p, let r ∈ π(G) \ {p}. Then r, p are nonadjacent if and only if one
of the following holds:

(1) G = 2G2(32n+1), r divides mk(G,n) and r 6= 2.
(2) G = 2F4(22n+1), r divides mk(F, n), r 6= 3 and k > 2.

3.13. Lemma. [14, Propositions 4.5(8)] If G = 2G2(32n+1) and r ∈ π(G) \ {2, 3}, then
r and 2 are nonadjecent if and only if r divides m3(G,n) or m4(G,n).

If G = 2F4(22n+1), then denote by Si(G) the set π(mi(F, n)) \ {3}. Thus we have the
following lemma:

3.14. Lemma. [15, Propositions 2.9(3)] Let G = 2F4(22n+1) and r, s ∈ π(G) \ {2}.
Then r and s are nonadjecent if and only if either r ∈ Sk(G) and s ∈ Sl(G), where l 6= k,
{k, l} 6= {1, 2}, {1, 3}; or r = 3 and s ∈ Sl(G), where l ∈ {3, 5, 6}.

3.15. Lemma. Let G be a finite simple exceptional group of Lie type. If π1(G) is
m-regular, then π1(G) is a clique and one of the following cases holds:

(1) G = 2B2(22n+1) and m = 0;
(2) G = 3D4(2) and m = 2;
(3) G = G2(3n) and m = |R1(q)|+ |R2(q)|.

Proof. According to the compact form of GK(G) in [15], where

G ∈ {E7(q), E8(q), E6(q), 2E6(q), F4(q)},



715

we can easily find two vertices p and q in π1(G) which have the following properties:

(1) If (p, r) ∈ GK(G), then (q, r) ∈ GK(G);
(2) There exists a prime s in π(G), where (p, s) 6∈ GK(G) but (q, s) ∈ GK(G).

Thus deg(q) > deg(p) which implies that π1(G) cannot be m-regular. In the same man-
ner we can see that π1(3D4(q)) is m-regular if and only if q = 2. We omit the details
for convenience. Also, according to the compact form of GK(G2(q)), we can see that
π1(G2(q)) is m-regular if and only if q = 3α. In this case, we have m = |R1| + |R2|.
Moreover, by Lemma 2.1(1), we know that π1(2B2(22n+1)), where n ∈ N, is 0-regular.
Additionally, if G = 2F4(2)

′, then using [1] implies that deg(2) = 2, deg(3) = 1 and
(2, 3) ∈ GK(G) and hence, π1(2F4(2)

′
) is not m-regular. Thus it remain to consider

the simple groups, 2G2(32n+1) and 2F4(22n+1), where n ∈ N. If G = 2G2(32n+1), then
Lemma 3.12(1) implies that (3, r) ∈ GK(G) if and only if r = 2. Also, according to
Lemma 3.13, we can see that (2, r) ∈ GK(G) if and only if r = 3 or r | m1(G,n) or
r | m2(G,n). Thus deg(2) > deg(3) and π1(2G2(32n+1)) is not m-regular. Finally, if
G = 2F4(22n+1), then Lemma 3.12(2) implies that (2, r) ∈ GK(G) if and only if r = 3
or r | m1(F, n) or r | m2(F, n). Moreover, according to Lemma 3.14, we can see that
(3, r) ∈ GK(G) if and only if r = 2 or r | m1(F, n) or r | m2(F, n) or r | m4(F, n). Thus
deg(2) < deg(3) and π1(2F4(22n+1)) is not m-regular. 2
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