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Optimizing the convergence rate of the Wallis
sequence

Cristinel Mortici∗

Abstract
The aim of this paper is to introduce a method for increasing the conver-
gence rate of the Wallis sequence. Some sharp inequalities are stated.
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1. Introduction
One of the most known formula for estimating of the number π is the Wallis’ formula

(1.1)
π

2
= lim
n→∞

2 · 2 · 4 · 4 · 6 · 6 · ... · 2n · 2n
1 · 3 · 3 · 5 · 5 · 7 · ... · (2n− 1)(2n+ 1)

,

e.g., [1, Rel. 6.1.49, p. 258].
It was discovered in 1655 by the English mathematician John Wallis (1616-1703), while

he was preoccupied to calculate the value of π by finding the area under the quadrant
of a circle. The Wallis’ formula is also related to the problem of estimation of the large
factorials, which plays a central role in combinatorics, graph theory, special functions
and other branches of science as physics or applied statistics.

The Wallis’ sequence

Wn =

n∏
k=1

4k2

4k2 − 1

converges very slowly to its limit. For example,

W100 ≈
π

2
− 3. 902 6× 10−3 , W10000 ≈

π

2
− 3. 9267× 10−5,

and in consequence, many authors are concerned to improve the speed of convergence of
the Wallis formula (1.1), usually by indicate the upper and lower bounds of the Wallis
sequence (Wn)n≥1.
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Here, to every approximation of the form π/2 ≈ f (n) , we define the relative error
sequence (ωn)n≥1 by the formula

π

2
= f (n) · expωn

and we say that the approximation π/2 ≈ f (n) is as better as (ωn)n≥1 faster converges
to zero.

The speed of convergence of the sequence (ωn)n≥1 is computed throughout this paper,
using the following basic

Lemma 1.1. If (ωn)n≥1 is convergent to zero and there exists the limit

(1.2) lim
n→∞

nk(ωn − ωn+1) = l ∈ R,

with k > 1, then

lim
n→∞

nk−1ωn =
l

k − 1
.

We see from Lemma 1.1 that the speed of convergence of the sequence (ωn)n≥1 increases
together with the value k satisfying (1.2). This Lemma was used by Mortici [2]-[15] for
constructing asymptotic expansions, or to accelerate some convergences. For proof and
other details, see, e.g., [2], or [4].

We use these ideas by considering new factors to accelerate the convergence of the
Wallis sequence and to obtain better approximations for π.

It is well known that the speed of convergence of the sequence lnWn toward ln π
2
is

n−1 (this also follows from Theorem 2.1, i) from the next section).
We will see that a simple change in (Wn)n≥1 of the last factor 2n by 2n − 1

4
in the

denumerator and of the last factor 2n+ 1 by 2n+ 1
4
in the denominator, we obtain the

quicker sequence

tn =
2 · 2 · 4 · 4 · 6 · 6 · ... · 2n ·

(
2n− 1

4

)
1 · 3 · 3 · 5 · 5 · 7 · ...(2n− 1)

(
2n+ 1

4

)
such that ln tn converges to ln π

2
with the speed of convergence n−3.

Other idea to improve the speed of convergence is to consider new factors of the form

Tn =Wn ·
P (n)

Q (n)
,

where P, Q are polynomials of equal degrees. More precisely, we define in this paper the
sequences

ρn =Wn ·
n+ 5

8

n+ 3
8

σn =Wn ·
n2 + 9

8
n+ 23

64

n2 + 7
8
n+ 15

64

τn =Wn ·
n3 + 13

8
n2 + 37

32
n+ 167

512

n3 + 11
8
n2 + 29

32
n+ 105

512

χn =Wn ·
n4 + 17

8
n3 + 161

64
n2 + 389

256
n+ 1473

4096

n4 + 15
8
n3 + 137

64
n2 + 291

256
n+ 945

4096

having increasingly speed of convergence. In fact, the sequences ln ρn, lnσn, ln τn, lnχn
converge to ln π

2
with the speed of convergence n−3, n−5, n−7 and n−9 respectively.



2. Modifying the last fraction
First we modify the last fraction from (1.1) to define the sequence

(2.1) tn =
2 · 2 · 4 · 4 · 6 · 6 · ... · 2n · (2n+ a)

1 · 3 · 3 · 5 · 5 · 7 · ...(2n− 1)(2n+ b)
=Wn

(2n+ a) (2n+ 1)

2n (2n+ b)
,

where a, b are real parameters. For a = 0 and b = 1, the Wallis sequence is obtained and
we prove that for a = −1/4 and b = 1/4, the resulting sequence has a superior speed of
convergence.

In this sense, let us define the sequence (ωn)n≥1 by

(2.2)
π

2
=

2 · 2 · 4 · 4 · 6 · 6 · ... · 2n · (2n+ a)

1 · 3 · 3 · 5 · 5 · 7 · ... · (2n− 1)(2n+ b)
· expωn = tn · expωn .

Now we are in position to state the following

Theorem 2.1. Let (ωn)n≥1 be the sequence defined by (2.2), where a, b are real
parameters. Then:
i) If b− a 6= 1

2
, then the speed of convergence of (ωn)n≥1 is n−1, since

lim
n→∞

nωn =
1

2

(
b− a− 1

2

)
6= 0.

ii) If b− a = 1
2
and (a, b) 6=

(
− 1

4
, 1
4

)
, then the speed of convergence of (ωn)n≥1 is n−2,

since

lim
n→∞

n2ωn = −4a+ 1

32
6= 0.

iii) If (a, b) =
(
− 1

4
, 1
4

)
, then the speed of convergence of (ωn)n≥1 is n−3, since

lim
n→∞

n3ωn =
3

256
6= 0.

Proof. As we are interested to compute limits of the form (1.2), we develop in power
series of n−1 the sequence

ωn − ωn+1 = ln
2n (2n+ 2) (2n+ 2 + a) (2n+ b)

(2n+ 1)2 (2n+ 2 + b) (2n+ a)
,

namely

ωn − ωn+1 =

(
1

2
b− 1

2
a− 1

4

)
1

n2
+

(
1

4
a2 +

1

2
a− 1

4
b2 − 1

2
b+

1

4

)
1

n3
−

−
(
1

8
a3 +

3

8
a2 +

1

2
a− 1

8
b3 − 3

8
b2 − 1

2
b+

7

32

)
1

n4
+O

(
1

n5

)
and now the conclusion easily follows using Lemma 1.1.�

3. Adding new rational factors
Other interesting method to improve the speed of convergence of the Wallis sequence

is to add new factors of the form

Tn =Wn ·
P (n)

Q (n)
,

where P, Q are polynomials of equal degrees, having the leading coefficient equal to one.
In this sense, we give the following results:

Theorem 3.1. Let us define the sequence (µn)n≥1 by

π

2
=Wn ·

n+ a

n+ b
· expµn.



i) If a− b 6= 1
4
, then the speed of convergence of (µn)n≥1 is n−1, since

lim
n→∞

nµn = b− a+ 1

4
6= 0.

ii) If a − b = 1
4
and (a, b) 6=

(
5
8
, 3
8

)
, then the speed of convergence of (µn)n≥1 is n−2,

since

lim
n→∞

n2µn =
8a− 5

32
6= 0.

iii) If (a, b) =
(
5
8
, 3
8

)
, then the speed of convergence of (µn)n≥1 is n−3, since

lim
n→∞

n3µn =
−3
256
6= 0.

Proof. We have

µn − µn+1 = ln

(
(2n+ 2)2

(2n+ 1) (2n+ 3)
· n+ 1 + a

n+ 1 + b
· n+ b

n+ a

)
or

µn − µn+1 =

(
b− a+ 1

4

)
1

n2
+

(
a2 + a− b2 − b− 1

2

)
1

n3
−

−
(
a3 +

3

2
a2 + a− b3 − 3

2
b2 − b− 25

32

)
1

n4
+O

(
1

n5

)
,

and the conclusion follows using Lemma 1.1.�

Theorem 3.2. Let us define the sequence (νn)n≥1 by

π

2
=Wn ·

n2 + an+ b

n2 + cn+ d
· exp νn

where a, b, c, d are real parameters and denote:

α = c− a+ 1

4

β = a2 + a− c2 − c− 2b+ 2d− 1

2

γ = 3b− a+ c− 3d+ 3ab− 3cd− 3

2
a2 − a3 + 3

2
c2 + c3 +

25

32

δ = a4 + 2a3 − 4a2b+ 2a2 − 6ab+ a+ 2b2 − 4b− c4−

− 2c3 + 4c2d− 2c2 + 6cd− c− 2d2 + 4d− 9

8

i) If α 6= 0, then the speed of convergence of the sequence (νn)n≥1 is n−1, since

lim
n→∞

nνn = α 6= 0.

ii) If α = 0 and β 6= 0, then the speed of convergence of (νn)n≥1 is n−2, since

lim
n→∞

n2νn =
β

2
6= 0.

iii) If α = β = 0, and γ 6= 0, then the speed of convergence of (µn)n≥1 is n−3, since

lim
n→∞

n3µn =
γ

3
6= 0.

iv) If α = β = γ = 0 and δ 6= 0, then the speed of convergence of (µn)n≥1 is n−4, since

lim
n→∞

n4µn =
δ

4
6= 0.



v) If α = β = γ = δ = 0, (equivalent with a = 9
8
, b = 23

64
, c = 7

8
, d = 15

64
), then the speed

of convergence of (µn)n≥1 is n−5, since

lim
n→∞

n5νn =
45

16384
.

Proof. We have

νn − νn+1 = ln

(
(2n+ 2)2

(2n+ 1) (2n+ 3)
· (n+ 1)2 + a (n+ 1) + b

(n+ 1)2 + c (n+ 1) + d
· n

2 + cn+ d

n2 + an+ b

)
,

or

νn − νn+1 =

(
c− a+ 1

4

)
1

n2
+

(
a2 + a− c2 − c− 2b+ 2d− 1

2

)
1

n3
+

+

(
3b− a+ c− 3d+ 3ab− 3cd− 3

2
a2 − a3 + 3

2
c2 + c3 +

25

32

)
1

n4
+

+
(
a4 + 2a3 − 4a2b+ 2a2 − 6ab+ a+ 2b2 − 4b− c4−

−2c3 + 4c2d− 2c2 + 6cd− c− 2d2 + 4d− 9

8

)
1

n5
+O

(
1

n6

)
and we recognize the coefficients α, β, γ, δ in this power series. The conclusion follows
using Lemma 1.1.�

More accurate results can be established in case of the family of approximations of
the form

π

2
≈Wn ·

n3 + an2 + bn+ c

n3 + dn2 + fn+ g
,

where a, b, c, d, f, g are real parameters. As above, we introduce the sequence (ψn)n≥1

by

π

2
=Wn ·

n3 + an2 + bn+ c

n3 + dn2 + fn+ g
· expψn

and we can state the following

Theorem 3.3. The fastest sequence of the form (ψn)n≥1 is obtained for

(3.1) a =
13

8
, b =

37

32
, c =

167

512
, d =

11

8
, f =

29

32
, g =

105

512
.

In this case, we have

lim
n→∞

n7ψn = − 1575

1048 576
.

For every other real parameters a, b, c, d, f, g, different from the values (3.1), the speed
of convergence of the sequence (ψn)n≥1 is at most n−6.

Proof. We have

ψn − ψn+1 = ln
(2n+ 2)2

(2n+ 1) (2n+ 3)
+

+ ln

(
(n+ 1)3 + a (n+ 1)2 + b (n+ 1) + c

(n+ 1)3 + d (n+ 1)2 + f (n+ 1) + g
· n

3 + dn2 + fn+ g

n3 + an2 + bn+ c

)
,

or

ψn − ψn+1 = −
(
a− d− 1

4

)
1

n2
+

(
a2 + a− d2 − d− 2b+ 2f − 1

2

)
1

n3
+

+

(
3b− a− 3c+ d− 3f + 3g + 3ab− 3df − 3

2
a2 − a3 + 3

2
d2 + d3 +

25

32

)
1

n4
−



−
(
4b− a− 6c+ d− 4f + 6g + 4a2b− 4d2f + 6ab− 4ac− 6df + 4dg−

−2a2 − 2a3 − a4 − 2b2 + 2d2 + 2d3 + d4 + 2f2 +
9

8

)
1

n5
−

−
(
a− 5b+ 10c− d+ 5f − 10g + 5ab2 − 10a2b− 5a3b+ 5a2c− 5df2+

+10d2f + 5d3f − 5d2g − 10ab+ 10ac− 5bc+ 10df − 10dg + 5fg +
5

2
a2+

+
10

3
a3 +

5

2
a4 + 5b2 + a5 − 5

2
d2 − 10

3
d3 − 5

2
d4 − d5 − 5f2 − 301

192

)
1

n6
+

+
(
−a6 − 3a5 + 6a4b− 5a4 + 15a3b− 6a3c− 5a3 − 9a2b2 + 20a2b−

−15a2c− 3a2 − 15ab2 + 12abc+ 15ab− 20ac− a+ 2b3 − 10b2+

+15bc+ 6b− 3c2 − 15c+ d6 + 3d5 − 6d4f + 5d4 − 15d3f + 6d3g+

+5d3 + 9d2f2 − 20d2f + 15d2g + 3d2 + 15df2 − 12dfg − 15df+

+ 20dg + d− 2f3 + 10f2 − 15fg − 6f + 3g2 + 15g +
69

32

)
1

n7
+O

(
1

n8

)
.

If we impose that the first coefficients of n−k, for k = 2, 3, 4, 5, 6, 7, to vanish, then the
obtained system with unknowns a, b, c, d, f, g has the unique solution (3.1).

Otherwise, if p denotes the smallest element of {2, 3, 4, 5, 6, 7} such that the coefficient
of n−p is not zero, then the corresponding limit is non-zero:

lim
n→∞

np (ψn − ψn+1) 6= 0.

According with Lemma 1.1, the speed of convergence of the sequence (ψn)n≥1 is np−1,

which is less than n−7.�

4. Concluding Remarks

Similar results, which are increasingly accurate can be obtained if we consider approx-
imations of the form

π

2
≈Wn ·

P (n)

Q (n)
,

where degP = degQ ≥ 4. In case of the polynomials of fourth degree, it can be proved
that the best approximation is

π

2
≈Wn ·

n4 + 17
8
n3 + 161

64
n2 + 389

256
n+ 1473

4096

n4 + 15
8
n3 + 137

64
n2 + 291

256
n+ 945

4096

.

We omit the proof for sake of simplicity.
As above, the coefficients of these polynomials are the solution of the system defined

by the first eight coefficients from the associated power series.
Moreover, the sequence (ζn)n≥1 defined by

π

2
=Wn ·

n4 + 17
8
n3 + 161

64
n2 + 389

256
n+ 1473

4096

n4 + 15
8
n3 + 137

64
n2 + 291

256
n+ 945

4096

· exp ζn

satisfies

ζn − ζn+1 =
893025

67108864
· 1

n10
+O

(
1

n11

)
.

According to Lemma 1.1, the speed of convergence of (ζn)n≥1 is n−9, since

lim
n→∞

n9ζn =
99225

67108864
.



Our new defined sequences have great superiority over the Wallis sequence. Precisely, we
tabulate the following numerical results:

n π
2
−Wn ρn − π

2
π
2
− σn τn − π

2
π
2
− χn

1 0.23746 5.0× 10−3 4.3× 10−4 7.2× 10−5 1.8× 10−5

10 3.7× 10−2 1.6× 10−5 3.4× 10−8 1.6× 10−10 1.4× 10−12

20 1.9× 10−2 2.1× 10−6 1.2× 10−9 1.5× 10−12 3.6× 10−15

50 7.8× 10−3 1.4× 10−7 1.3× 10−11 2.8× 10−15 1.1× 10−18

100 3.9× 10−3 1.8× 10−8 4.2× 10−13 2.3× 10−17 2.2× 10−21

300 1.3× 10−3 6.8× 10−10 1.8× 10−15 1.1× 10−20 1.2× 10−25

500 7.8× 10−4 1.5× 10−10 1.4× 10−16 3.0× 10−22 1.1× 10−27

1000 3.9× 10−4 1.8× 10−11 4.3× 10−18 2.4× 10−24 7.6× 10−29

4. Sharp bounds
Whenever an approximation formula of the form f (n) ≈ g (n) is given, there is a

tendency to improve it by using a series of the form

f (n) ∼ g (n) exp

(
∞∑
k=1

ak
nk

)
,

also called an asymptotic series. Although in asymptotic analysis, the problem of con-
structing asymptotic expansions is considered to be technically difficult, an elementary
method for establishing the asymptotic series associated to the Wallis sequence was given
by Mortici [2]

Wn ∼
π

2
exp

(
− 1

4n
+

1

8n2
− 5

96n3
+

1

64n4
− · · ·

)
.

Even if such asymptotic series may not converge, in a truncated form, it provides approx-
imations of any desired accuracy. We prove the following sharp bounds for the sequence
(ρn)n≥1 , arising from its asymptotic expansion, which can be constructed for example,
using the method from [2].

Theorem 3.1. For every integer n ≥ 1, it holds

π

2
exp

(
3

256n3
− 9

512n4

)
< ρn <

π

2
exp

(
3

256n3
− 9

512n4
+

1441

81 920n5

)
.

Proof. The sequences

xn =
π

2ρn
exp

(
3

256n3
− 9

512n4

)
, yn =

π

2ρn
exp

(
3

256n3
− 9

512n4
+

1441

81 920n5

)
converge to 1, and we prove that (xn)n≥1 is strictly increasing and (yn)n≥1 is strictly
decreasing. In consequence, xn < 1 and yn > 1 and the theorem is proved.

In this sense, we denote xn+1/xn = expu (n) and yn+1/yn = exp v (n) , where

u (t) = ln (r (t)) +
3

256 (t+ 1)3
− 9

512 (t+ 1)4
− 3

256t3
+

9

512t4

v (t) = ln (r (t))+
3

256 (t+ 1)3
− 9

512 (t+ 1)4
+

1441

81 920 (t+ 1)5
− 3

256t3
+

9

512t4
− 1441

81 920t5

with

r (t) =
(2t+ 1) (2t+ 3) (8t+ 5) (8t+ 11)

4 (8t+ 3) (8t+ 13) (t+ 1)2
.



We have u′ < 0 and v′ > 0, since

u′ (t) = − 9P (t)

256t5 (t+ 1)5 (2t+ 1) (2t+ 3) (8t+ 3) (8t+ 5) (8t+ 11) (8t+ 13)

v′ (t) =
Q (t)

16384t6 (t+ 1)6 (2t+ 1) (2t+ 3) (8t+ 3) (8t+ 5) (8t+ 11) (8t+ 13)
,

where

P (t) = 164 427t+ 919 901t2 + 2964 474t3 + 6067 340t4 + 8187 804t5

+7305 696t6 + 4169 712t7 + 1382 400t8 + 202 240t9 + 12 870

and

Q (t) = 124 965 786t+ 745 324 705t2 + 2597 843 148t3 + 5881 230 025t4

+9094 461 530t5 + 9845 176 300t6 + 7519 686 680t7 + 4003 302 912t8

+1413 183 488t9 + 291 323 904t10 + 25 165 824t11 + 9272 835.

Finally, u is strictly decreasing, v is strictly increasing, with u (∞) = v (∞) = 0, so u > 0
and v < 0 and the conclusion follows.

Now it is clear that our new method is suitable for establishing similar better results
for all other sequences discussed here.
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