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Bounds for the energy of graphs

Kinkar Ch. Das∗ and Ivan Gutman†‡

Abstract

The energy of a graph G, denoted by E(G), is the sum of the absolute
values of all eigenvalues of G . In this paper we present some lower
and upper bounds for E(G) in terms of number of vertices, number
of edges, and determinant of the adjacency matrix. Our lower bound
is better than the classical McClelland’s lower bound. In addition,
Nordhaus–Gaddum type results for E(G) are established.
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1. Introduction
Let G = (V,E) be a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and edge

set E(G), |E(G)| = m. Let di be the degree of the vertex vi for i = 1, 2, . . . , n. The
maximum and minimum vertex degrees are denoted by ∆ and δ, respectively. If the
vertices vi and vj are adjacent, we denote that by vivj ∈ E(G). The adjacency matrix
A = A(G) of G is defined by its entries as aij = 1 if vivj ∈ E(G) and 0 otherwise. Let
λ1 ≥ λ2 ≥ · · · ≥ λn denote the eigenvalues of A(G) . λ1 is called the spectral radius of
the graph G . Some well known properties of graph eigenvalues are:

n∑
i=1

λi = 0 ,

n∑
i=1

λi
2 = 2m and detA =

n∏
i=1

λi .
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A graph G is said to be singular if at least one of its eigenvalues is equal to zero. For
singular graphs, evidently, detA = 0. A graph is nonsingular if all its eigenvalues are
different from zero. Then, detA 6= 0.

The energy of the graph G is defined as

(1.1) E(G) =

n∑
i=1

|λi|

where λi, i = 1, 2, . . . , n, are the eigenvalues of graph G.

This spectrum-based graph invariant has been much studied in both chemical and
mathematical literature. For details and an exhaustive list of references see the mono-
graph [14]. What nowadays is referred to as graph energy, defined via Eq. (1.1), is
closely related to the total π-electron energy calculated within the Hückel molecular
orbital approximation; for details see in [8, 11, 18].

The paper is organized as follows. In Section 2, we give a list of some previously known
results. In Section 3, we present a lower bound on the energy E(G). In Section 4, we
obtain an upper bound on E(G). In Section 5, Nordhaus–Gaddum type results for E(G)
are established.

2. Preliminaries
In this section, we shall list some previously known results that will be needed in the

next two sections.

2.1. Lemma. (Cauchy interlace theorem) [3, 17] Let B be a p×p symmetric matrix and
let Bk be its leading k× k submatrix; that is, Bk is a matrix obtained from B by deleting
its last p− k rows and columns. Then for i = 1, 2, . . . , k,

(2.1) ρp−i+1(B) ≤ ρk−i+1(Bk) ≤ ρk−i+1(B)

where ρi(B) is the i-th largest eigenvalue of B.

2.2. Lemma. [13] Let x1, x2, . . . , xN be non-negative numbers, and let

α =
1

N

N∑
i=1

xi and γ =

(
N∏
i=1

xi

)1/N

be their arithmetic and geometric means. Then
1

N(N − 1)

∑
i<j

(√
xi −

√
xj
)2
≤ α− γ ≤ 1

N

∑
i<j

(√
xi −

√
xj
)2

.

Moreover, equality holds if and only if x1 = x2 = · · · = xN .

2.3. Lemma. [6] Let a1, a2, . . . , an and b1, b2, . . . , bn be non-negative real numbers. If
p > 1, then (

n∑
i=1

(ai + bi)
p

)1/p

≤

(
n∑
i=1

api

)1/p

+

(
n∑
i=1

bpi

)1/p

.

Moreover, the above equality holds if and only if the rows {ai} and {bi} are proportional.
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2.4. Lemma. [1] For a graph G,

−

√
2m(r − 1)

n(n− r + 1)
≤ λr ≤

√
2m(n− r)

nr
, 1 ≤ r ≤ n

2.5. Lemma. [2, 3] Let G be a connected graph of order n. Then

λ1 ≥
2m

n
with equality if and only if G is a regular graph.

3. Lower bound on graph energy
In this section we give a lower bound on energy E(G) in terms of n, m and the

determinant of the adjacency matrix.
First we mention some popular lower bounds on graph energy.
In the monograph [14] the following simple lower bound in terms of m is mentioned:

(3.1) E(G) ≥ 2
√
m

with equality holding if and only if G consists of a complete bipartite graph Ka, b such
that a · b = m and arbitrarily many isolated vertices.

McClelland [18] obtained the following lower bound in terms of n, m and the deter-
minant of the adjacency matrix:

(3.2) E(G) ≥
√

2m+ n(n− 1)| det A|2/n .

Recently, Das et al. [5] have given the following lower bound, valid for non-singular
graphs:

(3.3) E(G) ≥ 2m

n
+ n− 1 + ln

(
n | detA|

2m

)
.

We now give an additional such lower bound, applicable for any graphs:

3.1. Theorem. Let G be a simple graph of order n > 2 with m edges. Then

(3.4) E(G) ≥

√√√√2m+ n(n− 1)| detA|2/n +
4

(n+ 1)(n− 2)

[√
2m

n
−
(

2m

n

)1/4
]2

where equality holds if and only if G ∼= n
2
K2 (n is even) or G ∼= Kn .

Proof. When G ∼= Kn , we have m = 0, detA = 0 and E(G) = 0. Hence the equality
holds in (3.4). When G ∼= n

2
K2 (n is even), we have 2m = n, detA = (−1)n/2 and

E(G) = n. Hence the equality holds in (3.4). When G ∼= pK2∪(n−2p)K1 (
⌈
n
2

⌉
> p ≥ 1),

we have 2m = 2p < n, detA = 0 and E(G) = 2p. Hence the inequality in (3.4) is strict.
Otherwise, G has at least one connected component with m1 ≥ 2 (m1 is the number of
edges in the connected component).

From Lemma 2.2, we get

(3.5)
N∑
i=1

xi ≥ N

(
N∏
i=1

xi

)1/N

+
1

(N − 1)

∑
i<j

(√
xi −

√
xj
)2

.
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Putting N =
n(n− 1)

2
and

(x1, x2, . . . , xN ) =
(
|λ1||λ2|, |λ1||λ3|, . . . , |λ1||λn|, |λ2||λ3|,

. . . , |λ2||λn|, . . . , |λn−1||λn|
)

in (3.5), we get

∑
1≤i<j≤n

|λi||λj | ≥
n(n− 1)

2

(
n∏
i=1

|λi|

)2/n

+
2

(n2 − n− 2)

∑
i<j≤k<`

(√
|λi||λj | −

√
|λk||λ`|

)2
that is,

2
∑

1≤i<j≤n

|λi||λj | ≥ n(n− 1) |detA|2/n

+
4

(n+ 1)(n− 2)

∑
i<j≤k<`

(√
|λi||λj | −

√
|λk||λ`|

)2
.(3.6)

By Lemma 2.4,

λn/2 ≤
√

2m

n
and λ(n+1)/2 ≤

√
2m(n− 1)

n(n+ 1)
<

√
2m

n

for even and odd n, respectively.
From Lemma 2.5 and also from the above, we get for n ≥ 3,

(3.7) λ1 ≥
2m

n
and λdn

2
e ≤

√
2m

n
.

Since m ≥ 1, by Lemma 2.1,

λn ≤ λ2(A2) = −1 .

From the above, we have that |λn| ≥ 1. Since n ≥ 3 and m1 ≥ 2, we further have∑
i<j≤k<`

(√
|λi||λj | −

√
|λk||λ`|

)2
≥
(√
|λ1||λn| −

√
|λdn

2
e||λn|

)2
+

∑
i<j≤k<`

(i, j)6=(1, n),

(k, `) 6=(dn
2
e, n)

(√
|λi||λj | −

√
|λk||λ`|

)2
> |λn|

(√
|λ1| −

√
|λdn

2
e|
)2

≥

[√
2m

n
−
(

2m

n

)1/4
]2
.

Combining the above result with (3.6), we get

2
∑

1≤i<j≤n

|λi||λj | > n(n− 1) |detA|2/n +
4

(n+ 1)(n− 2)

[√
2m

n
−
(

2m

n

)1/4
]2

.
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Adding to both sides
n∑
i=1

λ2
i (= 2m), we get

E(G)2 > 2m+ n(n− 1) |detA|2/n +
4

(n+ 1)(n− 2)

[√
2m

n
−
(

2m

n

)1/4
]2

which straightforwardly implies (3.4). �

Inequality (3.4), as well as (4.1), was mentioned in [9], but without details and without
the characterization of the equality cases.

3.2. Remark. Our lower bound (3.4) is better than the lower bound (3.2).

3.3. Remark. In [5], it has been mentioned that sometimes the lower bound in (3.3) is
better that the lower bounds in (3.1) and (3.2), but the lower bound in (3.3) is applicable
for non-singular graphs.

4. Upper bound on graph energy
In this section we give an upper bound on energy E(G) in terms of n, m, and detA.

Other upper bounds on graph energy are discussed in the book [14] and the recent papers
[4, 9, 19].

4.1. Theorem. Let G be a connected non-singular graph of order n with m edges. Then

(4.1) E(G) ≤ 2m− 2m

n

(
2m

n
− 1

)
− ln

(
n| detA|

2m

)
where detA ( 6= 0) is the determinant of the adjacency matrix. Equality holds in (4.1) if
and only if G ∼= Kn .

Proof. Since G is non-singular, we have |λi| > 0, i = 1, 2, . . . , n. Thus

| detA| =
n∏
i=1

|λi| > 0 .

Moreover, since G has no isolated vertices,

2m =
n∑
i=1

di ≥ n i.e.,
2m

n
≥ 1 .

Consider now the function

f(x) = x2 − x− lnx, x > 0

for which

f ′(x) = 2x− 1− 1

x
.

Thus f(x) is an increasing function on x ≥ 1 and a decreasing function on 0 < x ≤ 1 .
Thus, f(x) ≥ f(1) = 0 implying x ≤ x2 − lnx for x > 0, with equality holding if and



700

only if x = 1. Using this result, we get

E(G) = λ1 +

n∑
i=2

|λi|

≤ λ1 +

n∑
i=2

(
λ2
i − ln |λi|

)
(4.2)

= λ1 + 2m− λ2
1 − ln

n∏
i=1

|λi|+ lnλ1

= 2m+ λ1 − λ2
1 − ln | detA|+ lnλ1 .(4.3)

From Lemma 2.5 we know that λ1 ≥ 2m/n. Since

g(x) = 2m+ x− x2 − ln |detA|+ lnx

is an increasing function on 0 < x ≤ 1 and a decreasing function on x ≥ 1, and since
x ≥ 2m

n
≥ 1, we have

g(x) ≤ g
(

2m

n

)
= 2m+

2m

n
−
(

2m

n

)2

− ln |detA|+ ln

(
2m

n

)
.

Combining this with (4.3), we arrive at (4.1). By this, the first part of the proof is done.
Suppose now that the equality holds in (4.1). Then all the inequalities in the above

consideration must be equalities. From equality in (4.2), we get

(4.4) |λ2| = |λ3| = · · · = |λn| = 1 .

Since G is connected, condition (4.4) is satisfied if and only if G ∼= Kn [3].

Conversely, one can see easily that the equality holds in (4.1) for Kn . �

Concluding this section, it should be mentioned that similar techniques (based on
the inequalities stated in Section 2) have been used in estimating other spectrum–based
graph indices, especially the Estrada index EE(G) [7, 12, 15, 16, 21, 22]. Recall that this
index is defined as

EE(G) =

n∑
i=1

eλi

and that details of its theory can be found in the survey [10].

5. Nordhaus–Gaddum–type results for graph energy
Motivated by the seminal work of Noradhaus and Gaddum [20], we report here anal-

ogous results for graph energy. As usual, G denotes the complement of the graph G.

5.1. Theorem. Let G and G be both connected non-singular graphs. If G has n vertices
and m edges, then

3(n− 1) + ln

(
n2 | det (AA)|

2m(n(n− 1)− 2m)

)
≤ E(G) + E(G) ≤ 2(n− 1)

+
4m(n(n− 1)− 2m)

n2
− ln

(
n2 | det (AA)|

2m(n(n− 1)− 2m)

)
(5.1)
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where detA (6= 0) and detA ( 6= 0) are the determinants of the adjacency matrices of G
and G, respectively.

Proof. By (3.3),

E(G) + E(G) ≥ 2m+ 2m

n
+ 2(n− 1) + ln

(
n | detA|

2m

)
+ ln

(
n |detA|

2m

)

where m and A are the number of edges and the adjacency matrix of G.
Since 2m+2m = n(n−1) and detAA = detA detA, the lower bound in (5.1) follows.
By (4.1),

E(G) + E(G) ≤ 2m+ 2m+
2m+ 2m

n
− 4m2 + 4m2

n2

− ln

(
n| detA|

2m

)
− ln

(
n |detA|

2m

)
.

This straightforwardly leads to the upper bound in (5.1). �

5.2. Theorem. Let G be a graph of order n with m edges. Then

E(G) + E(G) ≤ n+ ∆− δ − 1

+

[
(n− 1)

(
n− 1 +

4m(n(n− 1)− 2m)

n2

+
2

n2

√
2m(2m+ n)(n2 − 2m)(n2 − 2m− n)

)]1/2
(5.2)

where ∆ and δ are the maximum degree and minimum degree of G, respectively.

Proof. By Lemma 2.3,

(
n∑
i=2

(|λi|+ |λi|)2
)1/2

≤

(
n∑
i=2

λ2
i

)1/2

+

(
n∑
i=2

λ
2
i

)1/2

where λi and λi are eigenvalues of G and G, respectively. Since

n∑
i=1

λ2
i = 2m and

n∑
i=1

λ
2
1 = 2m
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we get

n∑
i=2

(|λi|+ |λi|)2 ≤
n∑
i=2

λ2
i +

n∑
i=2

λ
2
i + 2

√√√√ n∑
i=2

λ2
i

n∑
i=2

λ
2
i

= 2m− λ2
1 + 2m− λ2

1 + 2

√
(2m− λ2

1) (2m− λ2
1)

≤ n(n− 1)− 4m2 + 4m2

n2
+ 2

√
4mm

n4
(n2 − 2m) (2m+ n)

= n− 1 +
4m(n(n− 1)− 2m)

n2

+
2

n2

√
2m(n2 − 2m− n)(n2 − 2m)(2m+ n) .(5.3)

Since λ1 ≤ ∆, using the Cauchy–Schwarz inequality, we obtain

E(G) + E(G) = |λ1|+ |λ1|+
n∑
i=2

(|λi|+ |λi|)

≤ ∆ + n− δ − 1 +

√√√√(n− 1)

n∑
i=2

(|λi|+ |λi|)2 .

Together with (5.3) this yields (5.2). �

6. Concluding remarks
Studies of the structure–dependence of the total π-electron energy has a long history.

Beginning with McClelland’s seminal work [18] in the early 1970s, most of the researches
along these lines were done by means of estimates (upper and lower bounds); for details
see the surveys [8, 9]. Eventually, the concept of total π-electron energy was extended
and redefined to the mathematically more general and more convenient concept of graph
energy, Eq. (1.1), see [14].

In the present work we offer a few more estimates for graph energy, in terms of
parameters that have direct and straightforward structural interpretation. By this, we
deem to have somewhat improved the understanding of how graph energy (and thus total
π-electron energy) are influenced by the respective structural features of the underlying
graph.
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