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Approximation of fixed points of multifunctions in
partial metric spaces
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Abstract
Recently, Reich and Zaslavski [S. Reich and A.J. Zaslavski, Conver-
gence of Inexact Iterative Schemes for Nonexpansive Set-Valued Map-
pings, Fixed Point Theory Appl. 2010 (2010), Article ID 518243, 10
pages] have studied a new inexact iterative scheme for fixed points of
contractive multifunctions. In this paper, using the partial Hausdorff
metric introduced by Aydi et al., we prove an analogous to a result
of Reich and Zaslavski for contractive multifunctions in the setting of
partial metric spaces. An example is given to illustrate our result.
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1. Introduction
The study of iterative schemes for various classes of contractive and nonexpansive

mappings is a central topic in metric fixed point theory. It started with the work of
Banach [3] who proved a classical theorem, known as the Banach contraction principle,
for the existence of a unique fixed point for a contraction. The importance of this result
is also in the fact that it gives the convergence of an iterative scheme to a unique fixed
point. Since Banach’s result, there has been a lot of activity in this area and many devel-
opments have been taken place. In metric fixed point theory, there are many existence
and approximation results for fixed points of those nonexpansive mappings which are
not necessarily strictly contractive. Some authors have also provided results dealing with
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the existence and approximation of fixed points of certain classes of contractive multi-
functions [4, 5, 7, 9, 12, 13]. In [12] Reich and Zaslavski introduced and studied new
inexact iterative schemes for approximating fixed points of contractive and nonexpansive
multifunctions. More recently, Aydi et al. [2] introduced a notion of partial Hausdoff
metric type, that is a metric type associated to a partial metric. In [2] the authors using
the partial Hausdorff metric proved an analogous to the well known Nadler’s fixed point
theorem [9]. In this paper, using the partial Hausdorff metric we prove an analogous to
a result of [12] for contractive multifunctions in the setting of partial metric spaces. An
example is given to illustrate our result.

2. Preliminaries
First, we recall some definitions of partial metric spaces that can be found in [6, 8, 10,

11, 14]. A partial metric on a nonempty set X is a function p : X ×X → [0,+∞) such
that for all x, y, z ∈ X:

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y);
(p2) p(x, x) ≤ p(x, y);
(p3) p(x, y) = p(y, x);
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).
A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial

metric on X. It is clear that, if p(x, y) = 0, then from (p1) and (p2) it follows that x = y.
But if x = y, p(x, y) may not be 0. A basic example of partial metric space is the pair
([0,+∞), p), where p(x, y) = max{x, y}.

Each partial metric p on X generates a T0 topology τp on X, which has as a base the
family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where

Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}

for all x ∈ X, ε > 0.
Let (X, p) be a partial metric space. A sequence {xn} in (X, p) converges to a point

x ∈ X if and only if p(x, x) = lim
n→+∞

p(x, xn). A sequence {xn} in (X, p) is called a

Cauchy sequence if there exists (and is finite) lim
n,m→+∞

p(xn, xm). A partial metric space

(X, p) is said to be complete if every Cauchy sequence {xn} in X converges, with respect
to τp, to a point x ∈ X such that p(x, x) = lim

n,m→+∞
p(xn, xm).

A sequence {xn} in (X, p) is called 0−Cauchy if lim
n,m→+∞

p(xn, xm) = 0. We say that

(X, p) is 0−complete if every 0−Cauchy sequence in X converges, with respect to τp, to
a point x ∈ X such that p(x, x) = 0.

Now, we recall the definition of partial Hausdorff metric and some property that can
be found in [2]. Let CBp(X) be the family of all nonempty, closed and bounded subsets
of the partial metric space (X, p), induced by the partial metric p. Note that closedness
is taken from (X, τp) and boundedness is given as follows: A is a bounded subset in (X, p)
if there exist x0 ∈ X and M ≥ 0 such that for all a ∈ A, we have a ∈ Bp(x0,M), that is,
p(x0, a) < p(x0, x0) +M .

For A,B ∈ CBp(X) and x ∈ X, define

p(x,A) = inf{p(x, a), a ∈ A}, δp(A,B) = sup{p(a,B) : a ∈ A} and
δp(B,A) = sup{p(b, A) : b ∈ B}.

2.1. Remark (see [1]). Let (X, p) be a partial metric space and A any nonempty set in
(X, p), then

(2.1) a ∈ Ā if and only if p(a,A) = p(a, a),



where Ā denotes the closure of A with respect to the partial metric p. Note that A is
closed in (X, p) if and only if A = Ā.

In the following proposition, we bring some properties of the mapping δp : CBp(X)×
CBp(X)→ [0,+∞).

2.2. Proposition ([2], Proposition 2.2). Let (X, p) be a partial metric space. For any
A,B,C ∈ CBp(X), we have the following:

(i) : δp(A,A) = sup{p(a, a) : a ∈ A};
(ii) : δp(A,A) ≤ δp(A,B);

(iii) : δp(A,B) = 0 implies that A ⊆ B;

(iv) : δp(A,B) ≤ δp(A,C) + δp(C,B)− inf
c∈C

p(c, c).

Let (X, p) be a partial metric space. For A,B ∈ CBp(X), define

Hp(A,B) = max {δp(A,B), δp(B,A)} .

In the following proposition, we bring some properties of the mapping Hp.

2.3. Proposition ([2], Proposition 2.3). Let (X, p) be a partial metric space. For all
A,B,C ∈ CBp(X), we have

(h1) : Hp(A,A) ≤ Hp(A,B);

(h2) : Hp(A,B) = Hp(B,A);

(h3) : Hp(A,B) ≤ Hp(A,C) +Hp(C,B)− inf
c∈C

p(c, c).

2.4. Corollary ([2], Corollary 2.4). Let (X, p) be a partial metric space. For A,B ∈
CBp(X) the following holds:

Hp(A,B) = 0 implies that A = B.

2.5. Remark. The converse of Corollary 2.4 is not true in general as it is clear from the
following example.

2.6. Example ([2], Example 2.6). Let X = [0, 1] be endowed with the partial metric
p : X ×X → R+ defined by

p(x, y) = max{x, y}.

From (i) of Proposition 2.2, we have

Hp(X,X) = δp(X,X) = sup{x : 0 ≤ x ≤ 1} = 1 6= 0.

In view of Proposition 2.3 and Corollary 2.4, we call the mapping Hp : CBp(X) ×
CBp(X)→ [0,+∞), a partial Hausdorff metric induced by p.

2.7. Remark. It is easy to show that any Hausdorff metric is a partial Hausdorff metric.
The converse is not true (see Example 2.6).

3. Main result
The following theorem is the main result.

3.1. Theorem. Let (X, p) be a 0−complete partial metric space, T : X → CBp(X) a
multifunctions and {εi} and {δi} two sequences in (0,+∞) such that

(3.1)
+∞∑
i=0

εi < +∞ and
+∞∑
i=0

δi < +∞.



Suppose that there exists k ∈ [0, 1) such that

(3.2) Hp(Tx, Ty) ≤ kp(x, y) for all x, y ∈ X.

Let Ti : X → 2X\{∅} satisfy, for each integer i ≥ 0,

(3.3) Hp(Tx, Tix) ≤ εi, for all x ∈ X.

Assume that x0 ∈ X and that for each integer i ≥ 0,

(3.4) xi+1 ∈ Tixi, p(xi, xi+1) ≤ p(xi, Tixi) + δi.

Then, the sequence {xi}+∞i=0 converges to a fixed point of T .

Proof. We first show that {xi}+∞i=0 is a 0-Cauchy sequence. To this end, let i ≥ 0 be an
integer. Then, we have

p(xi+1, xi+2) ≤ p(xi+1, Ti+1xi+1) + δi+1

≤ p(xi+1, Txi+1) + δp(Txi+1, Ti+1xi+1)− inf
c∈Txi+1

p(c, c) + δi+1

≤ p(xi+1, Txi+1) + δp(Txi+1, Ti+1xi+1) + δi+1

≤ p(xi+1, Txi+1) +Hp(Txi+1, Ti+1xi+1) + δi+1

≤ p(xi+1, Txi+1) + εi+1 + δi+1

≤ Hp(Tixi, Txi+1) + εi+1 + δi+1

≤ Hp(Tixi, Txi) +Hp(Txi, Txi+1)− inf
c∈Txi

p(c, c) + εi+1 + δi+1

≤ Hp(Txi, Txi+1) + εi + εi+1 + δi+1.

Hence,

(3.5) p(xi+1, xi+2) ≤ kp(xi, xi+1) + εi + εi+1 + δi+1.

Now, we show by induction that for each n ≥ 1, we have

(3.6) p(xn, xn+1) ≤ knp(x0, x1) +

n−1∑
i=0

ki(εn−i + δn−i + εn−i−1).

In view of (3.5), inequality (3.6) holds for n = 1, 2. Assume that j ≥ 1 is an integer
and that (3.6) holds for n = j. When combined with (3.5), this implies that

p(xj+1, xj+2) ≤ kp(xj , xj+1) + εj+1 + δj+1 + εj

≤ kj+1p(x0, x1) +

j−1∑
i=0

ki+1(εj−i + δj−i + εj−i−1) + εj+1 + δj+1 + εj

= kj+1p(x0, x1) +

j∑
i=0

ki(εj+1−i + δj+1−i + εj−i).



This implies that (3.6) holds for all n ≥ 1. From (3.6), by (3.1), we get
+∞∑
n=1

p(xn, xn+1) ≤
+∞∑
n=1

(
knp(x0, x1) +

n−1∑
i=0

ki(εn−i + δn−i + εn−i−1)
)

=

+∞∑
n=1

(
knp(x0, x1) +

n∑
i=1

kn−i(εi + δi + εi−1)
)

=

+∞∑
n=1

knp(x0, x1) + (k0 + k1 + k2 + · · · )(ε1 + δ1 + ε0)

+ (k0 + k1 + k2 + . . .)(ε2 + δ2 + ε1)

+ (k0 + k1 + k2 + · · · )(ε3 + δ3 + ε2) + · · ·

=

+∞∑
n=1

knp(x0, x1) +

+∞∑
i=1

( +∞∑
j=0

kj
)

(εi + δi + εi−1)

≤
( +∞∑

n=0

kn
)[
p(x0, x1) +

+∞∑
n=1

(εn + δn + εn−1)
]
< +∞.

This implies that lim
i,j→+∞

p(xi, xj) = 0 and hence {xi}+∞i=0 is a 0-Cauchy sequence and

so there exists x∗ ∈ X such that

(3.7) lim
i→+∞

p(xi, x
∗) = p(x∗, x∗) = 0.

We claim that x∗ is a fixed point of T , that is x∗ ∈ Tx∗. From

Hp(Txi, Tx
∗) ≤ kp(xi, x∗) for all i ∈ N,

letting i→ +∞, we obtain

(3.8) lim
i→+∞

Hp(Txi, Tx
∗) = 0.

As xi+1 ∈ Tixi for all i, we have

p(xi+1, Tx
∗) ≤ δp(Tixi, Tx

∗)

≤ Hp(Tixi, Txi) +Hp(Txi, Tx
∗)

≤ εi +Hp(Txi, Tx
∗).

Letting i→ +∞, by (3.1) and (3.8), we obtain

(3.9) lim
i→+∞

p(xi+1, Tx
∗) = 0.

Now, using (3.7) and (3.9), from

p(x∗, Tx∗) ≤ p(x∗, xi+1) + p(xi+1, Tx
∗) for all i ∈ N,

as i→ +∞ we deduce that p(x∗, Tx∗) = 0. Hence, p(x∗, x∗) = p(x∗, Tx∗) = 0 and so by
Remark 2.1 we get that x∗ ∈ Tx∗.

�

We also have the following result.

3.2. Theorem. Let (X, p) be a 0−complete partial metric space, T : X → CBp(X) a
multifunction and {δi} a sequence in (0,+∞) such that

(3.10)
+∞∑
i=0

δi < +∞.



Suppose that there exists k ∈ [0, 1) such that

(3.11) Hp(Tx, Ty) ≤ kp(x, y) for all x, y ∈ X.
Assume that x0 ∈ X and that for each integer i ≥ 0,

(3.12) xi+1 ∈ Txi, p(xi, xi+1) ≤ Hp(Txi−1, Txi) + δi.

Then, the sequence {xi}+∞i=0 converges to a fixed point of T .

Proof. We first show that {xi}+∞i=0 is a 0-Cauchy sequence. To this end, let i ≥ 0 be an
integer. Then, we have

p(xi+1, xi+2) ≤ Hp(Txi, Txi+1) + δi+1.

Hence,

(3.13) p(xi+1, xi+2) ≤ kp(xi, xi+1) + δi+1.

Now, we show by induction that for each n ≥ 1, we have

(3.14) p(xn, xn+1) ≤ knp(x0, x1) +

n−1∑
i=0

kiδn−i.

In view of (3.13), inequality (3.14) holds for n = 1, 2. Assume that j ≥ 1 is an integer
and that (3.14) holds for n = j. When combined with (3.13), this implies that

p(xj+1, xj+2) ≤ kp(xj , xj+1) + δj+1

≤ kj+1p(x0, x1) +

j−1∑
i=0

ki+1δj−i + δj+1.

This implies that (3.14) holds for all n ≥ 1. From (3.14), by (3.10), proceeding as in
the proof of Theorem 3.1, we get

+∞∑
n=1

p(xn, xn+1) ≤
+∞∑
n=1

(
knp(x0, x1) +

n−1∑
i=0

kiδn−i

)
=

+∞∑
n=1

knp(x0, x1) +

+∞∑
i=1

( ∞∑
j=0

kj
)
δi

≤
( +∞∑

n=0

kn
)[
p(x0, x1) +

+∞∑
n=1

δn
]
< +∞.

This implies that lim
n,m→+∞

p(xi, xj) = 0 and hence {xi}+∞i=0 is a 0-Cauchy sequence

and so there exists x∗ ∈ X such that

(3.15) lim
i→+∞

p(xi, x
∗) = p(x∗, x∗) = 0.

We claim that x∗ is a fixed point of T , that is x∗ ∈ Tx∗. From
Hp(Txi, Tx

∗) ≤ kp(xi, x∗) for all i ∈ N,
letting i→ +∞, we obtain

lim
i→∞

Hp(Txi, Tx
∗) = 0.

As xi+1 ∈ Txi for all i, we have

p(xi+1, Tx
∗) ≤ δp(Txi, Tx

∗) ≤ Hp(Txi, Tx
∗).

Letting i→ +∞, we get that

(3.16) lim
i→+∞

p(xi+1, Tx
∗) = 0.



Now, using (3.15) and (3.16), from

p(x∗, Tx∗) ≤ p(x∗, xi+1) + p(xi+1, Tx
∗) for all i ∈ N,

as i → +∞ we deduce that p(x∗, Tx∗) = 0. Hence, p(x∗, x∗) = p(x∗, Tx∗) = 0 and so
x∗ ∈ Tx∗, that is x∗ is a fixed point of T . �

3.3. Lemma. Let (X, p) be a partial metric space, A,B ∈ CBp(X) and α > 0. For any
a ∈ A, there exists b = b(a) ∈ B such that

(3.17) p(a, b) ≤ Hp(A,B) + α.

Proof. Without loss of generality, we can assume that Hp(A,B) > 0. If we choose h > 1
such that hHp(A,B) = Hp(A,B) + α, the existence of b ∈ B satisfying (3.17) follows
from Lemma 3.1 of [2]. �

3.4. Lemma. Let (X, p) be a partial metric space, T : X → CBp(X) a multifunction.
Suppose that there exists k ∈ [0, 1) such that

(3.18) Hp(Tx, Ty) ≤ kp(x, y) for all x, y ∈ X.
Then for all x0 ∈ X there exists a sequence {xi}+∞i=0 such that

(3.19) xi+1 ∈ Txi, p(xi, xi+1) ≤ Hp(Txi−1, Txi) + ki.

Proof. We may assume k > 0. Choose x1 ∈ Tx0. As Tx0, Tx1 ∈ CBp(X) and x1 ∈ Tx0,
there is a point x2 ∈ Tx1 such that

p(x1, x2) ≤ Hp(Tx0, Tx1) + k.

Now, since Tx1, Tx2 ∈ CBp(X) and x2 ∈ Tx1 there is a point x3 ∈ Tx2 such that
p(x2, x3) ≤ Hp(Tx1, Tx2) + k2. Continuing in this way we produce a sequence {xi}+∞i=0

of points of X such that xi+1 ∈ Txi and p(xi, xi+1) ≤ Hp(Txi−1, Txi) + ki for all i ≥ 1.
�

From Theorem 3.2 and Lemma 3.4, we deduce the following result, which generalizes
Theorem 3.2 of [2].

3.5. Theorem. Let (X, p) be a 0-complete partial metric space. If T : X → CBp(X) is
a multifunction such that for all x, y ∈ X, we have

(3.20) Hp(Tx, Ty) ≤ k p(x, y)

where k ∈ [0, 1). Then T has a fixed point.

To illustrate the usefulness of our result, we give the following example.

3.6. Example. Let X = [0, 2] be endowed with the usual metric. Define the multifunc-
tions T, Ti : X → CBp(X) by

Tx =

{
[x
8
, x
4
] if x ∈ [0, 1],

{0} otherwise.

Tix =

{
[x
8
− x

8i+2 ,
x
4
] if x ∈ [0, 1],

{0} otherwise.
It is easy to see that Theorem 2.1 of [12] is not applicable in this case. Indeed, for

x =
19

18
and y =

8

9
, we have

H(T (
19

18
), T (

8

9
)) = H({0}, [ 1

9
,

2

9
])

=
2

9
� k

6
= k d(

19

18
,

8

9
),



for any k ∈ [0, 1).
On the other hand, if we endow X with the partial metric defined by

p(x, y) =

{
|x− y| if x, y ∈ [0, 1],
|x−y|

4
+ max{x,y}

2
otherwise.

Then (X, p) is a complete partial metric space and Tx is closed for all x ∈ X.
We shall show that for all x, y ∈ X, (3.20) is satisfied with k = 2

3
.

Consider the following cases:
• If x ∈ [0, 1] and y ∈ (1, 2], then p(x, y) = 3

4
y − x

4
> 1

2
and

Hp(Tx, Ty) = Hp([
x

8
,
x

4
], {0})

= max{x
8
,
x

4
} =

x

4
≤ 1

4
<

1

3
=
k

2
< kp(x, y).

• If x, y ∈ (1, 2], then Hp(Tx, Ty) = Hp({0}, {0}) = 0 and (3.20) is satisfied
obviously.

• If x, y ∈ [0, 1], with x ≤ y, then

Hp(Tx, Ty) = Hp([
x

8
,
x

4
], [
y

8
,
y

4
])

= max{y − x
8

,
y − x

4
}

=
y − x

4
<

2

3
(y − x) = kp(x, y).

It is easy to see that Hp(Tix, Tx) ≤ 1/8i+2 for all x ∈ X. Moreover, for all x0 ∈ [0, 1]
the sequence {xi}+∞i=0 defined by xi+1 = xi/4− xi/4i+2 ∈ Tixi for all i ≥ 0 is such that

p(xi, xi+1) =
3

4
xi +

xi
4i+2

= p(xi, Tixi) +
xi

4i+2
≤ p(xi, Tixi) +

1

4i+2
.

If x0 ∈ (1, 2], then we choose xi = 0 for all i > 0.
Thus, all the conditions of Theorem 3.1 are satisfied with εi = 1/8i+2 and δi = 1/4i+2.

Moreover, xi → 0 and x = 0 is a fixed point of T in X.
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